1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (c) 2011 The Chromium OS Authors.
4  * (C) Copyright 2011 NVIDIA Corporation <www.nvidia.com>
5  * (C) Copyright 2006 Detlev Zundel, dzu@denx.de
6  * (C) Copyright 2006 DENX Software Engineering
7  */
8 
9 #include <common.h>
10 #include <log.h>
11 #include <asm/global_data.h>
12 #include <asm/io.h>
13 #include <memalign.h>
14 #include <nand.h>
15 #include <asm/arch/clock.h>
16 #include <asm/arch/funcmux.h>
17 #include <asm/arch-tegra/clk_rst.h>
18 #include <dm/device_compat.h>
19 #include <linux/bug.h>
20 #include <linux/delay.h>
21 #include <linux/errno.h>
22 #include <linux/mtd/rawnand.h>
23 #include <asm/gpio.h>
24 #include <fdtdec.h>
25 #include <bouncebuf.h>
26 #include <dm.h>
27 #include "tegra_nand.h"
28 
29 DECLARE_GLOBAL_DATA_PTR;
30 
31 #define NAND_CMD_TIMEOUT_MS		10
32 
33 #define SKIPPED_SPARE_BYTES		4
34 
35 /* ECC bytes to be generated for tag data */
36 #define TAG_ECC_BYTES			4
37 
38 static const struct udevice_id tegra_nand_dt_ids[] = {
39 	{
40 		.compatible = "nvidia,tegra20-nand",
41 	},
42 	{ /* sentinel */ }
43 };
44 
45 /* 64 byte oob block info for large page (== 2KB) device
46  *
47  * OOB flash layout for Tegra with Reed-Solomon 4 symbol correct ECC:
48  *      Skipped bytes(4)
49  *      Main area Ecc(36)
50  *      Tag data(20)
51  *      Tag data Ecc(4)
52  *
53  * Yaffs2 will use 16 tag bytes.
54  */
55 static struct nand_ecclayout eccoob = {
56 	.eccbytes = 36,
57 	.eccpos = {
58 		4,  5,  6,  7,  8,  9,  10, 11, 12,
59 		13, 14, 15, 16, 17, 18, 19, 20, 21,
60 		22, 23, 24, 25, 26, 27, 28, 29, 30,
61 		31, 32, 33, 34, 35, 36, 37, 38, 39,
62 	},
63 	.oobavail = 20,
64 	.oobfree = {
65 			{
66 			.offset = 40,
67 			.length = 20,
68 			},
69 	}
70 };
71 
72 enum {
73 	ECC_OK,
74 	ECC_TAG_ERROR = 1 << 0,
75 	ECC_DATA_ERROR = 1 << 1
76 };
77 
78 /* Timing parameters */
79 enum {
80 	FDT_NAND_MAX_TRP_TREA,
81 	FDT_NAND_TWB,
82 	FDT_NAND_MAX_TCR_TAR_TRR,
83 	FDT_NAND_TWHR,
84 	FDT_NAND_MAX_TCS_TCH_TALS_TALH,
85 	FDT_NAND_TWH,
86 	FDT_NAND_TWP,
87 	FDT_NAND_TRH,
88 	FDT_NAND_TADL,
89 
90 	FDT_NAND_TIMING_COUNT
91 };
92 
93 /* Information about an attached NAND chip */
94 struct fdt_nand {
95 	struct nand_ctlr *reg;
96 	int enabled;		/* 1 to enable, 0 to disable */
97 	struct gpio_desc wp_gpio;	/* write-protect GPIO */
98 	s32 width;		/* bit width, normally 8 */
99 	u32 timing[FDT_NAND_TIMING_COUNT];
100 };
101 
102 struct nand_drv {
103 	struct nand_ctlr *reg;
104 	struct fdt_nand config;
105 };
106 
107 struct tegra_nand_info {
108 	struct udevice *dev;
109 	struct nand_drv nand_ctrl;
110 	struct nand_chip nand_chip;
111 };
112 
113 /**
114  * Wait for command completion
115  *
116  * @param reg	nand_ctlr structure
117  * @return
118  *	1 - Command completed
119  *	0 - Timeout
120  */
nand_waitfor_cmd_completion(struct nand_ctlr * reg)121 static int nand_waitfor_cmd_completion(struct nand_ctlr *reg)
122 {
123 	u32 reg_val;
124 	int running;
125 	int i;
126 
127 	for (i = 0; i < NAND_CMD_TIMEOUT_MS * 1000; i++) {
128 		if ((readl(&reg->command) & CMD_GO) ||
129 				!(readl(&reg->status) & STATUS_RBSY0) ||
130 				!(readl(&reg->isr) & ISR_IS_CMD_DONE)) {
131 			udelay(1);
132 			continue;
133 		}
134 		reg_val = readl(&reg->dma_mst_ctrl);
135 		/*
136 		 * If DMA_MST_CTRL_EN_A_ENABLE or DMA_MST_CTRL_EN_B_ENABLE
137 		 * is set, that means DMA engine is running.
138 		 *
139 		 * Then we have to wait until DMA_MST_CTRL_IS_DMA_DONE
140 		 * is cleared, indicating DMA transfer completion.
