1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2015-2016 Marvell International Ltd.
4  */
5 
6 #include <common.h>
7 #include <fdt_support.h>
8 #include <log.h>
9 #include <asm/global_data.h>
10 #include <asm/io.h>
11 #include <asm/arch/cpu.h>
12 #include <asm/arch/soc.h>
13 #include <linux/delay.h>
14 #include <phy.h>
15 
16 #include "comphy_a3700.h"
17 
18 DECLARE_GLOBAL_DATA_PTR;
19 
20 struct comphy_mux_data a3700_comphy_mux_data[] = {
21 	/* Lane 0 */
22 	{
23 		4,
24 		{
25 			{ COMPHY_TYPE_UNCONNECTED,	0x0 },
26 			{ COMPHY_TYPE_SGMII1,	0x0 },
27 			{ COMPHY_TYPE_USB3_HOST0,	0x1 },
28 			{ COMPHY_TYPE_USB3_DEVICE,	0x1 }
29 		}
30 	},
31 	/* Lane 1 */
32 	{
33 		3,
34 		{
35 			{ COMPHY_TYPE_UNCONNECTED,	0x0},
36 			{ COMPHY_TYPE_SGMII0,	0x0},
37 			{ COMPHY_TYPE_PEX0,	0x1}
38 		}
39 	},
40 	/* Lane 2 */
41 	{
42 		4,
43 		{
44 			{ COMPHY_TYPE_UNCONNECTED,	0x0},
45 			{ COMPHY_TYPE_SATA0,	0x0},
46 			{ COMPHY_TYPE_USB3_HOST0,	0x1},
47 			{ COMPHY_TYPE_USB3_DEVICE,	0x1}
48 		}
49 	},
50 };
51 
52 struct sgmii_phy_init_data_fix {
53 	u16 addr;
54 	u16 value;
55 };
56 
57 /* Changes to 40M1G25 mode data required for running 40M3G125 init mode */
58 static struct sgmii_phy_init_data_fix sgmii_phy_init_fix[] = {
59 	{0x005, 0x07CC}, {0x015, 0x0000}, {0x01B, 0x0000}, {0x01D, 0x0000},
60 	{0x01E, 0x0000}, {0x01F, 0x0000}, {0x020, 0x0000}, {0x021, 0x0030},
61 	{0x026, 0x0888}, {0x04D, 0x0152}, {0x04F, 0xA020}, {0x050, 0x07CC},
62 	{0x053, 0xE9CA}, {0x055, 0xBD97}, {0x071, 0x3015}, {0x076, 0x03AA},
63 	{0x07C, 0x0FDF}, {0x0C2, 0x3030}, {0x0C3, 0x8000}, {0x0E2, 0x5550},
64 	{0x0E3, 0x12A4}, {0x0E4, 0x7D00}, {0x0E6, 0x0C83}, {0x101, 0xFCC0},
65 	{0x104, 0x0C10}
66 };
67 
68 /* 40M1G25 mode init data */
69 static u16 sgmii_phy_init[512] = {
70 	/* 0       1       2       3       4       5       6       7 */
71 	/*-----------------------------------------------------------*/
72 	/* 8       9       A       B       C       D       E       F */
73 	0x3110, 0xFD83, 0x6430, 0x412F, 0x82C0, 0x06FA, 0x4500, 0x6D26,	/* 00 */
74 	0xAFC0, 0x8000, 0xC000, 0x0000, 0x2000, 0x49CC, 0x0BC9, 0x2A52,	/* 08 */
75 	0x0BD2, 0x0CDE, 0x13D2, 0x0CE8, 0x1149, 0x10E0, 0x0000, 0x0000,	/* 10 */
76 	0x0000, 0x0000, 0x0000, 0x0001, 0x0000, 0x4134, 0x0D2D, 0xFFFF,	/* 18 */
77 	0xFFE0, 0x4030, 0x1016, 0x0030, 0x0000, 0x0800, 0x0866, 0x0000,	/* 20 */
78 	0x0000, 0x0000, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF,	/* 28 */
79 	0xFFFF, 0xFFFF, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/* 30 */
80 	0x0000, 0x0000, 0x000F, 0x6A62, 0x1988, 0x3100, 0x3100, 0x3100,	/* 38 */
81 	0x3100, 0xA708, 0x2430, 0x0830, 0x1030, 0x4610, 0xFF00, 0xFF00,	/* 40 */
82 	0x0060, 0x1000, 0x0400, 0x0040, 0x00F0, 0x0155, 0x1100, 0xA02A,	/* 48 */
83 	0x06FA, 0x0080, 0xB008, 0xE3ED, 0x5002, 0xB592, 0x7A80, 0x0001,	/* 50 */
84 	0x020A, 0x8820, 0x6014, 0x8054, 0xACAA, 0xFC88, 0x2A02, 0x45CF,	/* 58 */
85 	0x000F, 0x1817, 0x2860, 0x064F, 0x0000, 0x0204, 0x1800, 0x6000,	/* 60 */
86 	0x810F, 0x4F23, 0x4000, 0x4498, 0x0850, 0x0000, 0x000E, 0x1002,	/* 68 */
87 	0x9D3A, 0x3009, 0xD066, 0x0491, 0x0001, 0x6AB0, 0x0399, 0x3780,	/* 70 */
88 	0x0040, 0x5AC0, 0x4A80, 0x0000, 0x01DF, 0x0000, 0x0007, 0x0000,	/* 78 */
89 	0x2D54, 0x00A1, 0x4000, 0x0100, 0xA20A, 0x0000, 0x0000, 0x0000,	/* 80 */
90 	0x0000, 0x0000, 0x0000, 0x7400, 0x0E81, 0x1000, 0x1242, 0x0210,	/* 88 */
91 	0x80DF, 0x0F1F, 0x2F3F, 0x4F5F, 0x6F7F, 0x0F1F, 0x2F3F, 0x4F5F,	/* 90 */
92 	0x6F7F, 0x4BAD, 0x0000, 0x0000, 0x0800, 0x0000, 0x2400, 0xB651,	/* 98 */
93 	0xC9E0, 0x4247, 0x0A24, 0x0000, 0xAF19, 0x1004, 0x0000, 0x0000,	/* A0 */
94 	0x0000, 0x0013, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/* A8 */
95 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/* B0 */
96 	0x0000, 0x0000, 0x0000, 0x0060, 0x0000, 0x0000, 0x0000, 0x0000,	/* B8 */
