1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (c) 2014 Google, Inc
4  * Written by Simon Glass <sjg@chromium.org>
5  */
6 
7 #define LOG_CATEGORY UCLASS_PCI
8 
9 #include <common.h>
10 #include <dm.h>
11 #include <errno.h>
12 #include <init.h>
13 #include <log.h>
14 #include <malloc.h>
15 #include <pci.h>
16 #include <asm/global_data.h>
17 #include <asm/io.h>
18 #include <dm/device-internal.h>
19 #include <dm/lists.h>
20 #include <dm/uclass-internal.h>
21 #if defined(CONFIG_X86) && defined(CONFIG_HAVE_FSP)
22 #include <asm/fsp/fsp_support.h>
23 #endif
24 #include <dt-bindings/pci/pci.h>
25 #include <linux/delay.h>
26 #include "pci_internal.h"
27 
28 DECLARE_GLOBAL_DATA_PTR;
29 
pci_get_bus(int busnum,struct udevice ** busp)30 int pci_get_bus(int busnum, struct udevice **busp)
31 {
32 	int ret;
33 
34 	ret = uclass_get_device_by_seq(UCLASS_PCI, busnum, busp);
35 
36 	/* Since buses may not be numbered yet try a little harder with bus 0 */
37 	if (ret == -ENODEV) {
38 		ret = uclass_first_device_err(UCLASS_PCI, busp);
39 		if (ret)
40 			return ret;
41 		ret = uclass_get_device_by_seq(UCLASS_PCI, busnum, busp);
42 	}
43 
44 	return ret;
45 }
46 
pci_get_controller(struct udevice * dev)47 struct udevice *pci_get_controller(struct udevice *dev)
48 {
49 	while (device_is_on_pci_bus(dev))
50 		dev = dev->parent;
51 
52 	return dev;
53 }
54 
dm_pci_get_bdf(const struct udevice * dev)55 pci_dev_t dm_pci_get_bdf(const struct udevice *dev)
56 {
57 	struct pci_child_plat *pplat = dev_get_parent_plat(dev);
58 	struct udevice *bus = dev->parent;
59 
60 	/*
61 	 * This error indicates that @dev is a device on an unprobed PCI bus.
62 	 * The bus likely has bus=seq == -1, so the PCI_ADD_BUS() macro below
63 	 * will produce a bad BDF>
64 	 *
65 	 * A common cause of this problem is that this function is called in the
66 	 * of_to_plat() method of @dev. Accessing the PCI bus in that
67 	 * method is not allowed, since it has not yet been probed. To fix this,
68 	 * move that access to the probe() method of @dev instead.
69 	 */
70 	if (!device_active(bus))
71 		log_err("PCI: Device '%s' on unprobed bus '%s'\n", dev->name,
72 			bus->name);
73 	return PCI_ADD_BUS(dev_seq(bus), pplat->devfn);
74 }
75 
76 /**
77  * pci_get_bus_max() - returns the bus number of the last active bus
78  *
79  * Return: last bus number, or -1 if no active buses
80  */
pci_get_bus_max(void)81 static int pci_get_bus_max(void)
82 {
83 	struct udevice *bus;
84 	struct uclass *uc;
85 	int ret = -1;
86 
87 	ret = uclass_get(UCLASS_PCI, &uc);
88 	uclass_foreach_dev(bus, uc) {
89 		if (dev_seq(bus) > ret)
90 			ret = dev_seq(bus);
91 	}
92 
93 	debug("%s: ret=%d\n", __func__, ret);
94 
95 	return ret;
96 }
97 
pci_last_busno(void)98 int pci_last_busno(void)
99 {
100 	return pci_get_bus_max();
101 }
102 
pci_get_ff(enum pci_size_t size)103 int pci_get_ff(enum pci_size_t size)
104 {
105 	switch (size) {
106 	case PCI_SIZE_8:
107 		return 0xff;
108 	case PCI_SIZE_16:
109 		return 0xffff;
110 	default:
111 		return 0xffffffff;
112 	}
113 }
114 
pci_dev_find_ofnode(struct udevice * bus,phys_addr_t bdf,ofnode * rnode)115 static void pci_dev_find_ofnode(struct udevice *bus, phys_addr_t bdf,
116 				ofnode *rnode)
117 {
118 	struct fdt_pci_addr addr;
119 	ofnode node;
120 	int ret;
121 
122 	dev_for_each_subnode(node, bus) {
123 		ret = ofnode_read_pci_addr(node, FDT_PCI_SPACE_CONFIG, "reg",
124 					   &addr);
125 		if (ret)
126 			continue;
127 
128 		if (PCI_MASK_BUS(addr.phys_hi) != PCI_MASK_BUS(bdf))
129 			continue;
130 
131 		*rnode = node;
132 		break;
133 	}
134 };
135 
pci_bus_find_devfn(const struct udevice * bus,pci_dev_t find_devfn,struct udevice ** devp)136 int pci_bus_find_devfn(const struct udevice *bus, pci_dev_t find_devfn,
137 		       struct udevice **devp)
138 {
139 	struct udevice *dev;
140 
141 	for (device_find_first_child(bus, &dev);
142 	     dev;
143 	     device_find_next_child(&dev)) {
144 		struct pci_child_plat *pplat;
145 
146 		pplat = dev_get_parent_plat(dev);
147 		if (pplat && pplat->devfn == find_devfn) {
148 			*devp = dev;
149 			return 0;
150 		}
151 	}
152 
153 	return -ENODEV;
154 }
155 
dm_pci_bus_find_bdf(pci_dev_t bdf,struct udevice ** devp)156 int dm_pci_bus_find_bdf(pci_dev_t bdf, struct udevice **devp)
157 {
158 	struct udevice *bus;
159 	int ret;
160 
161 	ret = pci_get_bus(PCI_BUS(bdf), &bus);
162 	if (ret)
163 		return ret;
164 	return pci_bus_find_devfn(bus, PCI_MASK_BUS(bdf), devp);
165 }
166 
pci_device_matches_ids(struct udevice * dev,const struct pci_device_id * ids)167 static int pci_device_matches_ids(struct udevice *dev,
168 				  const struct pci_device_id *ids)
169 {
170 	struct pci_child_plat *pplat;
171 	int i;
172 
173 	pplat = dev_get_parent_plat(dev);
174 	if (!pplat)
175 		return -EINVAL;
176 	for (i = 0; ids[i].vendor != 0; i++) {
177 		if (pplat->vendor == ids[i].vendor &&
178 		    pplat->device == ids[i].device)
179 			return i;
180 	}
181 
182 	return -EINVAL;
183 }
184 
pci_bus_find_devices(struct udevice * bus,const struct pci_device_id * ids,int * indexp,struct udevice ** devp)185 int pci_bus_find_devices(struct udevice *bus, const struct pci_device_id *ids,
186 			 int *indexp, struct udevice **devp)
187 {
188 	struct udevice *dev;
189 
190 	/* Scan all devices on this bus */
191 	for (device_find_first_child(bus, &dev);
192 	     dev;
193 	     device_find_next_child(&dev)) {
194 		if (pci_device_matches_ids(dev, ids) >= 0) {
195 			if ((*indexp)-- <= 0) {
196 				*devp = dev;
197 				return 0;
198 			}
199 		}
200 	}
201 
202 	return -ENODEV;
203 }
204 
pci_find_device_id(const struct pci_device_id * ids,int index,struct udevice ** devp)205 int pci_find_device_id(const struct pci_device_id *ids, int index,
206 		       struct udevice **devp)
207 {
208 	struct udevice *bus;
209 
210 	/* Scan all known buses */
211 	for (uclass_first_device(UCLASS_PCI, &bus);
212 	     bus;
213 	     uclass_next_device(&bus)) {
214 		if (!pci_bus_find_devices(bus, ids, &index, devp))
215 			return 0;
216 	}
217 	*devp = NULL;
218 
219 	return -ENODEV;
220 }
221 
dm_pci_bus_find_device(struct udevice * bus,unsigned int vendor,unsigned int device,int * indexp,struct udevice ** devp)222 static int dm_pci_bus_find_device(struct udevice *bus, unsigned int vendor,
223 				  unsigned int device, int *indexp,
224 				  struct udevice **devp)
225 {
226 	struct pci_child_plat *pplat;
227 	struct udevice *dev;
228 
229 	for (device_find_first_child(bus, &dev);
230 	     dev;
231 	     device_find_next_child(&dev)) {
232 		pplat = dev_get_parent_plat(dev);
233 		if (pplat->vendor == vendor && pplat->device == device) {
234 			if (!(*indexp)--) {
235 				*devp = dev;
236 				return 0;
237 			}
238 		}
239 	}
240 
241 	return -ENODEV;
242 }
243 
dm_pci_find_device(unsigned int vendor,unsigned int device,int index,struct udevice ** devp)244 int dm_pci_find_device(unsigned int vendor, unsigned int device, int index,
245 		       struct udevice **devp)
246 {
247 	struct udevice *bus;
248 
249 	/* Scan all known buses */
250 	for (uclass_first_device(UCLASS_PCI, &bus);
251 	     bus;
252 	     uclass_next_device(&bus)) {
253 		if (!dm_pci_bus_find_device(bus, vendor, device, &index, devp))
254 			return device_probe(*devp);
255 	}
256 	*devp = NULL;
257 
258 	return -ENODEV;
259 }
260 
dm_pci_find_class(uint find_class,int index,struct udevice ** devp)261 int dm_pci_find_class(uint find_class, int index, struct udevice **devp)