141 		 */
142 		running = reg_val & (DMA_MST_CTRL_EN_A_ENABLE |
143 				DMA_MST_CTRL_EN_B_ENABLE);
144 		if (!running || (reg_val & DMA_MST_CTRL_IS_DMA_DONE))
145 			return 1;
146 		udelay(1);
147 	}
148 	return 0;
149 }
150 
151 /**
152  * Read one byte from the chip
153  *
154  * @param mtd	MTD device structure
155  * Return:	data byte
156  *
157  * Read function for 8bit bus-width
158  */
read_byte(struct mtd_info * mtd)159 static uint8_t read_byte(struct mtd_info *mtd)
160 {
161 	struct nand_chip *chip = mtd_to_nand(mtd);
162 	struct nand_drv *info;
163 
164 	info = (struct nand_drv *)nand_get_controller_data(chip);
165 
166 	writel(CMD_GO | CMD_PIO | CMD_RX | CMD_CE0 | CMD_A_VALID,
167 	       &info->reg->command);
168 	if (!nand_waitfor_cmd_completion(info->reg))
169 		printf("Command timeout\n");
170 
171 	return (uint8_t)readl(&info->reg->resp);
172 }
173 
174 /**
175  * Read len bytes from the chip into a buffer
176  *
177  * @param mtd	MTD device structure
178  * @param buf	buffer to store data to
179  * @param len	number of bytes to read
180  *
181  * Read function for 8bit bus-width
182  */
read_buf(struct mtd_info * mtd,uint8_t * buf,int len)183 static void read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
184 {
185 	int i, s;
186 	unsigned int reg;
187 	struct nand_chip *chip = mtd_to_nand(mtd);
188 	struct nand_drv *info = (struct nand_drv *)nand_get_controller_data(chip);
189 
190 	for (i = 0; i < len; i += 4) {
191 		s = (len - i) > 4 ? 4 : len - i;
192 		writel(CMD_PIO | CMD_RX | CMD_A_VALID | CMD_CE0 |
193 			((s - 1) << CMD_TRANS_SIZE_SHIFT) | CMD_GO,
194 			&info->reg->command);
195 		if (!nand_waitfor_cmd_completion(info->reg))
196 			puts("Command timeout during read_buf\n");
197 		reg = readl(&info->reg->resp);
198 		memcpy(buf + i, &reg, s);
199 	}
200 }
201 
202 /**
203  * Check NAND status to see if it is ready or not
204  *
205  * @param mtd	MTD device structure
206  * @return
207  *	1 - ready
208  *	0 - not ready
209  */
nand_dev_ready(struct mtd_info * mtd)210 static int nand_dev_ready(struct mtd_info *mtd)
211 {
212 	struct nand_chip *chip = mtd_to_nand(mtd);
213 	int reg_val;
214 	struct nand_drv *info;
215 
216 	info = (struct nand_drv *)nand_get_controller_data(chip);
217 
218 	reg_val = readl(&info->reg->status);
219 	if (reg_val & STATUS_RBSY0)
220 		return 1;
221 	else
222 		return 0;
223 }
224 
225 /* Dummy implementation: we don't support multiple chips */
nand_select_chip(struct mtd_info * mtd,int chipnr)226 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
227 {
228 	switch (chipnr) {
229 	case -1:
230 	case 0:
231 		break;
232 
233 	default:
234 		BUG();
235 	}
236 }
237 
238 /**
239  * Clear all interrupt status bits
240  *
241  * @param reg	nand_ctlr structure
242  */
nand_clear_interrupt_status(struct nand_ctlr * reg)243 static void nand_clear_interrupt_status(struct nand_ctlr *reg)
244 {
245 	u32 reg_val;
246 
247 	/* Clear interrupt status */
248 	reg_val = readl(&reg->isr);
249 	writel(reg_val, &reg->isr);
250 }
251 
252 /**
253  * Send command to NAND device
254  *
255  * @param mtd		MTD device structure
256  * @param command	the command to be sent
257  * @param column	the column address for this command, -1 if none
258  * @param page_addr	the page address for this command, -1 if none
259  */
nand_command(struct mtd_info * mtd,unsigned int command,int column,int page_addr)260 static void nand_command(struct mtd_info *mtd, unsigned int command,
261 	int column, int page_addr)
262 {
263 	struct nand_chip *chip = mtd_to_nand(mtd);
264 	struct nand_drv *info;
265 
266 	info = (struct nand_drv *)nand_get_controller_data(chip);
267 
268 	/*
269 	 * Write out the command to the device.
270 	 *
271 	 * Only command NAND_CMD_RESET or NAND_CMD_READID will come
272 	 * here before mtd->writesize is initialized.