97 	0x0000, 0x0000, 0x3010, 0xFA00, 0x0000, 0x0000, 0x0000, 0x0003,	/* C0 */
98 	0x1618, 0x8200, 0x8000, 0x0400, 0x050F, 0x0000, 0x0000, 0x0000,	/* C8 */
99 	0x4C93, 0x0000, 0x1000, 0x1120, 0x0010, 0x1242, 0x1242, 0x1E00,	/* D0 */
100 	0x0000, 0x0000, 0x0000, 0x00F8, 0x0000, 0x0041, 0x0800, 0x0000,	/* D8 */
101 	0x82A0, 0x572E, 0x2490, 0x14A9, 0x4E00, 0x0000, 0x0803, 0x0541,	/* E0 */
102 	0x0C15, 0x0000, 0x0000, 0x0400, 0x2626, 0x0000, 0x0000, 0x4200,	/* E8 */
103 	0x0000, 0xAA55, 0x1020, 0x0000, 0x0000, 0x5010, 0x0000, 0x0000,	/* F0 */
104 	0x0000, 0x0000, 0x5000, 0x0000, 0x0000, 0x0000, 0x02F2, 0x0000,	/* F8 */
105 	0x101F, 0xFDC0, 0x4000, 0x8010, 0x0110, 0x0006, 0x0000, 0x0000,	/*100 */
106 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*108 */
107 	0x04CF, 0x0000, 0x04CF, 0x0000, 0x04CF, 0x0000, 0x04C6, 0x0000,	/*110 */
108 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*118 */
109 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*120 */
110 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*128 */
111 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*130 */
112 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*138 */
113 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*140 */
114 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*148 */
115 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*150 */
116 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*158 */
117 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*160 */
118 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*168 */
119 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*170 */
120 	0x0000, 0x0000, 0x0000, 0x00F0, 0x08A2, 0x3112, 0x0A14, 0x0000,	/*178 */
121 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*180 */
122 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*188 */
123 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*190 */
124 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*198 */
125 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*1A0 */
126 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*1A8 */
127 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*1B0 */
128 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*1B8 */
129 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*1C0 */
130 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*1C8 */
131 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*1D0 */
132 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*1D8 */
133 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*1E0 */
134 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*1E8 */
135 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*1F0 */
136 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000	/*1F8 */
137 };
138 
139 /*
140  * comphy_poll_reg
141  *
142  * return: 1 on success, 0 on timeout
143  */
comphy_poll_reg(void * addr,u32 val,u32 mask,u8 op_type)144 static u32 comphy_poll_reg(void *addr, u32 val, u32 mask, u8 op_type)
145 {
146 	u32 rval = 0xDEAD, timeout;
147 
148 	for (timeout = PLL_LOCK_TIMEOUT; timeout > 0; timeout--) {
149 		if (op_type == POLL_16B_REG)
150 			rval = readw(addr);	/* 16 bit */
151 		else
152 			rval = readl(addr) ;	/* 32 bit */
153 
154 		if ((rval & mask) == val)
155 			return 1;
156 
157 		udelay(10000);
158 	}
159 
160 	debug("Time out waiting (%p = %#010x)\n", addr, rval);
161 	return 0;
162 }
163 
164 /*
165  * comphy_pcie_power_up
166  *
167  * return: 1 if PLL locked (OK), 0 otherwise (FAIL)
168  */
comphy_pcie_power_up(u32 speed,u32 invert)169 static int comphy_pcie_power_up(u32 speed, u32 invert)
170 {
171 	int ret;
172 
173 	debug_enter();
174 
175 	/*
176 	 * 1. Enable max PLL.
177 	 */
178 	reg_set16(phy_addr(PCIE, LANE_CFG1), bf_use_max_pll_rate, 0);
179 
180 	/*
181 	 * 2. Select 20 bit SERDES interface.