262 {
263 	struct udevice *dev;
264 
265 	/* Scan all known buses */
266 	for (pci_find_first_device(&dev);
267 	     dev;
268 	     pci_find_next_device(&dev)) {
269 		struct pci_child_plat *pplat = dev_get_parent_plat(dev);
270 
271 		if (pplat->class == find_class && !index--) {
272 			*devp = dev;
273 			return device_probe(*devp);
274 		}
275 	}
276 	*devp = NULL;
277 
278 	return -ENODEV;
279 }
280 
pci_bus_write_config(struct udevice * bus,pci_dev_t bdf,int offset,unsigned long value,enum pci_size_t size)281 int pci_bus_write_config(struct udevice *bus, pci_dev_t bdf, int offset,
282 			 unsigned long value, enum pci_size_t size)
283 {
284 	struct dm_pci_ops *ops;
285 
286 	ops = pci_get_ops(bus);
287 	if (!ops->write_config)
288 		return -ENOSYS;
289 	if (offset < 0 || offset >= 4096)
290 		return -EINVAL;
291 	return ops->write_config(bus, bdf, offset, value, size);
292 }
293 
pci_bus_clrset_config32(struct udevice * bus,pci_dev_t bdf,int offset,u32 clr,u32 set)294 int pci_bus_clrset_config32(struct udevice *bus, pci_dev_t bdf, int offset,
295 			    u32 clr, u32 set)
296 {
297 	ulong val;
298 	int ret;
299 
300 	ret = pci_bus_read_config(bus, bdf, offset, &val, PCI_SIZE_32);
301 	if (ret)
302 		return ret;
303 	val &= ~clr;
304 	val |= set;
305 
306 	return pci_bus_write_config(bus, bdf, offset, val, PCI_SIZE_32);
307 }
308 
pci_write_config(pci_dev_t bdf,int offset,unsigned long value,enum pci_size_t size)309 static int pci_write_config(pci_dev_t bdf, int offset, unsigned long value,
310 			    enum pci_size_t size)
311 {
312 	struct udevice *bus;
313 	int ret;
314 
315 	ret = pci_get_bus(PCI_BUS(bdf), &bus);
316 	if (ret)
317 		return ret;
318 
319 	return pci_bus_write_config(bus, bdf, offset, value, size);
320 }
321 
dm_pci_write_config(struct udevice * dev,int offset,unsigned long value,enum pci_size_t size)322 int dm_pci_write_config(struct udevice *dev, int offset, unsigned long value,
323 			enum pci_size_t size)
324 {
325 	struct udevice *bus;
326 
327 	for (bus = dev; device_is_on_pci_bus(bus);)
328 		bus = bus->parent;
329 	return pci_bus_write_config(bus, dm_pci_get_bdf(dev), offset, value,
330 				    size);
331 }
332 
pci_write_config32(pci_dev_t bdf,int offset,u32 value)333 int pci_write_config32(pci_dev_t bdf, int offset, u32 value)
334 {
335 	return pci_write_config(bdf, offset, value, PCI_SIZE_32);
336 }
337 
pci_write_config16(pci_dev_t bdf,int offset,u16 value)338 int pci_write_config16(pci_dev_t bdf, int offset, u16 value)
339 {
340 	return pci_write_config(bdf, offset, value, PCI_SIZE_16);
341 }
342 
pci_write_config8(pci_dev_t bdf,int offset,u8 value)343 int pci_write_config8(pci_dev_t bdf, int offset, u8 value)
344 {
345 	return pci_write_config(bdf, offset, value, PCI_SIZE_8);
346 }
347 
dm_pci_write_config8(struct udevice * dev,int offset,u8 value)348 int dm_pci_write_config8(struct udevice *dev, int offset, u8 value)
349 {
350 	return dm_pci_write_config(dev, offset, value, PCI_SIZE_8);
351 }
352 
dm_pci_write_config16(struct udevice * dev,int offset,u16 value)353 int dm_pci_write_config16(struct udevice *dev, int offset, u16 value)
354 {
355 	return dm_pci_write_config(dev, offset, value, PCI_SIZE_16);
356 }
357 
dm_pci_write_config32(struct udevice * dev,int offset,u32 value)358 int dm_pci_write_config32(struct udevice *dev, int offset, u32 value)
359 {
360 	return dm_pci_write_config(dev, offset, value, PCI_SIZE_32);
361 }
362 
pci_bus_read_config(const struct udevice * bus,pci_dev_t bdf,int offset,unsigned long * valuep,enum pci_size_t size)363 int pci_bus_read_config(const struct udevice *bus, pci_dev_t bdf, int offset,
364 			unsigned long *valuep, enum pci_size_t size)
365 {
366 	struct dm_pci_ops *ops;
367 
368 	ops = pci_get_ops(bus);
369 	if (!ops->read_config) {
370 		*valuep = pci_conv_32_to_size(~0, offset, size);
371 		return -ENOSYS;
372 	}
373 	if (offset < 0 || offset >= 4096) {
374 		*valuep = pci_conv_32_to_size(0, offset, size);
375 		return -EINVAL;
376 	}
377 	return ops->read_config(bus, bdf, offset, valuep, size);
378 }
379 
pci_read_config(pci_dev_t bdf,int offset,unsigned long * valuep,enum pci_size_t size)380 static int pci_read_config(pci_dev_t bdf, int offset, unsigned long *valuep,
381 			   enum pci_size_t size)
382 {
383 	struct udevice *bus;
384 	int ret;
385 
386 	ret = pci_get_bus(PCI_BUS(bdf), &bus);
387 	if (ret)
388 		return ret;
389 
390 	return pci_bus_read_config(bus, bdf, offset, valuep, size);
391 }
392 
dm_pci_read_config(const struct udevice * dev,int offset,unsigned long * valuep,enum pci_size_t size)393 int dm_pci_read_config(const struct udevice *dev, int offset,
394 		       unsigned long *valuep, enum pci_size_t size)
395 {
396 	const struct udevice *bus;
397 
398 	for (bus = dev; device_is_on_pci_bus(bus);)
399 		bus = bus->parent;
400 	return pci_bus_read_config(bus, dm_pci_get_bdf(dev), offset, valuep,
401 				   size);
402 }
403 
pci_read_config32(pci_dev_t bdf,int offset,u32 * valuep)404 int pci_read_config32(pci_dev_t bdf, int offset, u32 *valuep)
405 {
406 	unsigned long value;
407 	int ret;
408 
409 	ret = pci_read_config(bdf, offset, &value, PCI_SIZE_32);
410 	if (ret)
411 		return ret;
412 	*valuep = value;
413 
414 	return 0;
415 }
416 
pci_read_config16(pci_dev_t bdf,int offset,u16 * valuep)417 int pci_read_config16(pci_dev_t bdf, int offset, u16 *valuep)
418 {
419 	unsigned long value;
420 	int ret;
421 
422 	ret = pci_read_config(bdf, offset, &value, PCI_SIZE_16);
423 	if (ret)
424 		return ret;
425 	*valuep = value;
426 
427 	return 0;
428 }
429 
pci_read_config8(pci_dev_t bdf,int offset,u8 * valuep)430 int pci_read_config8(pci_dev_t bdf, int offset, u8 *valuep)
431 {
432 	unsigned long value;
433 	int ret;
434 
435 	ret = pci_read_config(bdf, offset, &value, PCI_SIZE_8);
436 	if (ret)
437 		return ret;
438 	*valuep = value;
439 
440 	return 0;
441 }
442 
dm_pci_read_config8(const struct udevice * dev,int offset,u8 * valuep)443 int dm_pci_read_config8(const struct udevice *dev, int offset, u8 *valuep)
444 {
445 	unsigned long value;
446 	int ret;
447 
448 	ret = dm_pci_read_config(dev, offset, &value, PCI_SIZE_8);
449 	if (ret)
450 		return ret;
451 	*valuep = value;
452 
453 	return 0;
454 }
455 
dm_pci_read_config16(const struct udevice * dev,int offset,u16 * valuep)456 int dm_pci_read_config16(const struct udevice *dev, int offset, u16 *valuep)
457 {
458 	unsigned long value;
459 	int ret;
460 
461 	ret = dm_pci_read_config(dev, offset, &value, PCI_SIZE_16);
462 	if (ret)
463 		return ret;
464 	*valuep = value;
465 
466 	return 0;
467 }
468 
dm_pci_read_config32(const struct udevice * dev,int offset,u32 * valuep)469 int dm_pci_read_config32(const struct udevice *dev, int offset, u32 *valuep)
470 {
471 	unsigned long value;
472 	int ret;
473 
474 	ret = dm_pci_read_config(dev, offset, &value, PCI_SIZE_32);
475 	if (ret)
476 		return ret;
477 	*valuep = value;
478 
479 	return 0;
480 }
481 
dm_pci_clrset_config8(struct udevice * dev,int offset,u32 clr,u32 set)482 int dm_pci_clrset_config8(struct udevice *dev, int offset, u32 clr, u32 set)
483 {
484 	u8 val;
485 	int ret;
486 
487 	ret = dm_pci_read_config8(dev, offset, &val);
488 	if (ret)
489 		return ret;
490 	val &= ~clr;
491 	val |= set;
492 
493 	return dm_pci_write_config8(dev, offset, val);
494 }
495 