273 	 */
274 
275 	/* Emulate NAND_CMD_READOOB */
276 	if (command == NAND_CMD_READOOB) {
277 		assert(mtd->writesize != 0);
278 		column += mtd->writesize;
279 		command = NAND_CMD_READ0;
280 	}
281 
282 	/* Adjust columns for 16 bit bus-width */
283 	if (column != -1 && (chip->options & NAND_BUSWIDTH_16))
284 		column >>= 1;
285 
286 	nand_clear_interrupt_status(info->reg);
287 
288 	/* Stop DMA engine, clear DMA completion status */
289 	writel(DMA_MST_CTRL_EN_A_DISABLE
290 		| DMA_MST_CTRL_EN_B_DISABLE
291 		| DMA_MST_CTRL_IS_DMA_DONE,
292 		&info->reg->dma_mst_ctrl);
293 
294 	/*
295 	 * Program and erase have their own busy handlers
296 	 * status and sequential in needs no delay
297 	 */
298 	switch (command) {
299 	case NAND_CMD_READID:
300 		writel(NAND_CMD_READID, &info->reg->cmd_reg1);
301 		writel(column & 0xFF, &info->reg->addr_reg1);
302 		writel(CMD_GO | CMD_CLE | CMD_ALE | CMD_CE0,
303 		       &info->reg->command);
304 		break;
305 	case NAND_CMD_PARAM:
306 		writel(NAND_CMD_PARAM, &info->reg->cmd_reg1);
307 		writel(column & 0xFF, &info->reg->addr_reg1);
308 		writel(CMD_GO | CMD_CLE | CMD_ALE | CMD_CE0,
309 			&info->reg->command);
310 		break;
311 	case NAND_CMD_READ0:
312 		writel(NAND_CMD_READ0, &info->reg->cmd_reg1);
313 		writel(NAND_CMD_READSTART, &info->reg->cmd_reg2);
314 		writel((page_addr << 16) | (column & 0xFFFF),
315 			&info->reg->addr_reg1);
316 		writel(page_addr >> 16, &info->reg->addr_reg2);
317 		return;
318 	case NAND_CMD_SEQIN:
319 		writel(NAND_CMD_SEQIN, &info->reg->cmd_reg1);
320 		writel(NAND_CMD_PAGEPROG, &info->reg->cmd_reg2);
321 		writel((page_addr << 16) | (column & 0xFFFF),
322 			&info->reg->addr_reg1);
323 		writel(page_addr >> 16,
324 			&info->reg->addr_reg2);
325 		return;
326 	case NAND_CMD_PAGEPROG:
327 		return;
328 	case NAND_CMD_ERASE1:
329 		writel(NAND_CMD_ERASE1, &info->reg->cmd_reg1);
330 		writel(NAND_CMD_ERASE2, &info->reg->cmd_reg2);
331 		writel(page_addr, &info->reg->addr_reg1);
332 		writel(CMD_GO | CMD_CLE | CMD_ALE |
333 			CMD_SEC_CMD | CMD_CE0 | CMD_ALE_BYTES3,
334 			&info->reg->command);
335 		break;
336 	case NAND_CMD_ERASE2:
337 		return;
338 	case NAND_CMD_STATUS:
339 		writel(NAND_CMD_STATUS, &info->reg->cmd_reg1);
340 		writel(CMD_GO | CMD_CLE | CMD_PIO | CMD_RX
341 			| ((1 - 0) << CMD_TRANS_SIZE_SHIFT)
342 			| CMD_CE0,
343 			&info->reg->command);
344 		break;
345 	case NAND_CMD_RESET:
346 		writel(NAND_CMD_RESET, &info->reg->cmd_reg1);
347 		writel(CMD_GO | CMD_CLE | CMD_CE0,
348 			&info->reg->command);
349 		break;
350 	case NAND_CMD_RNDOUT:
351 	default:
352 		printf("%s: Unsupported command %d\n", __func__, command);
353 		return;
354 	}
355 	if (!nand_waitfor_cmd_completion(info->reg))
356 		printf("Command 0x%02X timeout\n", command);
357 }
358 
359 /**
360  * Check whether the pointed buffer are all 0xff (blank).
361  *
362  * @param buf	data buffer for blank check
363  * @param len	length of the buffer in byte
364  * @return
365  *	1 - blank
366  *	0 - non-blank
367  */
blank_check(u8 * buf,int len)368 static int blank_check(u8 *buf, int len)
369 {
370 	int i;
371 
372 	for (i = 0; i < len; i++)
373 		if (buf[i] != 0xFF)
374 			return 0;
375 	return 1;
376 }
377 
378 /**
379  * After a DMA transfer for read, we call this function to see whether there
380  * is any uncorrectable error on the pointed data buffer or oob buffer.
381  *
382  * @param reg		nand_ctlr structure
383  * @param databuf	data buffer
384  * @param a_len		data buffer length
385  * @param oobbuf	oob buffer
386  * @param b_len		oob buffer length
387  * @return
388  *	ECC_OK - no ECC error or correctable ECC error
389  *	ECC_TAG_ERROR - uncorrectable tag ECC error
390  *	ECC_DATA_ERROR - uncorrectable data ECC error
391  *	ECC_DATA_ERROR + ECC_TAG_ERROR - uncorrectable data+tag ECC error
392  */
check_ecc_error(struct nand_ctlr * reg,u8 * databuf,int a_len,u8 * oobbuf,int b_len)393 static int check_ecc_error(struct nand_ctlr *reg, u8 *databuf,
394 	int a_len, u8 *oobbuf, int b_len)
395 {
396 	int return_val = ECC_OK;
397 	u32 reg_val;
398 
399 	if (!(readl(&reg->isr) & ISR_IS_ECC_ERR))
400 		return ECC_OK;
401 
402 	/*
403 	 * Area A is used for the data block (databuf). Area B is used for
404 	 * the spare block (oobbuf)
405 	 */
406 	reg_val = readl(&reg->dec_status);
407 	if ((reg_val & DEC_STATUS_A_ECC_FAIL) && databuf) {
408 		reg_val = readl(&reg->bch_dec_status_buf);
409 		/*
410 		 * If uncorrectable error occurs on data area, then see whether
411 		 * they are all FF. If all are FF, it's a blank page.