182 	 */
183 	reg_set16(phy_addr(PCIE, GLOB_CLK_SRC_LO), bf_cfg_sel_20b, 0);
184 
185 	/*
186 	 * 3. Force to use reg setting for PCIe mode
187 	 */
188 	reg_set16(phy_addr(PCIE, MISC_REG1), bf_sel_bits_pcie_force, 0);
189 
190 	/*
191 	 * 4. Change RX wait
192 	 */
193 	reg_set16(phy_addr(PCIE, PWR_MGM_TIM1), 0x10C, 0xFFFF);
194 
195 	/*
196 	 * 5. Enable idle sync
197 	 */
198 	reg_set16(phy_addr(PCIE, UNIT_CTRL), 0x60 | rb_idle_sync_en, 0xFFFF);
199 
200 	/*
201 	 * 6. Enable the output of 100M/125M/500M clock
202 	 */
203 	reg_set16(phy_addr(PCIE, MISC_REG0),
204 		  0xA00D | rb_clk500m_en | rb_txdclk_2x_sel | rb_clk100m_125m_en, 0xFFFF);
205 
206 	/*
207 	 * 7. Enable TX
208 	 */
209 	reg_set(PCIE_REF_CLK_ADDR, 0x1342, 0xFFFFFFFF);
210 
211 	/*
212 	 * 8. Check crystal jumper setting and program the Power and PLL
213 	 *    Control accordingly
214 	 */
215 	if (get_ref_clk() == 40) {
216 		/* 40 MHz */
217 		reg_set16(phy_addr(PCIE, PWR_PLL_CTRL), 0xFC63, 0xFFFF);
218 	} else {
219 		/* 25 MHz */
220 		reg_set16(phy_addr(PCIE, PWR_PLL_CTRL), 0xFC62, 0xFFFF);
221 	}
222 
223 	/*
224 	 * 9. Override Speed_PLL value and use MAC PLL
225 	 */
226 	reg_set16(phy_addr(PCIE, KVCO_CAL_CTRL), 0x0040 | rb_use_max_pll_rate,
227 		  0xFFFF);
228 
229 	/*
230 	 * 10. Check the Polarity invert bit
231 	 */
232 	if (invert & COMPHY_POLARITY_TXD_INVERT)
233 		reg_set16(phy_addr(PCIE, SYNC_PATTERN), phy_txd_inv, 0);
234 	else
235 		reg_set16(phy_addr(PCIE, SYNC_PATTERN), 0, phy_txd_inv);
236 
237 	if (invert & COMPHY_POLARITY_RXD_INVERT)
238 		reg_set16(phy_addr(PCIE, SYNC_PATTERN), phy_rxd_inv, 0);
239 	else
240 		reg_set16(phy_addr(PCIE, SYNC_PATTERN), 0, phy_rxd_inv);
241 
242 	/*
243 	 * 11. Release SW reset
244 	 */
245 	reg_set16(phy_addr(PCIE, GLOB_PHY_CTRL0),
246 		  rb_mode_core_clk_freq_sel | rb_mode_pipe_width_32,
247 		  bf_soft_rst | bf_mode_refdiv);
248 
249 	/* Wait for > 55 us to allow PCLK be enabled */
250 	udelay(PLL_SET_DELAY_US);
251 
252 	/* Assert PCLK enabled */
253 	ret = comphy_poll_reg(phy_addr(PCIE, LANE_STAT1),	/* address */
254 			      rb_txdclk_pclk_en,		/* value */
255 			      rb_txdclk_pclk_en,		/* mask */
256 			      POLL_16B_REG);			/* 16bit */
257 	if (!ret)
258 		printf("Failed to lock PCIe PLL\n");
259 
260 	debug_exit();
261 
262 	/* Return the status of the PLL */
263 	return ret;
264 }
265 
266 /*
267  * reg_set_indirect
268  *
269  * return: void
270  */
reg_set_indirect(u32 reg,u16 data,u16 mask)271 static void reg_set_indirect(u32 reg, u16 data, u16 mask)
272 {
273 	reg_set(rh_vsreg_addr, reg, 0xFFFFFFFF);
274 	reg_set(rh_vsreg_data, data, mask);
275 }
276 
277 /*
278  * comphy_sata_power_up
279  *
280  * return: 1 if PLL locked (OK), 0 otherwise (FAIL)
281  */
comphy_sata_power_up(u32 invert)282 static int comphy_sata_power_up(u32 invert)
283 {
284 	int ret;
285 	u32 data = 0;
286 
287 	debug_enter();
288 
289 	/*
290 	 * 0. Check the Polarity invert bits
291 	 */
292 	if (invert & COMPHY_POLARITY_TXD_INVERT)
293 		data |= bs_txd_inv;
294 
295 	if (invert & COMPHY_POLARITY_RXD_INVERT)
296 		data |= bs_rxd_inv;
297 
298 	reg_set_indirect(vphy_sync_pattern_reg, data, bs_txd_inv | bs_rxd_inv);
299 
300 	/*
301 	 * 1. Select 40-bit data width width
302 	 */
303 	reg_set_indirect(vphy_loopback_reg0, 0x800, bs_phyintf_40bit);
304 
305 	/*
306 	 * 2. Select reference clock and PHY mode (SATA)
307 	 */
308 	if (get_ref_clk() == 40) {
309 		/* 40 MHz */
310 		reg_set_indirect(vphy_power_reg0, 0x3, 0x00FF);
311 	} else {
312 		/* 20 MHz */
313 		reg_set_indirect(vphy_power_reg0, 0x1, 0x00FF);
314 	}
315 
316 	/*
317 	 * 3. Use maximum PLL rate (no power save)
318 	 */
319 	reg_set_indirect(vphy_calctl_reg, bs_max_pll_rate, bs_max_pll_rate);
320 
321 	/*
322 	 * 4. Reset reserved bit (??)
323 	 */
324 	reg_set_indirect(vphy_reserve_reg, 0, bs_phyctrl_frm_pin);
325 
326 	/*
327 	 * 5. Set vendor-specific configuration (??)