dm_pci_clrset_config16(struct udevice * dev,int offset,u32 clr,u32 set)496 int dm_pci_clrset_config16(struct udevice *dev, int offset, u32 clr, u32 set)
497 {
498 	u16 val;
499 	int ret;
500 
501 	ret = dm_pci_read_config16(dev, offset, &val);
502 	if (ret)
503 		return ret;
504 	val &= ~clr;
505 	val |= set;
506 
507 	return dm_pci_write_config16(dev, offset, val);
508 }
509 
dm_pci_clrset_config32(struct udevice * dev,int offset,u32 clr,u32 set)510 int dm_pci_clrset_config32(struct udevice *dev, int offset, u32 clr, u32 set)
511 {
512 	u32 val;
513 	int ret;
514 
515 	ret = dm_pci_read_config32(dev, offset, &val);
516 	if (ret)
517 		return ret;
518 	val &= ~clr;
519 	val |= set;
520 
521 	return dm_pci_write_config32(dev, offset, val);
522 }
523 
set_vga_bridge_bits(struct udevice * dev)524 static void set_vga_bridge_bits(struct udevice *dev)
525 {
526 	struct udevice *parent = dev->parent;
527 	u16 bc;
528 
529 	while (dev_seq(parent) != 0) {
530 		dm_pci_read_config16(parent, PCI_BRIDGE_CONTROL, &bc);
531 		bc |= PCI_BRIDGE_CTL_VGA;
532 		dm_pci_write_config16(parent, PCI_BRIDGE_CONTROL, bc);
533 		parent = parent->parent;
534 	}
535 }
536 
pci_auto_config_devices(struct udevice * bus)537 int pci_auto_config_devices(struct udevice *bus)
538 {
539 	struct pci_controller *hose = dev_get_uclass_priv(bus);
540 	struct pci_child_plat *pplat;
541 	unsigned int sub_bus;
542 	struct udevice *dev;
543 	int ret;
544 
545 	sub_bus = dev_seq(bus);
546 	debug("%s: start\n", __func__);
547 	pciauto_config_init(hose);
548 	for (ret = device_find_first_child(bus, &dev);
549 	     !ret && dev;
550 	     ret = device_find_next_child(&dev)) {
551 		unsigned int max_bus;
552 		int ret;
553 
554 		debug("%s: device %s\n", __func__, dev->name);
555 		if (dev_has_ofnode(dev) &&
556 		    dev_read_bool(dev, "pci,no-autoconfig"))
557 			continue;
558 		ret = dm_pciauto_config_device(dev);
559 		if (ret < 0)
560 			return log_msg_ret("auto", ret);
561 		max_bus = ret;
562 		sub_bus = max(sub_bus, max_bus);
563 
564 		if (dev_get_parent(dev) == bus)
565 			continue;
566 
567 		pplat = dev_get_parent_plat(dev);
568 		if (pplat->class == (PCI_CLASS_DISPLAY_VGA << 8))
569 			set_vga_bridge_bits(dev);
570 	}
571 	if (hose->last_busno < sub_bus)
572 		hose->last_busno = sub_bus;
573 	debug("%s: done\n", __func__);
574 
575 	return log_msg_ret("sub", sub_bus);
576 }
577 
pci_generic_mmap_write_config(const struct udevice * bus,int (* addr_f)(const struct udevice * bus,pci_dev_t bdf,uint offset,void ** addrp),pci_dev_t bdf,uint offset,ulong value,enum pci_size_t size)578 int pci_generic_mmap_write_config(
579 	const struct udevice *bus,
580 	int (*addr_f)(const struct udevice *bus, pci_dev_t bdf, uint offset,
581 		      void **addrp),
582 	pci_dev_t bdf,
583 	uint offset,
584 	ulong value,
585 	enum pci_size_t size)
586 {
587 	void *address;
588 
589 	if (addr_f(bus, bdf, offset, &address) < 0)
590 		return 0;
591 
592 	switch (size) {
593 	case PCI_SIZE_8:
594 		writeb(value, address);
595 		return 0;
596 	case PCI_SIZE_16:
597 		writew(value, address);
598 		return 0;
599 	case PCI_SIZE_32:
600 		writel(value, address);
601 		return 0;
602 	default:
603 		return -EINVAL;
604 	}
605 }
606 
pci_generic_mmap_read_config(const struct udevice * bus,int (* addr_f)(const struct udevice * bus,pci_dev_t bdf,uint offset,void ** addrp),pci_dev_t bdf,uint offset,ulong * valuep,enum pci_size_t size)607 int pci_generic_mmap_read_config(
608 	const struct udevice *bus,
609 	int (*addr_f)(const struct udevice *bus, pci_dev_t bdf, uint offset,
610 		      void **addrp),
611 	pci_dev_t bdf,
612 	uint offset,
613 	ulong *valuep,
614 	enum pci_size_t size)
615 {
616 	void *address;
617 
618 	if (addr_f(bus, bdf, offset, &address) < 0) {
619 		*valuep = pci_get_ff(size);
620 		return 0;
621 	}
622 
623 	switch (size) {
624 	case PCI_SIZE_8:
625 		*valuep = readb(address);
626 		return 0;
627 	case PCI_SIZE_16:
628 		*valuep = readw(address);
629 		return 0;
630 	case PCI_SIZE_32:
631 		*valuep = readl(address);
632 		return 0;
633 	default:
634 		return -EINVAL;
635 	}
636 }
637 
dm_pci_hose_probe_bus(struct udevice * bus)638 int dm_pci_hose_probe_bus(struct udevice *bus)
639 {
640 	u8 header_type;
641 	int sub_bus;
642 	int ret;
643 	int ea_pos;
644 	u8 reg;
645 
646 	debug("%s\n", __func__);
647 
648 	dm_pci_read_config8(bus, PCI_HEADER_TYPE, &header_type);
649 	header_type &= 0x7f;
650 	if (header_type != PCI_HEADER_TYPE_BRIDGE) {
651 		debug("%s: Skipping PCI device %d with Non-Bridge Header Type 0x%x\n",
652 		      __func__, PCI_DEV(dm_pci_get_bdf(bus)), header_type);
653 		return log_msg_ret("probe", -EINVAL);
654 	}
655 
656 	if (IS_ENABLED(CONFIG_PCI_ENHANCED_ALLOCATION))
657 		ea_pos = dm_pci_find_capability(bus, PCI_CAP_ID_EA);
658 	else
659 		ea_pos = 0;
660 
661 	if (ea_pos) {
662 		dm_pci_read_config8(bus, ea_pos + sizeof(u32) + sizeof(u8),
663 				    &reg);
664 		sub_bus = reg;
665 	} else {
666 		sub_bus = pci_get_bus_max() + 1;
667 	}
668 	debug("%s: bus = %d/%s\n", __func__, sub_bus, bus->name);
669 	dm_pciauto_prescan_setup_bridge(bus, sub_bus);
670 
671 	ret = device_probe(bus);
672 	if (ret) {
673 		debug("%s: Cannot probe bus %s: %d\n", __func__, bus->name,
674 		      ret);
675 		return log_msg_ret("probe", ret);
676 	}
677 
678 	if (!ea_pos)
679 		sub_bus = pci_get_bus_max();
680 
681 	dm_pciauto_postscan_setup_bridge(bus, sub_bus);
682 
683 	return sub_bus;
684 }
685 
686 /**
687  * pci_match_one_device - Tell if a PCI device structure has a matching
688  *                        PCI device id structure
689  * @id: single PCI device id structure to match
690  * @find: the PCI device id structure to match against
691  *
692  * Returns true if the finding pci_device_id structure matched or false if
693  * there is no match.
694  */
pci_match_one_id(const struct pci_device_id * id,const struct pci_device_id * find)695 static bool pci_match_one_id(const struct pci_device_id *id,
696 			     const struct pci_device_id *find)
697 {
698 	if ((id->vendor == PCI_ANY_ID || id->vendor == find->vendor) &&
699 	    (id->device == PCI_ANY_ID || id->device == find->device) &&
700 	    (id->subvendor == PCI_ANY_ID || id->subvendor == find->subvendor) &&
701 	    (id->subdevice == PCI_ANY_ID || id->subdevice == find->subdevice) &&
702 	    !((id->class ^ find->class) & id->class_mask))
703 		return true;
704 
705 	return false;
706 }
707 
708 /**
709  * pci_need_device_pre_reloc() - Check if a device should be bound
710  *
711  * This checks a list of vendor/device-ID values indicating devices that should
712  * be bound before relocation.
713  *
714  * @bus: Bus to check
715  * @vendor: Vendor ID to check
716  * @device: Device ID to check
717  * Return: true if the vendor/device is in the list, false if not
718  */
pci_need_device_pre_reloc(struct udevice * bus,uint vendor,uint device)719 static bool pci_need_device_pre_reloc(struct udevice *bus, uint vendor,
720 				      uint device)
721 {
722 	u32 vendev;
723 	int index;
724 
725 	for (index = 0;
726 	     !dev_read_u32_index(bus, "u-boot,pci-pre-reloc", index,
727 				 &vendev);
728 	     index++) {
729 		if (vendev == PCI_VENDEV(vendor, device))
730 			return true;
731 	}
732 
733 	return false;
734 }
735 
736 /**
737  * pci_find_and_bind_driver() - Find and bind the right PCI driver
738  *
739  * This only looks at certain fields in the descriptor.