412 		 * Not error.
413 		 */
414 		if ((reg_val & BCH_DEC_STATUS_FAIL_SEC_FLAG_MASK) &&
415 				!blank_check(databuf, a_len))
416 			return_val |= ECC_DATA_ERROR;
417 	}
418 
419 	if ((reg_val & DEC_STATUS_B_ECC_FAIL) && oobbuf) {
420 		reg_val = readl(&reg->bch_dec_status_buf);
421 		/*
422 		 * If uncorrectable error occurs on tag area, then see whether
423 		 * they are all FF. If all are FF, it's a blank page.
424 		 * Not error.
425 		 */
426 		if ((reg_val & BCH_DEC_STATUS_FAIL_TAG_MASK) &&
427 				!blank_check(oobbuf, b_len))
428 			return_val |= ECC_TAG_ERROR;
429 	}
430 
431 	return return_val;
432 }
433 
434 /**
435  * Set GO bit to send command to device
436  *
437  * @param reg	nand_ctlr structure
438  */
start_command(struct nand_ctlr * reg)439 static void start_command(struct nand_ctlr *reg)
440 {
441 	u32 reg_val;
442 
443 	reg_val = readl(&reg->command);
444 	reg_val |= CMD_GO;
445 	writel(reg_val, &reg->command);
446 }
447 
448 /**
449  * Clear command GO bit, DMA GO bit, and DMA completion status
450  *
451  * @param reg	nand_ctlr structure
452  */
stop_command(struct nand_ctlr * reg)453 static void stop_command(struct nand_ctlr *reg)
454 {
455 	/* Stop command */
456 	writel(0, &reg->command);
457 
458 	/* Stop DMA engine and clear DMA completion status */
459 	writel(DMA_MST_CTRL_GO_DISABLE
460 		| DMA_MST_CTRL_IS_DMA_DONE,
461 		&reg->dma_mst_ctrl);
462 }
463 
464 /**
465  * Set up NAND bus width and page size
466  *
467  * @param info		nand_info structure
468  * @param *reg_val	address of reg_val
469  * Return: 0 if ok, -1 on error
470  */
set_bus_width_page_size(struct mtd_info * our_mtd,struct fdt_nand * config,u32 * reg_val)471 static int set_bus_width_page_size(struct mtd_info *our_mtd,
472 				   struct fdt_nand *config, u32 *reg_val)
473 {
474 	if (config->width == 8)
475 		*reg_val = CFG_BUS_WIDTH_8BIT;
476 	else if (config->width == 16)
477 		*reg_val = CFG_BUS_WIDTH_16BIT;
478 	else {
479 		debug("%s: Unsupported bus width %d\n", __func__,
480 		      config->width);
481 		return -1;
482 	}
483 
484 	if (our_mtd->writesize == 512)
485 		*reg_val |= CFG_PAGE_SIZE_512;
486 	else if (our_mtd->writesize == 2048)
487 		*reg_val |= CFG_PAGE_SIZE_2048;
488 	else if (our_mtd->writesize == 4096)
489 		*reg_val |= CFG_PAGE_SIZE_4096;
490 	else {
491 		debug("%s: Unsupported page size %d\n", __func__,
492 		      our_mtd->writesize);
493 		return -1;
494 	}
495 
496 	return 0;
497 }
498 
499 /**
500  * Page read/write function
501  *
502  * @param mtd		mtd info structure
503  * @param chip		nand chip info structure
504  * @param buf		data buffer
505  * @param page		page number
506  * @param with_ecc	1 to enable ECC, 0 to disable ECC
507  * @param is_writing	0 for read, 1 for write
508  * Return:	0 when successfully completed
509  *		-EIO when command timeout
510  */
nand_rw_page(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int page,int with_ecc,int is_writing)511 static int nand_rw_page(struct mtd_info *mtd, struct nand_chip *chip,
512 	uint8_t *buf, int page, int with_ecc, int is_writing)
513 {
514 	u32 reg_val;
515 	int tag_size;
516 	struct nand_oobfree *free = chip->ecc.layout->oobfree;
517 	/* 4*128=512 (byte) is the value that our HW can support. */
518 	ALLOC_CACHE_ALIGN_BUFFER(u32, tag_buf, 128);
519 	char *tag_ptr;
520 	struct nand_drv *info;
521 	struct fdt_nand *config;
522 	unsigned int bbflags;
523 	struct bounce_buffer bbstate, bbstate_oob;
524 
525 	if ((uintptr_t)buf & 0x03) {
526 		printf("buf %p has to be 4-byte aligned\n", buf);
527 		return -EINVAL;
528 	}
529 
530 	info = (struct nand_drv *)nand_get_controller_data(chip);
531 	config = &info->config;
532 	if (set_bus_width_page_size(mtd, config, &reg_val))
533 		return -EINVAL;
534 
535 	/* Need to be 4-byte aligned */
536 	tag_ptr = (char *)tag_buf;
537 
538 	stop_command(info->reg);
539 
540 	if (is_writing)
541 		bbflags = GEN_BB_READ;
542 	else
543 		bbflags = GEN_BB_WRITE;
544 