328 	 */
329 	reg_set(rh_vs0_a, vsata_ctrl_reg, 0xFFFFFFFF);
330 	reg_set(rh_vs0_d, bs_phy_pu_pll, bs_phy_pu_pll);
331 
332 	/* Wait for > 55 us to allow PLL be enabled */
333 	udelay(PLL_SET_DELAY_US);
334 
335 	/* Assert SATA PLL enabled */
336 	reg_set(rh_vsreg_addr, vphy_loopback_reg0, 0xFFFFFFFF);
337 	ret = comphy_poll_reg(rh_vsreg_data,	/* address */
338 			      bs_pll_ready_tx,	/* value */
339 			      bs_pll_ready_tx,	/* mask */
340 			      POLL_32B_REG);	/* 32bit */
341 	if (!ret)
342 		printf("Failed to lock SATA PLL\n");
343 
344 	debug_exit();
345 
346 	return ret;
347 }
348 
349 /*
350  * usb3_reg_set16
351  *
352  * return: void
353  */
usb3_reg_set16(u32 reg,u16 data,u16 mask,u32 lane)354 static void usb3_reg_set16(u32 reg, u16 data, u16 mask, u32 lane)
355 {
356 	/*
357 	 * When Lane 2 PHY is for USB3, access the PHY registers
358 	 * through indirect Address and Data registers INDIR_ACC_PHY_ADDR
359 	 * (RD00E0178h [31:0]) and INDIR_ACC_PHY_DATA (RD00E017Ch [31:0])
360 	 * within the SATA Host Controller registers, Lane 2 base register
361 	 * offset is 0x200
362 	 */
363 
364 	if (lane == 2)
365 		reg_set_indirect(USB3PHY_LANE2_REG_BASE_OFFSET + reg, data,
366 				 mask);
367 	else
368 		reg_set16(phy_addr(USB3, reg), data, mask);
369 }
370 
371 /*
372  * comphy_usb3_power_up
373  *
374  * return: 1 if PLL locked (OK), 0 otherwise (FAIL)
375  */
comphy_usb3_power_up(u32 lane,u32 type,u32 speed,u32 invert)376 static int comphy_usb3_power_up(u32 lane, u32 type, u32 speed, u32 invert)
377 {
378 	int ret;
379 
380 	debug_enter();
381 
382 	/*
383 	 * 1. Power up OTG module
384 	 */
385 	reg_set(USB2_PHY_OTG_CTRL_ADDR, rb_pu_otg, 0);
386 
387 	/*
388 	 * 2. Set counter for 100us pulse in USB3 Host and Device
389 	 * restore default burst size limit (Reference Clock 31:24)
390 	 */
391 	reg_set(USB3_CTRPUL_VAL_REG, 0x8 << 24, rb_usb3_ctr_100ns);
392 
393 
394 	/* 0xd005c300 = 0x1001 */
395 	/* set PRD_TXDEEMPH (3.5db de-emph) */
396 	usb3_reg_set16(LANE_CFG0, 0x1, 0xFF, lane);
397 
398 	/*
399 	 * Set BIT0: enable transmitter in high impedance mode
400 	 * Set BIT[3:4]: delay 2 clock cycles for HiZ off latency
401 	 * Set BIT6: Tx detect Rx at HiZ mode
402 	 * Unset BIT15: set to 0 to set USB3 De-emphasize level to -3.5db
403 	 *              together with bit 0 of COMPHY_REG_LANE_CFG0_ADDR
404 	 *              register
405 	 */
406 	usb3_reg_set16(LANE_CFG1,
407 		       tx_det_rx_mode | gen2_tx_data_dly_deft
408 		       | tx_elec_idle_mode_en,
409 		       prd_txdeemph1_mask | tx_det_rx_mode
410 		       | gen2_tx_data_dly_mask | tx_elec_idle_mode_en, lane);
411 
412 	/* 0xd005c310 = 0x93: set Spread Spectrum Clock Enabled */
413 	usb3_reg_set16(LANE_CFG4, bf_spread_spectrum_clock_en, 0x80, lane);
414 
415 	/*
416 	 * set Override Margining Controls From the MAC: Use margining signals
417 	 * from lane configuration
418 	 */
419 	usb3_reg_set16(TEST_MODE_CTRL, rb_mode_margin_override, 0xFFFF, lane);
420 
421 	/* set Lane-to-Lane Bundle Clock Sampling Period = per PCLK cycles */
422 	/* set Mode Clock Source = PCLK is generated from REFCLK */
423 	usb3_reg_set16(GLOB_CLK_SRC_LO, 0x0, 0xFF, lane);
424 
425 	/* set G2 Spread Spectrum Clock Amplitude at 4K */
426 	usb3_reg_set16(GEN2_SETTINGS_2, g2_tx_ssc_amp, 0xF000, lane);
427 
428 	/*
429 	 * unset G3 Spread Spectrum Clock Amplitude & set G3 TX and RX Register
430 	 * Master Current Select
431 	 */
432 	usb3_reg_set16(GEN2_SETTINGS_3, 0x0, 0xFFFF, lane);
433 
434 	/*
435 	 * 3. Check crystal jumper setting and program the Power and PLL
436 	 * Control accordingly
437 	 * 4. Change RX wait
438 	 */
439 	if (get_ref_clk() == 40) {
440 		/* 40 MHz */
441 		usb3_reg_set16(PWR_PLL_CTRL, 0xFCA3, 0xFFFF, lane);
442 		usb3_reg_set16(PWR_MGM_TIM1, 0x10C, 0xFFFF, lane);
443 	} else {
444 		/* 25 MHz */
445 		usb3_reg_set16(PWR_PLL_CTRL, 0xFCA2, 0xFFFF, lane);
446 		usb3_reg_set16(PWR_MGM_TIM1, 0x107, 0xFFFF, lane);
447 	}
448 
449 	/*
450 	 * 5. Enable idle sync
451 	 */
452 	usb3_reg_set16(UNIT_CTRL, 0x60 | rb_idle_sync_en, 0xFFFF, lane);
453 
454 	/*
455 	 * 6. Enable the output of 500M clock
456 	 */
457 	usb3_reg_set16(MISC_REG0, 0xA00D | rb_clk500m_en, 0xFFFF, lane);