740  *
741  * @parent:	Parent bus
742  * @find_id:	Specification of the driver to find
743  * @bdf:	Bus/device/function addreess - see PCI_BDF()
744  * @devp:	Returns a pointer to the device created
745  * Return: 0 if OK, -EPERM if the device is not needed before relocation and
746  *	   therefore was not created, other -ve value on error
747  */
pci_find_and_bind_driver(struct udevice * parent,struct pci_device_id * find_id,pci_dev_t bdf,struct udevice ** devp)748 static int pci_find_and_bind_driver(struct udevice *parent,
749 				    struct pci_device_id *find_id,
750 				    pci_dev_t bdf, struct udevice **devp)
751 {
752 	struct pci_driver_entry *start, *entry;
753 	ofnode node = ofnode_null();
754 	const char *drv;
755 	int n_ents;
756 	int ret;
757 	char name[30], *str;
758 	bool bridge;
759 
760 	*devp = NULL;
761 
762 	debug("%s: Searching for driver: vendor=%x, device=%x\n", __func__,
763 	      find_id->vendor, find_id->device);
764 
765 	/* Determine optional OF node */
766 	if (ofnode_valid(dev_ofnode(parent)))
767 		pci_dev_find_ofnode(parent, bdf, &node);
768 
769 	if (ofnode_valid(node) && !ofnode_is_enabled(node)) {
770 		debug("%s: Ignoring disabled device\n", __func__);
771 		return log_msg_ret("dis", -EPERM);
772 	}
773 
774 	start = ll_entry_start(struct pci_driver_entry, pci_driver_entry);
775 	n_ents = ll_entry_count(struct pci_driver_entry, pci_driver_entry);
776 	for (entry = start; entry != start + n_ents; entry++) {
777 		const struct pci_device_id *id;
778 		struct udevice *dev;
779 		const struct driver *drv;
780 
781 		for (id = entry->match;
782 		     id->vendor || id->subvendor || id->class_mask;
783 		     id++) {
784 			if (!pci_match_one_id(id, find_id))
785 				continue;
786 
787 			drv = entry->driver;
788 
789 			/*
790 			 * In the pre-relocation phase, we only bind devices
791 			 * whose driver has the DM_FLAG_PRE_RELOC set, to save
792 			 * precious memory space as on some platforms as that
793 			 * space is pretty limited (ie: using Cache As RAM).
794 			 */
795 			if (!(gd->flags & GD_FLG_RELOC) &&
796 			    !(drv->flags & DM_FLAG_PRE_RELOC))
797 				return log_msg_ret("pre", -EPERM);
798 
799 			/*
800 			 * We could pass the descriptor to the driver as
801 			 * plat (instead of NULL) and allow its bind()
802 			 * method to return -ENOENT if it doesn't support this
803 			 * device. That way we could continue the search to
804 			 * find another driver. For now this doesn't seem
805 			 * necesssary, so just bind the first match.
806 			 */
807 			ret = device_bind(parent, drv, drv->name, NULL, node,
808 					  &dev);
809 			if (ret)
810 				goto error;
811 			debug("%s: Match found: %s\n", __func__, drv->name);
812 			dev->driver_data = id->driver_data;
813 			*devp = dev;
814 			return 0;
815 		}
816 	}
817 
818 	bridge = (find_id->class >> 8) == PCI_CLASS_BRIDGE_PCI;
819 	/*
820 	 * In the pre-relocation phase, we only bind bridge devices to save
821 	 * precious memory space as on some platforms as that space is pretty
822 	 * limited (ie: using Cache As RAM).
823 	 */
824 	if (!(gd->flags & GD_FLG_RELOC) && !bridge &&
825 	    !pci_need_device_pre_reloc(parent, find_id->vendor,
826 				       find_id->device))
827 		return log_msg_ret("notbr", -EPERM);
828 
829 	/* Bind a generic driver so that the device can be used */
830 	sprintf(name, "pci_%x:%x.%x", dev_seq(parent), PCI_DEV(bdf),
831 		PCI_FUNC(bdf));
832 	str = strdup(name);
833 	if (!str)
834 		return -ENOMEM;
835 	drv = bridge ? "pci_bridge_drv" : "pci_generic_drv";
836 
837 	ret = device_bind_driver_to_node(parent, drv, str, node, devp);
838 	if (ret) {
839 		debug("%s: Failed to bind generic driver: %d\n", __func__, ret);
840 		free(str);
841 		return ret;
842 	}
843 	debug("%s: No match found: bound generic driver instead\n", __func__);
844 
845 	return 0;
846 
847 error:
848 	debug("%s: No match found: error %d\n", __func__, ret);
849 	return ret;
850 }
851 
board_pci_fixup_dev(struct udevice * bus,struct udevice * dev)852 __weak extern void board_pci_fixup_dev(struct udevice *bus, struct udevice *dev)
853 {
854 }
855 
pci_bind_bus_devices(struct udevice * bus)856 int pci_bind_bus_devices(struct udevice *bus)
857 {
858 	ulong vendor, device;
859 	ulong header_type;
860 	pci_dev_t bdf, end;
861 	bool found_multi;
862 	int ari_off;
863 	int ret;
864 
865 	found_multi = false;
866 	end = PCI_BDF(dev_seq(bus), PCI_MAX_PCI_DEVICES - 1,
867 		      PCI_MAX_PCI_FUNCTIONS - 1);
868 	for (bdf = PCI_BDF(dev_seq(bus), 0, 0); bdf <= end;
869 	     bdf += PCI_BDF(0, 0, 1)) {
870 		struct pci_child_plat *pplat;
871 		struct udevice *dev;
872 		ulong class;
873 
874 		if (!PCI_FUNC(bdf))
875 			found_multi = false;
876 		if (PCI_FUNC(bdf) && !found_multi)
877 			continue;
878 
879 		/* Check only the first access, we don't expect problems */
880 		ret = pci_bus_read_config(bus, bdf, PCI_VENDOR_ID, &vendor,
881 					  PCI_SIZE_16);
882 		if (ret || vendor == 0xffff || vendor == 0x0000)
883 			continue;
884 
885 		pci_bus_read_config(bus, bdf, PCI_HEADER_TYPE,
886 				    &header_type, PCI_SIZE_8);
887 
888 		if (!PCI_FUNC(bdf))
889 			found_multi = header_type & 0x80;
890 
891 		debug("%s: bus %d/%s: found device %x, function %d", __func__,
892 		      dev_seq(bus), bus->name, PCI_DEV(bdf), PCI_FUNC(bdf));
893 		pci_bus_read_config(bus, bdf, PCI_DEVICE_ID, &device,
894 				    PCI_SIZE_16);
895 		pci_bus_read_config(bus, bdf, PCI_CLASS_REVISION, &class,
896 				    PCI_SIZE_32);
897 		class >>= 8;
898 
899 		/* Find this device in the device tree */
900 		ret = pci_bus_find_devfn(bus, PCI_MASK_BUS(bdf), &dev);
901 		debug(": find ret=%d\n", ret);
902 
903 		/* If nothing in the device tree, bind a device */
904 		if (ret == -ENODEV) {
905 			struct pci_device_id find_id;
906 			ulong val;
907 
908 			memset(&find_id, '\0', sizeof(find_id));
909 			find_id.vendor = vendor;
910 			find_id.device = device;
911 			find_id.class = class;
912 			if ((header_type & 0x7f) == PCI_HEADER_TYPE_NORMAL) {
913 				pci_bus_read_config(bus, bdf,
914 						    PCI_SUBSYSTEM_VENDOR_ID,
915 						    &val, PCI_SIZE_32);
916 				find_id.subvendor = val & 0xffff;
917 				find_id.subdevice = val >> 16;
918 			}
919 			ret = pci_find_and_bind_driver(bus, &find_id, bdf,
920 						       &dev);
921 		}
922 		if (ret == -EPERM)
923 			continue;
924 		else if (ret)
925 			return ret;
926 
927 		/* Update the platform data */
928 		pplat = dev_get_parent_plat(dev);
929 		pplat->devfn = PCI_MASK_BUS(bdf);
930 		pplat->vendor = vendor;
931 		pplat->device = device;
932 		pplat->class = class;
933 
934 		if (IS_ENABLED(CONFIG_PCI_ARID)) {
935 			ari_off = dm_pci_find_ext_capability(dev,
936 							     PCI_EXT_CAP_ID_ARI);
937 			if (ari_off) {
938 				u16 ari_cap;
939 
940 				/*
941 				 * Read Next Function number in ARI Cap
942 				 * Register
943 				 */
944 				dm_pci_read_config16(dev, ari_off + 4,
945 						     &ari_cap);
946 				/*
947 				 * Update next scan on this function number,
948 				 * subtract 1 in BDF to satisfy loop increment.