545 	bounce_buffer_start(&bbstate, (void *)buf, 1 << chip->page_shift,
546 			    bbflags);
547 	writel((1 << chip->page_shift) - 1, &info->reg->dma_cfg_a);
548 	writel(virt_to_phys(bbstate.bounce_buffer), &info->reg->data_block_ptr);
549 
550 	/* Set ECC selection, configure ECC settings */
551 	if (with_ecc) {
552 		if (is_writing)
553 			memcpy(tag_ptr, chip->oob_poi + free->offset,
554 			       chip->ecc.layout->oobavail + TAG_ECC_BYTES);
555 		tag_size = chip->ecc.layout->oobavail + TAG_ECC_BYTES;
556 		reg_val |= (CFG_SKIP_SPARE_SEL_4
557 			| CFG_SKIP_SPARE_ENABLE
558 			| CFG_HW_ECC_CORRECTION_ENABLE
559 			| CFG_ECC_EN_TAG_DISABLE
560 			| CFG_HW_ECC_SEL_RS
561 			| CFG_HW_ECC_ENABLE
562 			| CFG_TVAL4
563 			| (tag_size - 1));
564 
565 		if (!is_writing)
566 			tag_size += SKIPPED_SPARE_BYTES;
567 		bounce_buffer_start(&bbstate_oob, (void *)tag_ptr, tag_size,
568 				    bbflags);
569 	} else {
570 		tag_size = mtd->oobsize;
571 		reg_val |= (CFG_SKIP_SPARE_DISABLE
572 			| CFG_HW_ECC_CORRECTION_DISABLE
573 			| CFG_ECC_EN_TAG_DISABLE
574 			| CFG_HW_ECC_DISABLE
575 			| (tag_size - 1));
576 		bounce_buffer_start(&bbstate_oob, (void *)chip->oob_poi,
577 				    tag_size, bbflags);
578 	}
579 	writel(reg_val, &info->reg->config);
580 	writel(virt_to_phys(bbstate_oob.bounce_buffer), &info->reg->tag_ptr);
581 	writel(BCH_CONFIG_BCH_ECC_DISABLE, &info->reg->bch_config);
582 	writel(tag_size - 1, &info->reg->dma_cfg_b);
583 
584 	nand_clear_interrupt_status(info->reg);
585 
586 	reg_val = CMD_CLE | CMD_ALE
587 		| CMD_SEC_CMD
588 		| (CMD_ALE_BYTES5 << CMD_ALE_BYTE_SIZE_SHIFT)
589 		| CMD_A_VALID
590 		| CMD_B_VALID
591 		| (CMD_TRANS_SIZE_PAGE << CMD_TRANS_SIZE_SHIFT)
592 		| CMD_CE0;
593 	if (!is_writing)
594 		reg_val |= (CMD_AFT_DAT_DISABLE | CMD_RX);
595 	else
596 		reg_val |= (CMD_AFT_DAT_ENABLE | CMD_TX);
597 	writel(reg_val, &info->reg->command);
598 
599 	/* Setup DMA engine */
600 	reg_val = DMA_MST_CTRL_GO_ENABLE
601 		| DMA_MST_CTRL_BURST_8WORDS
602 		| DMA_MST_CTRL_EN_A_ENABLE
603 		| DMA_MST_CTRL_EN_B_ENABLE;
604 
605 	if (!is_writing)
606 		reg_val |= DMA_MST_CTRL_DIR_READ;
607 	else
608 		reg_val |= DMA_MST_CTRL_DIR_WRITE;
609 
610 	writel(reg_val, &info->reg->dma_mst_ctrl);
611 
612 	start_command(info->reg);
613 
614 	if (!nand_waitfor_cmd_completion(info->reg)) {
615 		if (!is_writing)
616 			printf("Read Page 0x%X timeout ", page);
617 		else
618 			printf("Write Page 0x%X timeout ", page);
619 		if (with_ecc)
620 			printf("with ECC");
621 		else
622 			printf("without ECC");
623 		printf("\n");
624 		return -EIO;
625 	}
626 
627 	bounce_buffer_stop(&bbstate_oob);
628 	bounce_buffer_stop(&bbstate);
629 
630 	if (with_ecc && !is_writing) {
631 		memcpy(chip->oob_poi, tag_ptr,
632 			SKIPPED_SPARE_BYTES);
633 		memcpy(chip->oob_poi + free->offset,
634 			tag_ptr + SKIPPED_SPARE_BYTES,
635 			chip->ecc.layout->oobavail);
636 		reg_val = (u32)check_ecc_error(info->reg, (u8 *)buf,
637 			1 << chip->page_shift,
638 			(u8 *)(tag_ptr + SKIPPED_SPARE_BYTES),
639 			chip->ecc.layout->oobavail);
640 		if (reg_val & ECC_TAG_ERROR)
641 			printf("Read Page 0x%X tag ECC error\n", page);
642 		if (reg_val & ECC_DATA_ERROR)
643 			printf("Read Page 0x%X data ECC error\n",
644 				page);
645 		if (reg_val & (ECC_DATA_ERROR | ECC_TAG_ERROR))
646 			return -EIO;
647 	}
648 	return 0;
649 }
650 
651 /**
652  * Hardware ecc based page read function
653  *
654  * @param mtd	mtd info structure
655  * @param chip	nand chip info structure
656  * @param buf	buffer to store read data
657  * @param page	page number to read
658  * Return:	0 when successfully completed
659  *		-EIO when command timeout
660  */
nand_read_page_hwecc(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)661 static int nand_read_page_hwecc(struct mtd_info *mtd,
662 	struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
663 {
664 	return nand_rw_page(mtd, chip, buf, page, 1, 0);
665 }
666 
667 /**
668  * Hardware ecc based page write function