458 
459 	/*
460 	 * 7. Set 20-bit data width
461 	 */
462 	usb3_reg_set16(DIG_LB_EN, 0x0400, 0xFFFF, lane);
463 
464 	/*
465 	 * 8. Override Speed_PLL value and use MAC PLL
466 	 */
467 	usb3_reg_set16(KVCO_CAL_CTRL, 0x0040 | rb_use_max_pll_rate, 0xFFFF,
468 		       lane);
469 
470 	/*
471 	 * 9. Check the Polarity invert bit
472 	 */
473 	if (invert & COMPHY_POLARITY_TXD_INVERT)
474 		usb3_reg_set16(SYNC_PATTERN, phy_txd_inv, 0, lane);
475 	else
476 		usb3_reg_set16(SYNC_PATTERN, 0, phy_txd_inv, lane);
477 
478 	if (invert & COMPHY_POLARITY_RXD_INVERT)
479 		usb3_reg_set16(SYNC_PATTERN, phy_rxd_inv, 0, lane);
480 	else
481 		usb3_reg_set16(SYNC_PATTERN, 0, phy_rxd_inv, lane);
482 
483 	/*
484 	 * 10. Set max speed generation to USB3.0 5Gbps
485 	 */
486 	usb3_reg_set16(SYNC_MASK_GEN, 0x0400, 0x0C00, lane);
487 
488 	/*
489 	 * 11. Set capacitor value for FFE gain peaking to 0xF
490 	 */
491 	usb3_reg_set16(GEN3_SETTINGS_3, 0xF, 0xF, lane);
492 
493 	/*
494 	 * 12. Release SW reset
495 	 */
496 	usb3_reg_set16(GLOB_PHY_CTRL0,
497 		       rb_mode_core_clk_freq_sel | rb_mode_pipe_width_32
498 		       | 0x20, 0xFFFF, lane);
499 
500 	/* Wait for > 55 us to allow PCLK be enabled */
501 	udelay(PLL_SET_DELAY_US);
502 
503 	/* Assert PCLK enabled */
504 	if (lane == 2) {
505 		reg_set(rh_vsreg_addr,
506 			LANE_STAT1 + USB3PHY_LANE2_REG_BASE_OFFSET,
507 			0xFFFFFFFF);
508 		ret = comphy_poll_reg(rh_vsreg_data,		/* address */
509 				      rb_txdclk_pclk_en,	/* value */
510 				      rb_txdclk_pclk_en,	/* mask */
511 				      POLL_32B_REG);		/* 32bit */
512 	} else {
513 		ret = comphy_poll_reg(phy_addr(USB3, LANE_STAT1), /* address */
514 				      rb_txdclk_pclk_en,	  /* value */
515 				      rb_txdclk_pclk_en,	  /* mask */
516 				      POLL_16B_REG);		  /* 16bit */
517 	}
518 	if (!ret)
519 		printf("Failed to lock USB3 PLL\n");
520 
521 	/*
522 	 * Set Soft ID for Host mode (Device mode works with Hard ID
523 	 * detection)
524 	 */
525 	if (type == COMPHY_TYPE_USB3_HOST0) {
526 		/*
527 		 * set   BIT0: set ID_MODE of Host/Device = "Soft ID" (BIT1)
528 		 * clear BIT1: set SOFT_ID = Host
529 		 * set   BIT4: set INT_MODE = ID. Interrupt Mode: enable
530 		 *             interrupt by ID instead of using both interrupts
531 		 *             of HOST and Device ORed simultaneously
532 		 *             INT_MODE=ID in order to avoid unexpected
533 		 *             behaviour or both interrupts together
534 		 */
535 		reg_set(USB32_CTRL_BASE,
536 			usb32_ctrl_id_mode | usb32_ctrl_int_mode,
537 			usb32_ctrl_id_mode | usb32_ctrl_soft_id |
538 			usb32_ctrl_int_mode);
539 	}
540 
541 	debug_exit();
542 
543 	return ret;
544 }
545 
546 /*
547  * comphy_usb2_power_up
548  *
549  * return: 1 if PLL locked (OK), 0 otherwise (FAIL)
550  */
comphy_usb2_power_up(u8 usb32)551 static int comphy_usb2_power_up(u8 usb32)
552 {
553 	int ret;
554 
555 	debug_enter();
556 
557 	if (usb32 != 0 && usb32 != 1) {
558 		printf("invalid usb32 value: (%d), should be either 0 or 1\n",
559 		       usb32);
560 		debug_exit();
561 		return 0;
562 	}
563 
564 	/*
565 	 * 0. Setup PLL. 40MHz clock uses defaults.
566 	 *    See "PLL Settings for Typical REFCLK" table
567 	 */
568 	if (get_ref_clk() == 25) {
569 		reg_set(USB2_PHY_BASE(usb32), 5 | (96 << 16),
570 			0x3F | (0xFF << 16) | (0x3 << 28));
571 	}
572 
573 	/*
574 	 * 1. PHY pull up and disable USB2 suspend
575 	 */
576 	reg_set(USB2_PHY_CTRL_ADDR(usb32),
577 		RB_USB2PHY_SUSPM(usb32) | RB_USB2PHY_PU(usb32), 0);
578 
579 	if (usb32 != 0) {
580 		/*
581 		 * 2. Power up OTG module
582 		 */
583 		reg_set(USB2_PHY_OTG_CTRL_ADDR, rb_pu_otg, 0);
584 
585 		/*
586 		 * 3. Configure PHY charger detection
587 		 */
588 		reg_set(USB2_PHY_CHRGR_DET_ADDR, 0,
589 			rb_cdp_en | rb_dcp_en | rb_pd_en | rb_cdp_dm_auto |
590 			rb_enswitch_dp | rb_enswitch_dm | rb_pu_chrg_dtc);
591 	}
592 
593 	/* Assert PLL calibration done */
594 	ret = comphy_poll_reg(USB2_PHY_CAL_CTRL_ADDR(usb32),
595 			      rb_usb2phy_pllcal_done,	/* value */
596 			      rb_usb2phy_pllcal_done,	/* mask */
597 			      POLL_32B_REG);		/* 32bit */
598 	if (!ret) {