949 				 */
950 				if (ari_cap & 0xff00) {
951 					bdf = PCI_BDF(PCI_BUS(bdf),
952 						      PCI_DEV(ari_cap),
953 						      PCI_FUNC(ari_cap));
954 					bdf = bdf - 0x100;
955 				}
956 			}
957 		}
958 
959 		board_pci_fixup_dev(bus, dev);
960 	}
961 
962 	return 0;
963 }
964 
decode_regions(struct pci_controller * hose,ofnode parent_node,ofnode node)965 static int decode_regions(struct pci_controller *hose, ofnode parent_node,
966 			   ofnode node)
967 {
968 	int pci_addr_cells, addr_cells, size_cells;
969 	int cells_per_record;
970 	struct bd_info *bd;
971 	const u32 *prop;
972 	int max_regions;
973 	int len;
974 	int i;
975 
976 	/* handle booting from coreboot, etc. */
977 	if (!ll_boot_init())
978 		return 0;
979 
980 	prop = ofnode_get_property(node, "ranges", &len);
981 	if (!prop) {
982 		debug("%s: Cannot decode regions\n", __func__);
983 		return -EINVAL;
984 	}
985 
986 	pci_addr_cells = ofnode_read_simple_addr_cells(node);
987 	addr_cells = ofnode_read_simple_addr_cells(parent_node);
988 	size_cells = ofnode_read_simple_size_cells(node);
989 
990 	/* PCI addresses are always 3-cells */
991 	len /= sizeof(u32);
992 	cells_per_record = pci_addr_cells + addr_cells + size_cells;
993 	hose->region_count = 0;
994 	debug("%s: len=%d, cells_per_record=%d\n", __func__, len,
995 	      cells_per_record);
996 
997 	/* Dynamically allocate the regions array */
998 	max_regions = len / cells_per_record + CONFIG_NR_DRAM_BANKS;
999 	hose->regions = (struct pci_region *)
1000 		calloc(1, max_regions * sizeof(struct pci_region));
1001 	if (!hose->regions)
1002 		return -ENOMEM;
1003 
1004 	for (i = 0; i < max_regions; i++, len -= cells_per_record) {
1005 		u64 pci_addr, addr, size;
1006 		int space_code;
1007 		u32 flags;
1008 		int type;
1009 		int pos;
1010 
1011 		if (len < cells_per_record)
1012 			break;
1013 		flags = fdt32_to_cpu(prop[0]);
1014 		space_code = (flags >> 24) & 3;
1015 		pci_addr = fdtdec_get_number(prop + 1, 2);
1016 		prop += pci_addr_cells;
1017 		addr = fdtdec_get_number(prop, addr_cells);
1018 		prop += addr_cells;
1019 		size = fdtdec_get_number(prop, size_cells);
1020 		prop += size_cells;
1021 		debug("%s: region %d, pci_addr=%llx, addr=%llx, size=%llx, space_code=%d\n",
1022 		      __func__, hose->region_count, pci_addr, addr, size, space_code);
1023 		if (space_code & 2) {
1024 			type = flags & (1U << 30) ? PCI_REGION_PREFETCH :
1025 					PCI_REGION_MEM;
1026 		} else if (space_code & 1) {
1027 			type = PCI_REGION_IO;
1028 		} else {
1029 			continue;
1030 		}
1031 
1032 		if (!IS_ENABLED(CONFIG_SYS_PCI_64BIT) &&
1033 		    type == PCI_REGION_MEM && upper_32_bits(pci_addr)) {
1034 			debug(" - pci_addr beyond the 32-bit boundary, ignoring\n");
1035 			continue;
1036 		}
1037 
1038 		if (!IS_ENABLED(CONFIG_PHYS_64BIT) && upper_32_bits(addr)) {
1039 			debug(" - addr beyond the 32-bit boundary, ignoring\n");
1040 			continue;
1041 		}
1042 
1043 		if (~((pci_addr_t)0) - pci_addr < size) {
1044 			debug(" - PCI range exceeds max address, ignoring\n");
1045 			continue;
1046 		}
1047 
1048 		if (~((phys_addr_t)0) - addr < size) {
1049 			debug(" - phys range exceeds max address, ignoring\n");
1050 			continue;
1051 		}
1052 
1053 		pos = -1;
1054 		if (!IS_ENABLED(CONFIG_PCI_REGION_MULTI_ENTRY)) {
1055 			for (i = 0; i < hose->region_count; i++) {
1056 				if (hose->regions[i].flags == type)
1057 					pos = i;
1058 			}
1059 		}
1060 
1061 		if (pos == -1)
1062 			pos = hose->region_count++;
1063 		debug(" - type=%d, pos=%d\n", type, pos);
1064 		pci_set_region(hose->regions + pos, pci_addr, addr, size, type);
1065 	}
1066 
1067 	/* Add a region for our local memory */
1068 	bd = gd->bd;
1069 	if (!bd)
1070 		return 0;
1071 
1072 	for (i = 0; i < CONFIG_NR_DRAM_BANKS; ++i) {
1073 		if (bd->bi_dram[i].size) {
1074 			phys_addr_t start = bd->bi_dram[i].start;
1075 
1076 			if (IS_ENABLED(CONFIG_PCI_MAP_SYSTEM_MEMORY))
1077 				start = virt_to_phys((void *)(uintptr_t)bd->bi_dram[i].start);
1078 
1079 			pci_set_region(hose->regions + hose->region_count++,
1080 				       start, start, bd->bi_dram[i].size,
1081 				       PCI_REGION_MEM | PCI_REGION_SYS_MEMORY);
1082 		}
1083 	}
1084 
1085 	return 0;
1086 }
1087 
pci_uclass_pre_probe(struct udevice * bus)1088 static int pci_uclass_pre_probe(struct udevice *bus)
1089 {
1090 	struct pci_controller *hose;
1091 	struct uclass *uc;
1092 	int ret;
1093 
1094 	debug("%s, bus=%d/%s, parent=%s\n", __func__, dev_seq(bus), bus->name,
1095 	      bus->parent->name);
1096 	hose = dev_get_uclass_priv(bus);
1097 
1098 	/*
1099 	 * Set the sequence number, if device_bind() doesn't. We want control
1100 	 * of this so that numbers are allocated as devices are probed. That
1101 	 * ensures that sub-bus numbered is correct (sub-buses must get numbers
1102 	 * higher than their parents)
1103 	 */
1104 	if (dev_seq(bus) == -1) {
1105 		ret = uclass_get(UCLASS_PCI, &uc);
1106 		if (ret)
1107 			return ret;
1108 		bus->seq_ = uclass_find_next_free_seq(uc);
1109 	}
1110 
1111 	/* For bridges, use the top-level PCI controller */
1112 	if (!device_is_on_pci_bus(bus)) {
1113 		hose->ctlr = bus;
1114 		ret = decode_regions(hose, dev_ofnode(bus->parent),
1115 				     dev_ofnode(bus));
1116 		if (ret)
1117 			return ret;
1118 	} else {
1119 		struct pci_controller *parent_hose;
1120 
1121 		parent_hose = dev_get_uclass_priv(bus->parent);
1122 		hose->ctlr = parent_hose->bus;
1123 	}
1124 
1125 	hose->bus = bus;
1126 	hose->first_busno = dev_seq(bus);
1127 	hose->last_busno = dev_seq(bus);
1128 	if (dev_has_ofnode(bus)) {
1129 		hose->skip_auto_config_until_reloc =
1130 			dev_read_bool(bus,
1131 				      "u-boot,skip-auto-config-until-reloc");
1132 	}
1133 
1134 	return 0;
1135 }
1136 
pci_uclass_post_probe(struct udevice * bus)1137 static int pci_uclass_post_probe(struct udevice *bus)
1138 {
1139 	struct pci_controller *hose = dev_get_uclass_priv(bus);
1140 	int ret;
1141 
1142 	debug("%s: probing bus %d\n", __func__, dev_seq(bus));
1143 	ret = pci_bind_bus_devices(bus);
1144 	if (ret)
1145 		return log_msg_ret("bind", ret);
1146 
1147 	if (CONFIG_IS_ENABLED(PCI_PNP) && ll_boot_init() &&
1148 	    (!hose->skip_auto_config_until_reloc ||
1149 	     (gd->flags & GD_FLG_RELOC))) {
1150 		ret = pci_auto_config_devices(bus);
1151 		if (ret < 0)
1152 			return log_msg_ret("cfg", ret);
1153 	}
1154 
1155 #if defined(CONFIG_X86) && defined(CONFIG_HAVE_FSP)
1156 	/*
1157 	 * Per Intel FSP specification, we should call FSP notify API to
1158 	 * inform FSP that PCI enumeration has been done so that FSP will
1159 	 * do any necessary initialization as required by the chipset's
1160 	 * BIOS Writer's Guide (BWG).
1161 	 *
1162 	 * Unfortunately we have to put this call here as with driver model,
1163 	 * the enumeration is all done on a lazy basis as needed, so until
1164 	 * something is touched on PCI it won't happen.
1165 	 *
1166 	 * Note we only call this 1) after U-Boot is relocated, and 2)
1167 	 * root bus has finished probing.
1168 	 */
1169 	if ((gd->flags & GD_FLG_RELOC) && dev_seq(bus) == 0 && ll_boot_init()) {
1170 		ret = fsp_init_phase_pci();
1171 		if (ret)
1172 			return log_msg_ret("fsp", ret);
1173 	}
1174 #endif
1175 
1176 	return 0;
1177 }
1178 
pci_uclass_child_post_bind(struct udevice * dev)1179 static int pci_uclass_child_post_bind(struct udevice *dev)
1180 {
1181 	struct pci_child_plat *pplat;
1182 
1183 	if (!dev_has_ofnode(dev))
1184 		return 0;
1185 
1186 	pplat = dev_get_parent_plat(dev);
1187 
1188 	/* Extract vendor id and device id if available */
1189 	ofnode_read_pci_vendev(dev_ofnode(dev), &pplat->vendor, &pplat->device);
1190 
1191 	/* Extract the devfn from fdt_pci_addr */
1192 	pplat->devfn = pci_get_devfn(dev);
1193 
1194 	return 0;
1195 }
1196 
pci_bridge_read_config(const struct udevice * bus,pci_dev_t bdf,uint offset,ulong * valuep,enum pci_size_t size)1197 static int pci_bridge_read_config(const struct udevice *bus, pci_dev_t bdf,
1198 				  uint offset, ulong *valuep,
1199 				  enum pci_size_t size)
1200 {
1201 	struct pci_controller *hose = dev_get_uclass_priv(bus);
1202 
1203 	return pci_bus_read_config(hose->ctlr, bdf, offset, valuep, size);
1204 }
1205 
pci_bridge_write_config(struct udevice * bus,pci_dev_t bdf,uint offset,ulong value,enum pci_size_t size)1206 static int pci_bridge_write_config(struct udevice *bus, pci_dev_t bdf,
1207 				   uint offset, ulong value,
1208 				   enum pci_size_t size)
1209 {
1210 	struct pci_controller *hose = dev_get_uclass_priv(bus);
1211 
1212 	return pci_bus_write_config(hose->ctlr, bdf, offset, value, size);
1213 }
1214 
skip_to_next_device(struct udevice * bus,struct udevice ** devp)1215 static int skip_to_next_device(struct udevice *bus, struct udevice **devp)
1216 {
1217 	struct udevice *dev;
1218 
1219 	/*
1220 	 * Scan through all the PCI controllers. On x86 there will only be one
1221 	 * but that is not necessarily true on other hardware.