669  *
670  * @param mtd	mtd info structure
671  * @param chip	nand chip info structure
672  * @param buf	data buffer
673  */
nand_write_page_hwecc(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)674 static int nand_write_page_hwecc(struct mtd_info *mtd,
675 	struct nand_chip *chip, const uint8_t *buf, int oob_required,
676 	int page)
677 {
678 	nand_rw_page(mtd, chip, (uint8_t *)buf, page, 1, 1);
679 	return 0;
680 }
681 
682 
683 /**
684  * Read raw page data without ecc
685  *
686  * @param mtd	mtd info structure
687  * @param chip	nand chip info structure
688  * @param buf	buffer to store read data
689  * @param page	page number to read
690  * Return:	0 when successfully completed
691  *		-EINVAL when chip->oob_poi is not double-word aligned
692  *		-EIO when command timeout
693  */
nand_read_page_raw(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)694 static int nand_read_page_raw(struct mtd_info *mtd,
695 	struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
696 {
697 	return nand_rw_page(mtd, chip, buf, page, 0, 0);
698 }
699 
700 /**
701  * Raw page write function
702  *
703  * @param mtd	mtd info structure
704  * @param chip	nand chip info structure
705  * @param buf	data buffer
706  */
nand_write_page_raw(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)707 static int nand_write_page_raw(struct mtd_info *mtd,
708 		struct nand_chip *chip,	const uint8_t *buf,
709 		int oob_required, int page)
710 {
711 	nand_rw_page(mtd, chip, (uint8_t *)buf, page, 0, 1);
712 	return 0;
713 }
714 
715 /**
716  * OOB data read/write function
717  *
718  * @param mtd		mtd info structure
719  * @param chip		nand chip info structure
720  * @param page		page number to read
721  * @param with_ecc	1 to enable ECC, 0 to disable ECC
722  * @param is_writing	0 for read, 1 for write
723  * Return:	0 when successfully completed
724  *		-EINVAL when chip->oob_poi is not double-word aligned
725  *		-EIO when command timeout
726  */
nand_rw_oob(struct mtd_info * mtd,struct nand_chip * chip,int page,int with_ecc,int is_writing)727 static int nand_rw_oob(struct mtd_info *mtd, struct nand_chip *chip,
728 	int page, int with_ecc, int is_writing)
729 {
730 	u32 reg_val;
731 	int tag_size;
732 	struct nand_oobfree *free = chip->ecc.layout->oobfree;
733 	struct nand_drv *info;
734 	unsigned int bbflags;
735 	struct bounce_buffer bbstate_oob;
736 
737 	if (((int)chip->oob_poi) & 0x03)
738 		return -EINVAL;
739 	info = (struct nand_drv *)nand_get_controller_data(chip);
740 	if (set_bus_width_page_size(mtd, &info->config, &reg_val))
741 		return -EINVAL;
742 
743 	stop_command(info->reg);
744 
745 	/* Set ECC selection */
746 	tag_size = mtd->oobsize;
747 	if (with_ecc)
748 		reg_val |= CFG_ECC_EN_TAG_ENABLE;
749 	else
750 		reg_val |= (CFG_ECC_EN_TAG_DISABLE);
751 
752 	reg_val |= ((tag_size - 1) |
753 		CFG_SKIP_SPARE_DISABLE |
754 		CFG_HW_ECC_CORRECTION_DISABLE |
755 		CFG_HW_ECC_DISABLE);
756 	writel(reg_val, &info->reg->config);
757 
758 	if (is_writing && with_ecc)
759 		tag_size -= TAG_ECC_BYTES;
760 
761 	if (is_writing)
762 		bbflags = GEN_BB_READ;
763 	else
764 		bbflags = GEN_BB_WRITE;
765 
766 	bounce_buffer_start(&bbstate_oob, (void *)chip->oob_poi, tag_size,
767 			    bbflags);
768 	writel(virt_to_phys(bbstate_oob.bounce_buffer), &info->reg->tag_ptr);
769 
770 	writel(BCH_CONFIG_BCH_ECC_DISABLE, &info->reg->bch_config);
771 
772 	writel(tag_size - 1, &info->reg->dma_cfg_b);
773 
774 	nand_clear_interrupt_status(info->reg);
775 
776 	reg_val = CMD_CLE | CMD_ALE
777 		| CMD_SEC_CMD
778 		| (CMD_ALE_BYTES5 << CMD_ALE_BYTE_SIZE_SHIFT)
779 		| CMD_B_VALID
780 		| CMD_CE0;
781 	if (!is_writing)
782 		reg_val |= (CMD_AFT_DAT_DISABLE | CMD_RX);
783 	else
784 		reg_val |= (CMD_AFT_DAT_ENABLE | CMD_TX);
785 	writel(reg_val, &info->reg->command);
786 
787 	/* Setup DMA engine */
788 	reg_val = DMA_MST_CTRL_GO_ENABLE
789 		| DMA_MST_CTRL_BURST_8WORDS
790 		| DMA_MST_CTRL_EN_B_ENABLE;
791 	if (!is_writing)