599 		printf("Failed to end USB2 PLL calibration\n");
600 		goto out;
601 	}
602 
603 	/* Assert impedance calibration done */
604 	ret = comphy_poll_reg(USB2_PHY_CAL_CTRL_ADDR(usb32),
605 			      rb_usb2phy_impcal_done,	/* value */
606 			      rb_usb2phy_impcal_done,	/* mask */
607 			      POLL_32B_REG);		/* 32bit */
608 	if (!ret) {
609 		printf("Failed to end USB2 impedance calibration\n");
610 		goto out;
611 	}
612 
613 	/* Assert squetch calibration done */
614 	ret = comphy_poll_reg(USB2_PHY_RX_CHAN_CTRL1_ADDR(usb32),
615 			      rb_usb2phy_sqcal_done,	/* value */
616 			      rb_usb2phy_sqcal_done,	/* mask */
617 			      POLL_32B_REG);		/* 32bit */
618 	if (!ret) {
619 		printf("Failed to end USB2 unknown calibration\n");
620 		goto out;
621 	}
622 
623 	/* Assert PLL is ready */
624 	ret = comphy_poll_reg(USB2_PHY_PLL_CTRL0_ADDR(usb32),
625 			      rb_usb2phy_pll_ready,		/* value */
626 			      rb_usb2phy_pll_ready,		/* mask */
627 			      POLL_32B_REG);		/* 32bit */
628 
629 	if (!ret) {
630 		printf("Failed to lock USB2 PLL\n");
631 		goto out;
632 	}
633 
634 out:
635 	debug_exit();
636 
637 	return ret;
638 }
639 
640 /*
641  * comphy_emmc_power_up
642  *
643  * return: 1 if PLL locked (OK), 0 otherwise (FAIL)
644  */
comphy_emmc_power_up(void)645 static int comphy_emmc_power_up(void)
646 {
647 	debug_enter();
648 
649 	/*
650 	 * 1. Bus power ON, Bus voltage 1.8V
651 	 */
652 	reg_set(SDIO_HOST_CTRL1_ADDR, 0xB00, 0xF00);
653 
654 	/*
655 	 * 2. Set FIFO parameters
656 	 */
657 	reg_set(SDIO_SDHC_FIFO_ADDR, 0x315, 0xFFFFFFFF);
658 
659 	/*
660 	 * 3. Set Capabilities 1_2
661 	 */
662 	reg_set(SDIO_CAP_12_ADDR, 0x25FAC8B2, 0xFFFFFFFF);
663 
664 	/*
665 	 * 4. Set Endian
666 	 */
667 	reg_set(SDIO_ENDIAN_ADDR, 0x00c00000, 0);
668 
669 	/*
670 	 * 4. Init PHY
671 	 */
672 	reg_set(SDIO_PHY_TIMING_ADDR, 0x80000000, 0x80000000);
673 	reg_set(SDIO_PHY_PAD_CTRL0_ADDR, 0x50000000, 0xF0000000);
674 
675 	/*
676 	 * 5. DLL reset
677 	 */
678 	reg_set(SDIO_DLL_RST_ADDR, 0xFFFEFFFF, 0);
679 	reg_set(SDIO_DLL_RST_ADDR, 0x00010000, 0);
680 
681 	debug_exit();
682 
683 	return 1;
684 }
685 
686 /*
687  * comphy_sgmii_power_up
688  *
689  * return:
690  */
comphy_sgmii_phy_init(u32 lane,u32 speed)691 static void comphy_sgmii_phy_init(u32 lane, u32 speed)
692 {
693 	const int fix_arr_sz = ARRAY_SIZE(sgmii_phy_init_fix);
694 	int addr, fix_idx;
695 	u16 val;
696 
697 	fix_idx = 0;
698 	for (addr = 0; addr < 512; addr++) {
699 		/*
700 		 * All PHY register values are defined in full for 3.125Gbps
701 		 * SERDES speed. The values required for 1.25 Gbps are almost
702 		 * the same and only few registers should be "fixed" in
703 		 * comparison to 3.125 Gbps values. These register values are
704 		 * stored in "sgmii_phy_init_fix" array.
705 		 */
706 		if (speed != COMPHY_SPEED_1_25G &&
707 		    sgmii_phy_init_fix[fix_idx].addr == addr) {
708 			/* Use new value */
709 			val = sgmii_phy_init_fix[fix_idx].value;
710 			if (fix_idx < fix_arr_sz)
711 				fix_idx++;
712 		} else {
713 			val = sgmii_phy_init[addr];
714 		}
715 
716 		reg_set16(sgmiiphy_addr(lane, addr), val, 0xFFFF);
717 	}
718 }
719 
720 /*
721  * comphy_sgmii_power_up
722  *
723  * return: 1 if PLL locked (OK), 0 otherwise (FAIL)
724  */
comphy_sgmii_power_up(u32 lane,u32 speed,u32 invert)725 static int comphy_sgmii_power_up(u32 lane, u32 speed, u32 invert)
726 {
727 	int ret;
728 	u32 saved_selector;
729 
730 	debug_enter();
731 
732 	/*
733 	 * 1. Configure PHY to SATA/SAS mode by setting pin PIN_PIPE_SEL=0
734 	 */
735 	saved_selector = readl(COMPHY_SEL_ADDR);
736 	reg_set(COMPHY_SEL_ADDR, 0, 0xFFFFFFFF);
737 
738 	/*
739 	 * 2. Reset PHY by setting PHY input port PIN_RESET=1.
740 	 * 3. Set PHY input port PIN_TX_IDLE=1, PIN_PU_IVREF=1 to keep
741 	 *    PHY TXP/TXN output to idle state during PHY initialization
742 	 * 4. Set PHY input port PIN_PU_PLL=0, PIN_PU_RX=0, PIN_PU_TX=0.
743 	 */
744 	reg_set(COMPHY_PHY_CFG1_ADDR(lane),
745 		rb_pin_reset_comphy | rb_pin_tx_idle | rb_pin_pu_iveref,
746 		rb_pin_reset_core | rb_pin_pu_pll |
747 		rb_pin_pu_rx | rb_pin_pu_tx);
748 
749 	/*
750 	 * 5. Release reset to the PHY by setting PIN_RESET=0.