1222 	 */
1223 	while (bus) {
1224 		device_find_first_child(bus, &dev);
1225 		if (dev) {
1226 			*devp = dev;
1227 			return 0;
1228 		}
1229 		uclass_next_device(&bus);
1230 	}
1231 
1232 	return 0;
1233 }
1234 
pci_find_next_device(struct udevice ** devp)1235 int pci_find_next_device(struct udevice **devp)
1236 {
1237 	struct udevice *child = *devp;
1238 	struct udevice *bus = child->parent;
1239 
1240 	/* First try all the siblings */
1241 	*devp = NULL;
1242 	while (child) {
1243 		device_find_next_child(&child);
1244 		if (child) {
1245 			*devp = child;
1246 			return 0;
1247 		}
1248 	}
1249 
1250 	/* We ran out of siblings. Try the next bus */
1251 	uclass_next_device(&bus);
1252 
1253 	return bus ? skip_to_next_device(bus, devp) : 0;
1254 }
1255 
pci_find_first_device(struct udevice ** devp)1256 int pci_find_first_device(struct udevice **devp)
1257 {
1258 	struct udevice *bus;
1259 
1260 	*devp = NULL;
1261 	uclass_first_device(UCLASS_PCI, &bus);
1262 
1263 	return skip_to_next_device(bus, devp);
1264 }
1265 
pci_conv_32_to_size(ulong value,uint offset,enum pci_size_t size)1266 ulong pci_conv_32_to_size(ulong value, uint offset, enum pci_size_t size)
1267 {
1268 	switch (size) {
1269 	case PCI_SIZE_8:
1270 		return (value >> ((offset & 3) * 8)) & 0xff;
1271 	case PCI_SIZE_16:
1272 		return (value >> ((offset & 2) * 8)) & 0xffff;
1273 	default:
1274 		return value;
1275 	}
1276 }
1277 
pci_conv_size_to_32(ulong old,ulong value,uint offset,enum pci_size_t size)1278 ulong pci_conv_size_to_32(ulong old, ulong value, uint offset,
1279 			  enum pci_size_t size)
1280 {
1281 	uint off_mask;
1282 	uint val_mask, shift;
1283 	ulong ldata, mask;
1284 
1285 	switch (size) {
1286 	case PCI_SIZE_8:
1287 		off_mask = 3;
1288 		val_mask = 0xff;
1289 		break;
1290 	case PCI_SIZE_16:
1291 		off_mask = 2;
1292 		val_mask = 0xffff;
1293 		break;
1294 	default:
1295 		return value;
1296 	}
1297 	shift = (offset & off_mask) * 8;
1298 	ldata = (value & val_mask) << shift;
1299 	mask = val_mask << shift;
1300 	value = (old & ~mask) | ldata;
1301 
1302 	return value;
1303 }
1304 
pci_get_dma_regions(struct udevice * dev,struct pci_region * memp,int index)1305 int pci_get_dma_regions(struct udevice *dev, struct pci_region *memp, int index)
1306 {
1307 	int pci_addr_cells, addr_cells, size_cells;
1308 	int cells_per_record;
1309 	const u32 *prop;
1310 	int len;
1311 	int i = 0;
1312 
1313 	prop = ofnode_get_property(dev_ofnode(dev), "dma-ranges", &len);
1314 	if (!prop) {
1315 		log_err("PCI: Device '%s': Cannot decode dma-ranges\n",
1316 			dev->name);
1317 		return -EINVAL;
1318 	}
1319 
1320 	pci_addr_cells = ofnode_read_simple_addr_cells(dev_ofnode(dev));
1321 	addr_cells = ofnode_read_simple_addr_cells(dev_ofnode(dev->parent));
1322 	size_cells = ofnode_read_simple_size_cells(dev_ofnode(dev));
1323 
1324 	/* PCI addresses are always 3-cells */
1325 	len /= sizeof(u32);
1326 	cells_per_record = pci_addr_cells + addr_cells + size_cells;
1327 	debug("%s: len=%d, cells_per_record=%d\n", __func__, len,
1328 	      cells_per_record);
1329 
1330 	while (len) {
1331 		memp->bus_start = fdtdec_get_number(prop + 1, 2);
1332 		prop += pci_addr_cells;
1333 		memp->phys_start = fdtdec_get_number(prop, addr_cells);
1334 		prop += addr_cells;
1335 		memp->size = fdtdec_get_number(prop, size_cells);
1336 		prop += size_cells;
1337 
1338 		if (i == index)
1339 			return 0;
1340 		i++;
1341 		len -= cells_per_record;
1342 	}
1343 
1344 	return -EINVAL;
1345 }
1346 
pci_get_regions(struct udevice * dev,struct pci_region ** iop,struct pci_region ** memp,struct pci_region ** prefp)1347 int pci_get_regions(struct udevice *dev, struct pci_region **iop,
1348 		    struct pci_region **memp, struct pci_region **prefp)
1349 {
1350 	struct udevice *bus = pci_get_controller(dev);
1351 	struct pci_controller *hose = dev_get_uclass_priv(bus);
1352 	int i;
1353 
1354 	*iop = NULL;
1355 	*memp = NULL;
1356 	*prefp = NULL;
1357 	for (i = 0; i < hose->region_count; i++) {
1358 		switch (hose->regions[i].flags) {
1359 		case PCI_REGION_IO:
1360 			if (!*iop || (*iop)->size < hose->regions[i].size)
1361 				*iop = hose->regions + i;
1362 			break;
1363 		case PCI_REGION_MEM:
1364 			if (!*memp || (*memp)->size < hose->regions[i].size)
1365 				*memp = hose->regions + i;
1366 			break;
1367 		case (PCI_REGION_MEM | PCI_REGION_PREFETCH):
1368 			if (!*prefp || (*prefp)->size < hose->regions[i].size)
1369 				*prefp = hose->regions + i;
1370 			break;
1371 		}
1372 	}
1373 
1374 	return (*iop != NULL) + (*memp != NULL) + (*prefp != NULL);
1375 }
1376 
dm_pci_read_bar32(const struct udevice * dev,int barnum)1377 u32 dm_pci_read_bar32(const struct udevice *dev, int barnum)
1378 {
1379 	u32 addr;
1380 	int bar;
1381 
1382 	bar = PCI_BASE_ADDRESS_0 + barnum * 4;
1383 	dm_pci_read_config32(dev, bar, &addr);
1384 
1385 	/*
1386 	 * If we get an invalid address, return this so that comparisons with
1387 	 * FDT_ADDR_T_NONE work correctly
1388 	 */
1389 	if (addr == 0xffffffff)
1390 		return addr;
1391 	else if (addr & PCI_BASE_ADDRESS_SPACE_IO)
1392 		return addr & PCI_BASE_ADDRESS_IO_MASK;
1393 	else
1394 		return addr & PCI_BASE_ADDRESS_MEM_MASK;
1395 }
1396 
dm_pci_write_bar32(struct udevice * dev,int barnum,u32 addr)1397 void dm_pci_write_bar32(struct udevice *dev, int barnum, u32 addr)
1398 {
1399 	int bar;
1400 
1401 	bar = PCI_BASE_ADDRESS_0 + barnum * 4;
1402 	dm_pci_write_config32(dev, bar, addr);
1403 }
1404 
dm_pci_bus_to_phys(struct udevice * dev,pci_addr_t bus_addr,size_t len,unsigned long mask,unsigned long flags)1405 phys_addr_t dm_pci_bus_to_phys(struct udevice *dev, pci_addr_t bus_addr,
1406 			       size_t len, unsigned long mask,
1407 			       unsigned long flags)
1408 {
1409 	struct udevice *ctlr;
1410 	struct pci_controller *hose;
1411 	struct pci_region *res;
1412 	pci_addr_t offset;
1413 	int i;
1414 
1415 	/* The root controller has the region information */
1416 	ctlr = pci_get_controller(dev);
1417 	hose = dev_get_uclass_priv(ctlr);
1418 
1419 	if (hose->region_count == 0)
1420 		return bus_addr;
1421 
1422 	for (i = 0; i < hose->region_count; i++) {
1423 		res = &hose->regions[i];
1424 
1425 		if ((res->flags & mask) != flags)
1426 			continue;
1427 
1428 		if (bus_addr < res->bus_start)
1429 			continue;
1430 
1431 		offset = bus_addr - res->bus_start;
1432 		if (offset >= res->size)
1433 			continue;
1434 
1435 		if (len > res->size - offset)
1436 			continue;
1437 
1438 		return res->phys_start + offset;
1439 	}
1440 
1441 	puts("pci_hose_bus_to_phys: invalid physical address\n");
1442 	return 0;
1443 }
1444 
dm_pci_phys_to_bus(struct udevice * dev,phys_addr_t phys_addr,size_t len,unsigned long mask,unsigned long flags)1445 pci_addr_t dm_pci_phys_to_bus(struct udevice *dev, phys_addr_t phys_addr,
1446 			      size_t len, unsigned long mask,
1447 			      unsigned long flags)
1448 {
1449 	struct udevice *ctlr;
1450 	struct pci_controller *hose;
1451 	struct pci_region *res;
1452 	phys_addr_t offset;
1453 	int i;
1454 
1455 	/* The root controller has the region information */
1456 	ctlr = pci_get_controller(dev);
1457 	hose = dev_get_uclass_priv(ctlr);