792 		reg_val |= DMA_MST_CTRL_DIR_READ;
793 	else
794 		reg_val |= DMA_MST_CTRL_DIR_WRITE;
795 
796 	writel(reg_val, &info->reg->dma_mst_ctrl);
797 
798 	start_command(info->reg);
799 
800 	if (!nand_waitfor_cmd_completion(info->reg)) {
801 		if (!is_writing)
802 			printf("Read OOB of Page 0x%X timeout\n", page);
803 		else
804 			printf("Write OOB of Page 0x%X timeout\n", page);
805 		return -EIO;
806 	}
807 
808 	bounce_buffer_stop(&bbstate_oob);
809 
810 	if (with_ecc && !is_writing) {
811 		reg_val = (u32)check_ecc_error(info->reg, 0, 0,
812 			(u8 *)(chip->oob_poi + free->offset),
813 			chip->ecc.layout->oobavail);
814 		if (reg_val & ECC_TAG_ERROR)
815 			printf("Read OOB of Page 0x%X tag ECC error\n", page);
816 	}
817 	return 0;
818 }
819 
820 /**
821  * OOB data read function
822  *
823  * @param mtd		mtd info structure
824  * @param chip		nand chip info structure
825  * @param page		page number to read
826  */
nand_read_oob(struct mtd_info * mtd,struct nand_chip * chip,int page)827 static int nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
828 	int page)
829 {
830 	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
831 	nand_rw_oob(mtd, chip, page, 0, 0);
832 	return 0;
833 }
834 
835 /**
836  * OOB data write function
837  *
838  * @param mtd	mtd info structure
839  * @param chip	nand chip info structure
840  * @param page	page number to write
841  * Return:	0 when successfully completed
842  *		-EINVAL when chip->oob_poi is not double-word aligned
843  *		-EIO when command timeout
844  */
nand_write_oob(struct mtd_info * mtd,struct nand_chip * chip,int page)845 static int nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
846 	int page)
847 {
848 	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
849 
850 	return nand_rw_oob(mtd, chip, page, 0, 1);
851 }
852 
853 /**
854  * Set up NAND memory timings according to the provided parameters
855  *
856  * @param timing	Timing parameters
857  * @param reg		NAND controller register address
858  */
setup_timing(unsigned timing[FDT_NAND_TIMING_COUNT],struct nand_ctlr * reg)859 static void setup_timing(unsigned timing[FDT_NAND_TIMING_COUNT],
860 			 struct nand_ctlr *reg)
861 {
862 	u32 reg_val, clk_rate, clk_period, time_val;
863 
864 	clk_rate = (u32)clock_get_periph_rate(PERIPH_ID_NDFLASH,
865 		CLOCK_ID_PERIPH) / 1000000;
866 	clk_period = 1000 / clk_rate;
867 	reg_val = ((timing[FDT_NAND_MAX_TRP_TREA] / clk_period) <<
868 		TIMING_TRP_RESP_CNT_SHIFT) & TIMING_TRP_RESP_CNT_MASK;
869 	reg_val |= ((timing[FDT_NAND_TWB] / clk_period) <<
870 		TIMING_TWB_CNT_SHIFT) & TIMING_TWB_CNT_MASK;
871 	time_val = timing[FDT_NAND_MAX_TCR_TAR_TRR] / clk_period;
872 	if (time_val > 2)
873 		reg_val |= ((time_val - 2) << TIMING_TCR_TAR_TRR_CNT_SHIFT) &
874 			TIMING_TCR_TAR_TRR_CNT_MASK;
875 	reg_val |= ((timing[FDT_NAND_TWHR] / clk_period) <<
876 		TIMING_TWHR_CNT_SHIFT) & TIMING_TWHR_CNT_MASK;
877 	time_val = timing[FDT_NAND_MAX_TCS_TCH_TALS_TALH] / clk_period;
878 	if (time_val > 1)
879 		reg_val |= ((time_val - 1) << TIMING_TCS_CNT_SHIFT) &
880 			TIMING_TCS_CNT_MASK;
881 	reg_val |= ((timing[FDT_NAND_TWH] / clk_period) <<
882 		TIMING_TWH_CNT_SHIFT) & TIMING_TWH_CNT_MASK;
883 	reg_val |= ((timing[FDT_NAND_TWP] / clk_period) <<
884 		TIMING_TWP_CNT_SHIFT) & TIMING_TWP_CNT_MASK;
885 	reg_val |= ((timing[FDT_NAND_TRH] / clk_period) <<
886 		TIMING_TRH_CNT_SHIFT) & TIMING_TRH_CNT_MASK;
887 	reg_val |= ((timing[FDT_NAND_MAX_TRP_TREA] / clk_period) <<
888 		TIMING_TRP_CNT_SHIFT) & TIMING_TRP_CNT_MASK;
889 	writel(reg_val, &reg->timing);
890 
891 	reg_val = 0;
892 	time_val = timing[FDT_NAND_TADL] / clk_period;
893 	if (time_val > 2)
894 		reg_val = (time_val - 2) & TIMING2_TADL_CNT_MASK;
895 	writel(reg_val, &reg->timing2);
896 }
897 
898 /**
899  * Decode NAND parameters from the device tree
900  *
901  * @param dev		Driver model device
902  * @param config	Device tree NAND configuration
903  * Return: 0 if ok, -ve on error (FDT_ERR_...)