751 	 */
752 	reg_set(COMPHY_PHY_CFG1_ADDR(lane), 0, rb_pin_reset_comphy);
753 
754 	/*
755 	 * 7. Set PIN_PHY_GEN_TX[3:0] and PIN_PHY_GEN_RX[3:0] to decide
756 	 *    COMPHY bit rate
757 	 */
758 	if (speed == COMPHY_SPEED_3_125G) { /* 3.125 GHz */
759 		reg_set(COMPHY_PHY_CFG1_ADDR(lane),
760 			(0x8 << rf_gen_rx_sel_shift) |
761 			(0x8 << rf_gen_tx_sel_shift),
762 			rf_gen_rx_select | rf_gen_tx_select);
763 
764 	} else if (speed == COMPHY_SPEED_1_25G) { /* 1.25 GHz */
765 		reg_set(COMPHY_PHY_CFG1_ADDR(lane),
766 			(0x6 << rf_gen_rx_sel_shift) |
767 			(0x6 << rf_gen_tx_sel_shift),
768 			rf_gen_rx_select | rf_gen_tx_select);
769 	} else {
770 		printf("Unsupported COMPHY speed!\n");
771 		return 0;
772 	}
773 
774 	/*
775 	 * 8. Wait 1mS for bandgap and reference clocks to stabilize;
776 	 *    then start SW programming.
777 	 */
778 	mdelay(10);
779 
780 	/* 9. Program COMPHY register PHY_MODE */
781 	reg_set16(sgmiiphy_addr(lane, PWR_PLL_CTRL),
782 		  PHY_MODE_SGMII << rf_phy_mode_shift, rf_phy_mode_mask);
783 
784 	/*
785 	 * 10. Set COMPHY register REFCLK_SEL to select the correct REFCLK
786 	 *     source
787 	 */
788 	reg_set16(sgmiiphy_addr(lane, MISC_REG0), 0, rb_ref_clk_sel);
789 
790 	/*
791 	 * 11. Set correct reference clock frequency in COMPHY register
792 	 *     REF_FREF_SEL.
793 	 */
794 	if (get_ref_clk() == 40) {
795 		reg_set16(sgmiiphy_addr(lane, PWR_PLL_CTRL),
796 			  0x4 << rf_ref_freq_sel_shift, rf_ref_freq_sel_mask);
797 	} else {
798 		/* 25MHz */
799 		reg_set16(sgmiiphy_addr(lane, PWR_PLL_CTRL),
800 			  0x1 << rf_ref_freq_sel_shift, rf_ref_freq_sel_mask);
801 	}
802 
803 	/* 12. Program COMPHY register PHY_GEN_MAX[1:0] */
804 	/*
805 	 * This step is mentioned in the flow received from verification team.
806 	 * However the PHY_GEN_MAX value is only meaningful for other
807 	 * interfaces (not SGMII). For instance, it selects SATA speed
808 	 * 1.5/3/6 Gbps or PCIe speed  2.5/5 Gbps
809 	 */
810 
811 	/*
812 	 * 13. Program COMPHY register SEL_BITS to set correct parallel data
813 	 *     bus width
814 	 */
815 	/* 10bit */
816 	reg_set16(sgmiiphy_addr(lane, DIG_LB_EN), 0, rf_data_width_mask);
817 
818 	/*
819 	 * 14. As long as DFE function needs to be enabled in any mode,
820 	 *     COMPHY register DFE_UPDATE_EN[5:0] shall be programmed to 0x3F
821 	 *     for real chip during COMPHY power on.
822 	 */
823 	/*
824 	 * The step 14 exists (and empty) in the original initialization flow
825 	 * obtained from the verification team. According to the functional
826 	 * specification DFE_UPDATE_EN already has the default value 0x3F
827 	 */
828 
829 	/*
830 	 * 15. Program COMPHY GEN registers.
831 	 *     These registers should be programmed based on the lab testing
832 	 *     result to achieve optimal performance. Please contact the CEA
833 	 *     group to get the related GEN table during real chip bring-up.
834 	 *     We only requred to run though the entire registers programming
835 	 *     flow defined by "comphy_sgmii_phy_init" when the REF clock is
836 	 *     40 MHz. For REF clock 25 MHz the default values stored in PHY
837 	 *     registers are OK.
838 	 */
839 	debug("Running C-DPI phy init %s mode\n",
840 	      speed == COMPHY_SPEED_3_125G ? "2G5" : "1G");
841 	if (get_ref_clk() == 40)
842 		comphy_sgmii_phy_init(lane, speed);
843 
844 	/*
845 	 * 16. [Simulation Only] should not be used for real chip.
846 	 *     By pass power up calibration by programming EXT_FORCE_CAL_DONE
847 	 *     (R02h[9]) to 1 to shorten COMPHY simulation time.
848 	 */
849 	/*
850 	 * 17. [Simulation Only: should not be used for real chip]
851 	 *     Program COMPHY register FAST_DFE_TIMER_EN=1 to shorten RX
852 	 *     training simulation time.
853 	 */
854 
855 	/*
856 	 * 18. Check the PHY Polarity invert bit
857 	 */
858 	if (invert & COMPHY_POLARITY_TXD_INVERT)
859 		reg_set16(sgmiiphy_addr(lane, SYNC_PATTERN), phy_txd_inv, 0);
860 	else
861 		reg_set16(sgmiiphy_addr(lane, SYNC_PATTERN), 0, phy_txd_inv);
862 
863 	if (invert & COMPHY_POLARITY_RXD_INVERT)
864 		reg_set16(sgmiiphy_addr(lane, SYNC_PATTERN), phy_rxd_inv, 0);
865 	else
866 		reg_set16(sgmiiphy_addr(lane, SYNC_PATTERN), 0, phy_rxd_inv);
867 
868 	/*
869 	 * 19. Set PHY input ports PIN_PU_PLL, PIN_PU_TX and PIN_PU_RX to 1
870 	 *     to start PHY power up sequence. All the PHY register
871 	 *     programming should be done before PIN_PU_PLL=1. There should be
872 	 *     no register programming for normal PHY operation from this point.