1458 
1459 	if (hose->region_count == 0)
1460 		return phys_addr;
1461 
1462 	for (i = 0; i < hose->region_count; i++) {
1463 		res = &hose->regions[i];
1464 
1465 		if ((res->flags & mask) != flags)
1466 			continue;
1467 
1468 		if (phys_addr < res->phys_start)
1469 			continue;
1470 
1471 		offset = phys_addr - res->phys_start;
1472 		if (offset >= res->size)
1473 			continue;
1474 
1475 		if (len > res->size - offset)
1476 			continue;
1477 
1478 		return res->bus_start + offset;
1479 	}
1480 
1481 	puts("pci_hose_phys_to_bus: invalid physical address\n");
1482 	return 0;
1483 }
1484 
dm_pci_map_ea_virt(struct udevice * dev,int ea_off,struct pci_child_plat * pdata)1485 static phys_addr_t dm_pci_map_ea_virt(struct udevice *dev, int ea_off,
1486 				      struct pci_child_plat *pdata)
1487 {
1488 	phys_addr_t addr = 0;
1489 
1490 	/*
1491 	 * In the case of a Virtual Function device using BAR
1492 	 * base and size, add offset for VFn BAR(1, 2, 3...n)
1493 	 */
1494 	if (pdata->is_virtfn) {
1495 		size_t sz;
1496 		u32 ea_entry;
1497 
1498 		/* MaxOffset, 1st DW */
1499 		dm_pci_read_config32(dev, ea_off + 8, &ea_entry);
1500 		sz = ea_entry & PCI_EA_FIELD_MASK;
1501 		/* Fill up lower 2 bits */
1502 		sz |= (~PCI_EA_FIELD_MASK);
1503 
1504 		if (ea_entry & PCI_EA_IS_64) {
1505 			/* MaxOffset 2nd DW */
1506 			dm_pci_read_config32(dev, ea_off + 16, &ea_entry);
1507 			sz |= ((u64)ea_entry) << 32;
1508 		}
1509 
1510 		addr = (pdata->virtid - 1) * (sz + 1);
1511 	}
1512 
1513 	return addr;
1514 }
1515 
dm_pci_map_ea_bar(struct udevice * dev,int bar,size_t offset,size_t len,int ea_off,struct pci_child_plat * pdata)1516 static void *dm_pci_map_ea_bar(struct udevice *dev, int bar, size_t offset,
1517 			       size_t len, int ea_off,
1518 			       struct pci_child_plat *pdata)
1519 {
1520 	int ea_cnt, i, entry_size;
1521 	int bar_id = (bar - PCI_BASE_ADDRESS_0) >> 2;
1522 	u32 ea_entry;
1523 	phys_addr_t addr;
1524 
1525 	if (IS_ENABLED(CONFIG_PCI_SRIOV)) {
1526 		/*
1527 		 * In the case of a Virtual Function device, device is
1528 		 * Physical function, so pdata will point to required VF
1529 		 * specific data.
1530 		 */
1531 		if (pdata->is_virtfn)
1532 			bar_id += PCI_EA_BEI_VF_BAR0;
1533 	}
1534 
1535 	/* EA capability structure header */
1536 	dm_pci_read_config32(dev, ea_off, &ea_entry);
1537 	ea_cnt = (ea_entry >> 16) & PCI_EA_NUM_ENT_MASK;
1538 	ea_off += PCI_EA_FIRST_ENT;
1539 
1540 	for (i = 0; i < ea_cnt; i++, ea_off += entry_size) {
1541 		/* Entry header */
1542 		dm_pci_read_config32(dev, ea_off, &ea_entry);
1543 		entry_size = ((ea_entry & PCI_EA_ES) + 1) << 2;
1544 
1545 		if (((ea_entry & PCI_EA_BEI) >> 4) != bar_id)
1546 			continue;
1547 
1548 		/* Base address, 1st DW */
1549 		dm_pci_read_config32(dev, ea_off + 4, &ea_entry);
1550 		addr = ea_entry & PCI_EA_FIELD_MASK;
1551 		if (ea_entry & PCI_EA_IS_64) {
1552 			/* Base address, 2nd DW, skip over 4B MaxOffset */
1553 			dm_pci_read_config32(dev, ea_off + 12, &ea_entry);
1554 			addr |= ((u64)ea_entry) << 32;
1555 		}
1556 
1557 		if (IS_ENABLED(CONFIG_PCI_SRIOV))
1558 			addr += dm_pci_map_ea_virt(dev, ea_off, pdata);
1559 
1560 		if (~((phys_addr_t)0) - addr < offset)
1561 			return NULL;
1562 
1563 		/* size ignored for now */
1564 		return map_physmem(addr + offset, len, MAP_NOCACHE);
1565 	}
1566 
1567 	return 0;
1568 }
1569 
dm_pci_map_bar(struct udevice * dev,int bar,size_t offset,size_t len,unsigned long mask,unsigned long flags)1570 void *dm_pci_map_bar(struct udevice *dev, int bar, size_t offset, size_t len,
1571 		     unsigned long mask, unsigned long flags)
1572 {
1573 	struct pci_child_plat *pdata = dev_get_parent_plat(dev);
1574 	struct udevice *udev = dev;
1575 	pci_addr_t pci_bus_addr;
1576 	u32 bar_response;
1577 	int ea_off;
1578 
1579 	if (IS_ENABLED(CONFIG_PCI_SRIOV)) {
1580 		/*
1581 		 * In case of Virtual Function devices, use PF udevice
1582 		 * as EA capability is defined in Physical Function
1583 		 */
1584 		if (pdata->is_virtfn)
1585 			udev = pdata->pfdev;
1586 	}
1587 
1588 	/*
1589 	 * if the function supports Enhanced Allocation use that instead of
1590 	 * BARs
1591 	 * Incase of virtual functions, pdata will help read VF BEI
1592 	 * and EA entry size.
1593 	 */
1594 	if (IS_ENABLED(CONFIG_PCI_ENHANCED_ALLOCATION))
1595 		ea_off = dm_pci_find_capability(udev, PCI_CAP_ID_EA);
1596 	else
1597 		ea_off = 0;
1598 
1599 	if (ea_off)
1600 		return dm_pci_map_ea_bar(udev, bar, offset, len, ea_off, pdata);
1601 
1602 	/* read BAR address */
1603 	dm_pci_read_config32(udev, bar, &bar_response);
1604 	pci_bus_addr = (pci_addr_t)(bar_response & ~0xf);
1605 
1606 	if (~((pci_addr_t)0) - pci_bus_addr < offset)
1607 		return NULL;
1608 
1609 	/*
1610 	 * Forward the length argument to dm_pci_bus_to_virt. The length will
1611 	 * be used to check that the entire address range has been declared as
1612 	 * a PCI range, but a better check would be to probe for the size of
1613 	 * the bar and prevent overflow more locally.
1614 	 */
1615 	return dm_pci_bus_to_virt(udev, pci_bus_addr + offset, len, mask, flags,
1616 				  MAP_NOCACHE);
1617 }
1618 
_dm_pci_find_next_capability(struct udevice * dev,u8 pos,int cap)1619 static int _dm_pci_find_next_capability(struct udevice *dev, u8 pos, int cap)
1620 {
1621 	int ttl = PCI_FIND_CAP_TTL;
1622 	u8 id;
1623 	u16 ent;
1624 
1625 	dm_pci_read_config8(dev, pos, &pos);
1626 
1627 	while (ttl--) {
1628 		if (pos < PCI_STD_HEADER_SIZEOF)
1629 			break;
1630 		pos &= ~3;
1631 		dm_pci_read_config16(dev, pos, &ent);
1632 
1633 		id = ent & 0xff;
1634 		if (id == 0xff)
1635 			break;
1636 		if (id == cap)
1637 			return pos;
1638 		pos = (ent >> 8);
1639 	}
1640 
1641 	return 0;
1642 }
1643 
dm_pci_find_next_capability(struct udevice * dev,u8 start,int cap)1644 int dm_pci_find_next_capability(struct udevice *dev, u8 start, int cap)
1645 {
1646 	return _dm_pci_find_next_capability(dev, start + PCI_CAP_LIST_NEXT,
1647 					    cap);
1648 }
1649 
dm_pci_find_capability(struct udevice * dev,int cap)1650 int dm_pci_find_capability(struct udevice *dev, int cap)
1651 {
1652 	u16 status;
1653 	u8 header_type;
1654 	u8 pos;
1655 
1656 	dm_pci_read_config16(dev, PCI_STATUS, &status);
1657 	if (!(status & PCI_STATUS_CAP_LIST))
1658 		return 0;
1659 
1660 	dm_pci_read_config8(dev, PCI_HEADER_TYPE, &header_type);
1661 	if ((header_type & 0x7f) == PCI_HEADER_TYPE_CARDBUS)
1662 		pos = PCI_CB_CAPABILITY_LIST;
1663 	else
1664 		pos = PCI_CAPABILITY_LIST;
1665 
1666 	return _dm_pci_find_next_capability(dev, pos, cap);
1667 }
1668 
dm_pci_find_next_ext_capability(struct udevice * dev,int start,int cap)1669 int dm_pci_find_next_ext_capability(struct udevice *dev, int start, int cap)
1670 {
1671 	u32 header;
1672 	int ttl;
1673 	int pos = PCI_CFG_SPACE_SIZE;
1674 
1675 	/* minimum 8 bytes per capability */
1676 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
1677 
1678 	if (start)
1679 		pos = start;
1680 
1681 	dm_pci_read_config32(dev, pos, &header);
1682 	/*
1683 	 * If we have no capabilities, this is indicated by cap ID,
1684 	 * cap version and next pointer all being 0.