904  */
fdt_decode_nand(struct udevice * dev,struct fdt_nand * config)905 static int fdt_decode_nand(struct udevice *dev, struct fdt_nand *config)
906 {
907 	int err;
908 
909 	config->reg = dev_read_addr_ptr(dev);
910 	config->enabled = dev_read_enabled(dev);
911 	config->width = dev_read_u32_default(dev, "nvidia,nand-width", 8);
912 	err = gpio_request_by_name(dev, "nvidia,wp-gpios", 0, &config->wp_gpio,
913 				   GPIOD_IS_OUT);
914 	if (err)
915 		return err;
916 	err = dev_read_u32_array(dev, "nvidia,timing", config->timing,
917 				 FDT_NAND_TIMING_COUNT);
918 	if (err < 0)
919 		return err;
920 
921 	return 0;
922 }
923 
tegra_probe(struct udevice * dev)924 static int tegra_probe(struct udevice *dev)
925 {
926 	struct tegra_nand_info *tegra = dev_get_priv(dev);
927 	struct nand_chip *nand = &tegra->nand_chip;
928 	struct nand_drv *info = &tegra->nand_ctrl;
929 	struct fdt_nand *config = &info->config;
930 	struct mtd_info *our_mtd;
931 	int ret;
932 
933 	if (fdt_decode_nand(dev, config)) {
934 		printf("Could not decode nand-flash in device tree\n");
935 		return -1;
936 	}
937 	if (!config->enabled)
938 		return -1;
939 	info->reg = config->reg;
940 	nand->ecc.mode = NAND_ECC_HW;
941 	nand->ecc.layout = &eccoob;
942 
943 	nand->options = LP_OPTIONS;
944 	nand->cmdfunc = nand_command;
945 	nand->read_byte = read_byte;
946 	nand->read_buf = read_buf;
947 	nand->ecc.read_page = nand_read_page_hwecc;
948 	nand->ecc.write_page = nand_write_page_hwecc;
949 	nand->ecc.read_page_raw = nand_read_page_raw;
950 	nand->ecc.write_page_raw = nand_write_page_raw;
951 	nand->ecc.read_oob = nand_read_oob;
952 	nand->ecc.write_oob = nand_write_oob;
953 	nand->ecc.strength = 1;
954 	nand->select_chip = nand_select_chip;
955 	nand->dev_ready  = nand_dev_ready;
956 	nand_set_controller_data(nand, &tegra->nand_ctrl);
957 
958 	/* Disable subpage writes as we do not provide ecc->hwctl */
959 	nand->options |= NAND_NO_SUBPAGE_WRITE;
960 
961 	/* Adjust controller clock rate */
962 	clock_start_periph_pll(PERIPH_ID_NDFLASH, CLOCK_ID_PERIPH, 52000000);
963 
964 	/* Adjust timing for NAND device */
965 	setup_timing(config->timing, info->reg);
966 
967 	dm_gpio_set_value(&config->wp_gpio, 1);
968 
969 	our_mtd = nand_to_mtd(nand);
970 	ret = nand_scan_ident(our_mtd, CONFIG_SYS_NAND_MAX_CHIPS, NULL);
971 	if (ret)
972 		return ret;
973 
974 	nand->ecc.size = our_mtd->writesize;
975 	nand->ecc.bytes = our_mtd->oobsize;
976 
977 	ret = nand_scan_tail(our_mtd);
978 	if (ret)
979 		return ret;
980 
981 	ret = nand_register(0, our_mtd);
982 	if (ret) {
983 		dev_err(dev, "Failed to register MTD: %d\n", ret);
984 		return ret;
985 	}
986 
987 	return 0;
988 }
989 
990 U_BOOT_DRIVER(tegra_nand) = {
991 	.name = "tegra-nand",
992 	.id = UCLASS_MTD,
993 	.of_match = tegra_nand_dt_ids,
994 	.probe = tegra_probe,
995 	.priv_auto	= sizeof(struct tegra_nand_info),
996 };
997 
board_nand_init(void)998 void board_nand_init(void)
999 {
1000 	struct udevice *dev;
1001 	int ret;
1002 
1003 	ret = uclass_get_device_by_driver(UCLASS_MTD,
1004 					  DM_DRIVER_GET(tegra_nand), &dev);
1005 	if (ret && ret != -ENODEV)
1006 		pr_err("Failed to initialize %s. (error %d)\n", dev->name,
1007 		       ret);
1008 }
1009