1685 	 */
1686 	if (header == 0)
1687 		return 0;
1688 
1689 	while (ttl--) {
1690 		if (PCI_EXT_CAP_ID(header) == cap)
1691 			return pos;
1692 
1693 		pos = PCI_EXT_CAP_NEXT(header);
1694 		if (pos < PCI_CFG_SPACE_SIZE)
1695 			break;
1696 
1697 		dm_pci_read_config32(dev, pos, &header);
1698 	}
1699 
1700 	return 0;
1701 }
1702 
dm_pci_find_ext_capability(struct udevice * dev,int cap)1703 int dm_pci_find_ext_capability(struct udevice *dev, int cap)
1704 {
1705 	return dm_pci_find_next_ext_capability(dev, 0, cap);
1706 }
1707 
dm_pci_flr(struct udevice * dev)1708 int dm_pci_flr(struct udevice *dev)
1709 {
1710 	int pcie_off;
1711 	u32 cap;
1712 
1713 	/* look for PCI Express Capability */
1714 	pcie_off = dm_pci_find_capability(dev, PCI_CAP_ID_EXP);
1715 	if (!pcie_off)
1716 		return -ENOENT;
1717 
1718 	/* check FLR capability */
1719 	dm_pci_read_config32(dev, pcie_off + PCI_EXP_DEVCAP, &cap);
1720 	if (!(cap & PCI_EXP_DEVCAP_FLR))
1721 		return -ENOENT;
1722 
1723 	dm_pci_clrset_config16(dev, pcie_off + PCI_EXP_DEVCTL, 0,
1724 			       PCI_EXP_DEVCTL_BCR_FLR);
1725 
1726 	/* wait 100ms, per PCI spec */
1727 	mdelay(100);
1728 
1729 	return 0;
1730 }
1731 
1732 #if defined(CONFIG_PCI_SRIOV)
pci_sriov_init(struct udevice * pdev,int vf_en)1733 int pci_sriov_init(struct udevice *pdev, int vf_en)
1734 {
1735 	u16 vendor, device;
1736 	struct udevice *bus;
1737 	struct udevice *dev;
1738 	pci_dev_t bdf;
1739 	u16 ctrl;
1740 	u16 num_vfs;
1741 	u16 total_vf;
1742 	u16 vf_offset;
1743 	u16 vf_stride;
1744 	int vf, ret;
1745 	int pos;
1746 
1747 	pos = dm_pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
1748 	if (!pos) {
1749 		debug("Error: SRIOV capability not found\n");
1750 		return -ENOENT;
1751 	}
1752 
1753 	dm_pci_read_config16(pdev, pos + PCI_SRIOV_CTRL, &ctrl);
1754 
1755 	dm_pci_read_config16(pdev, pos + PCI_SRIOV_TOTAL_VF, &total_vf);
1756 	if (vf_en > total_vf)
1757 		vf_en = total_vf;
1758 	dm_pci_write_config16(pdev, pos + PCI_SRIOV_NUM_VF, vf_en);
1759 
1760 	ctrl |= PCI_SRIOV_CTRL_VFE | PCI_SRIOV_CTRL_MSE;
1761 	dm_pci_write_config16(pdev, pos + PCI_SRIOV_CTRL, ctrl);
1762 
1763 	dm_pci_read_config16(pdev, pos + PCI_SRIOV_NUM_VF, &num_vfs);
1764 	if (num_vfs > vf_en)
1765 		num_vfs = vf_en;
1766 
1767 	dm_pci_read_config16(pdev, pos + PCI_SRIOV_VF_OFFSET, &vf_offset);
1768 	dm_pci_read_config16(pdev, pos + PCI_SRIOV_VF_STRIDE, &vf_stride);
1769 
1770 	dm_pci_read_config16(pdev, PCI_VENDOR_ID, &vendor);
1771 	dm_pci_read_config16(pdev, pos + PCI_SRIOV_VF_DID, &device);
1772 
1773 	bdf = dm_pci_get_bdf(pdev);
1774 
1775 	ret = pci_get_bus(PCI_BUS(bdf), &bus);
1776 	if (ret)
1777 		return ret;
1778 
1779 	bdf += PCI_BDF(0, 0, vf_offset);
1780 
1781 	for (vf = 0; vf < num_vfs; vf++) {
1782 		struct pci_child_plat *pplat;
1783 		ulong class;
1784 
1785 		pci_bus_read_config(bus, bdf, PCI_CLASS_DEVICE,
1786 				    &class, PCI_SIZE_16);
1787 
1788 		debug("%s: bus %d/%s: found VF %x:%x\n", __func__,
1789 		      dev_seq(bus), bus->name, PCI_DEV(bdf), PCI_FUNC(bdf));
1790 
1791 		/* Find this device in the device tree */
1792 		ret = pci_bus_find_devfn(bus, PCI_MASK_BUS(bdf), &dev);
1793 
1794 		if (ret == -ENODEV) {
1795 			struct pci_device_id find_id;
1796 
1797 			memset(&find_id, '\0', sizeof(find_id));
1798 			find_id.vendor = vendor;
1799 			find_id.device = device;
1800 			find_id.class = class;
1801 
1802 			ret = pci_find_and_bind_driver(bus, &find_id,
1803 						       bdf, &dev);
1804 
1805 			if (ret)
1806 				return ret;
1807 		}
1808 
1809 		/* Update the platform data */
1810 		pplat = dev_get_parent_plat(dev);
1811 		pplat->devfn = PCI_MASK_BUS(bdf);
1812 		pplat->vendor = vendor;
1813 		pplat->device = device;
1814 		pplat->class = class;
1815 		pplat->is_virtfn = true;
1816 		pplat->pfdev = pdev;
1817 		pplat->virtid = vf * vf_stride + vf_offset;
1818 
1819 		debug("%s: bus %d/%s: found VF %x:%x %x:%x class %lx id %x\n",
1820 		      __func__, dev_seq(dev), dev->name, PCI_DEV(bdf),
1821 		      PCI_FUNC(bdf), vendor, device, class, pplat->virtid);
1822 		bdf += PCI_BDF(0, 0, vf_stride);
1823 	}
1824 
1825 	return 0;
1826 }
1827 
pci_sriov_get_totalvfs(struct udevice * pdev)1828 int pci_sriov_get_totalvfs(struct udevice *pdev)
1829 {
1830 	u16 total_vf;
1831 	int pos;
1832 
1833 	pos = dm_pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
1834 	if (!pos) {
1835 		debug("Error: SRIOV capability not found\n");
1836 		return -ENOENT;
1837 	}
1838 
1839 	dm_pci_read_config16(pdev, pos + PCI_SRIOV_TOTAL_VF, &total_vf);
1840 
1841 	return total_vf;
1842 }
1843 #endif /* SRIOV */
1844 
1845 UCLASS_DRIVER(pci) = {
1846 	.id		= UCLASS_PCI,
1847 	.name		= "pci",
1848 	.flags		= DM_UC_FLAG_SEQ_ALIAS | DM_UC_FLAG_NO_AUTO_SEQ,
1849 	.post_bind	= dm_scan_fdt_dev,
1850 	.pre_probe	= pci_uclass_pre_probe,
1851 	.post_probe	= pci_uclass_post_probe,
1852 	.child_post_bind = pci_uclass_child_post_bind,
1853 	.per_device_auto	= sizeof(struct pci_controller),
1854 	.per_child_plat_auto	= sizeof(struct pci_child_plat),
1855 };
1856 
1857 static const struct dm_pci_ops pci_bridge_ops = {
1858 	.read_config	= pci_bridge_read_config,
1859 	.write_config	= pci_bridge_write_config,
1860 };
1861 
1862 static const struct udevice_id pci_bridge_ids[] = {
1863 	{ .compatible = "pci-bridge" },
1864 	{ }
1865 };
1866 
1867 U_BOOT_DRIVER(pci_bridge_drv) = {
1868 	.name		= "pci_bridge_drv",
1869 	.id		= UCLASS_PCI,
1870 	.of_match	= pci_bridge_ids,
1871 	.ops		= &pci_bridge_ops,
1872 };
1873 
1874 UCLASS_DRIVER(pci_generic) = {
1875 	.id		= UCLASS_PCI_GENERIC,
1876 	.name		= "pci_generic",
1877 };
1878 
1879 static const struct udevice_id pci_generic_ids[] = {
1880 	{ .compatible = "pci-generic" },
1881 	{ }
1882 };
1883 
1884 U_BOOT_DRIVER(pci_generic_drv) = {
1885 	.name		= "pci_generic_drv",
1886 	.id		= UCLASS_PCI_GENERIC,
1887 	.of_match	= pci_generic_ids,
1888 };
1889 
pci_init(void)1890 int pci_init(void)
1891 {
1892 	struct udevice *bus;
1893 
1894 	/*
1895 	 * Enumerate all known controller devices. Enumeration has the side-
1896 	 * effect of probing them, so PCIe devices will be enumerated too.
1897 	 */
1898 	for (uclass_first_device_check(UCLASS_PCI, &bus);
1899 	     bus;
1900 	     uclass_next_device_check(&bus)) {
1901 		;
1902 	}
1903 
1904 	return 0;
1905 }
1906