873 	 */
874 	reg_set(COMPHY_PHY_CFG1_ADDR(lane),
875 		rb_pin_pu_pll | rb_pin_pu_rx | rb_pin_pu_tx,
876 		rb_pin_pu_pll | rb_pin_pu_rx | rb_pin_pu_tx);
877 
878 	/*
879 	 * 20. Wait for PHY power up sequence to finish by checking output ports
880 	 *     PIN_PLL_READY_TX=1 and PIN_PLL_READY_RX=1.
881 	 */
882 	ret = comphy_poll_reg(COMPHY_PHY_STAT1_ADDR(lane),	/* address */
883 			      rb_pll_ready_tx | rb_pll_ready_rx, /* value */
884 			      rb_pll_ready_tx | rb_pll_ready_rx, /* mask */
885 			      POLL_32B_REG);			/* 32bit */
886 	if (!ret) {
887 		printf("Failed to lock PLL for SGMII PHY %d\n", lane);
888 		goto out;
889 	}
890 
891 	/*
892 	 * 21. Set COMPHY input port PIN_TX_IDLE=0
893 	 */
894 	reg_set(COMPHY_PHY_CFG1_ADDR(lane), 0x0, rb_pin_tx_idle);
895 
896 	/*
897 	 * 22. After valid data appear on PIN_RXDATA bus, set PIN_RX_INIT=1.
898 	 *     to start RX initialization. PIN_RX_INIT_DONE will be cleared to
899 	 *     0 by the PHY. After RX initialization is done, PIN_RX_INIT_DONE
900 	 *     will be set to 1 by COMPHY. Set PIN_RX_INIT=0 after
901 	 *     PIN_RX_INIT_DONE= 1.
902 	 *     Please refer to RX initialization part for details.
903 	 */
904 	reg_set(COMPHY_PHY_CFG1_ADDR(lane), rb_phy_rx_init, 0x0);
905 
906 	ret = comphy_poll_reg(COMPHY_PHY_STAT1_ADDR(lane), /* address */
907 			      rb_rx_init_done,			/* value */
908 			      rb_rx_init_done,			/* mask */
909 			      POLL_32B_REG);			/* 32bit */
910 	if (!ret) {
911 		printf("Failed to init RX of SGMII PHY %d\n", lane);
912 		goto out;
913 	}
914 
915 	/*
916 	 * Restore saved selector.
917 	 */
918 	reg_set(COMPHY_SEL_ADDR, saved_selector, 0xFFFFFFFF);
919 
920 out:
921 	debug_exit();
922 
923 	return ret;
924 }
925 
comphy_dedicated_phys_init(void)926 void comphy_dedicated_phys_init(void)
927 {
928 	int node, usb32, ret = 1;
929 	const void *blob = gd->fdt_blob;
930 
931 	debug_enter();
932 
933 	for (usb32 = 0; usb32 <= 1; usb32++) {
934 		/*
935 		 * There are 2 UTMI PHYs in this SOC.
936 		 * One is independendent and one is paired with USB3 port (OTG)
937 		 */
938 		if (usb32 == 0) {
939 			node = fdt_node_offset_by_compatible(
940 				blob, -1, "marvell,armada-3700-ehci");
941 		} else {
942 			node = fdt_node_offset_by_compatible(
943 				blob, -1, "marvell,armada3700-xhci");
944 		}
945 
946 		if (node > 0) {
947 			if (fdtdec_get_is_enabled(blob, node)) {
948 				ret = comphy_usb2_power_up(usb32);
949 				if (!ret)
950 					printf("Failed to initialize UTMI PHY\n");
951 				else
952 					debug("UTMI PHY init succeed\n");
953 			} else {
954 				debug("USB%d node is disabled\n",
955 				      usb32 == 0 ? 2 : 3);
956 			}
957 		} else {
958 			debug("No USB%d node in DT\n", usb32 == 0 ? 2 : 3);
959 		}
960 	}
961 
962 	node = fdt_node_offset_by_compatible(blob, -1,
963 					     "marvell,armada-8k-sdhci");
964 	if (node <= 0) {
965 		node = fdt_node_offset_by_compatible(
966 			blob, -1, "marvell,armada-3700-sdhci");
967 	}
968 
969 	if (node > 0) {
970 		if (fdtdec_get_is_enabled(blob, node)) {
971 			ret = comphy_emmc_power_up();
972 			if (!ret)
973 				printf("Failed to initialize SDIO/eMMC PHY\n");
974 			else
975 				debug("SDIO/eMMC PHY init succeed\n");
976 		} else {
977 			debug("SDIO/eMMC node is disabled\n");
978 		}
979 	}  else {
980 		debug("No SDIO/eMMC node in DT\n");
981 	}
982 
983 	debug_exit();
984 }
985 
find_available_node_by_compatible(int offset,const char * compatible)986 static int find_available_node_by_compatible(int offset, const char *compatible)
987 {
988 	fdt_for_each_node_by_compatible(offset, gd->fdt_blob, offset,
989 					compatible)
990 		if (fdtdec_get_is_enabled(gd->fdt_blob, offset))
991 			return offset;
992 
993 	return -1;
994 }
995 
comphy_a3700_find_lane(const int nodes[3],int node,int port,int * lane,int * invert)996 static bool comphy_a3700_find_lane(const int nodes[3], int node,
997 				   int port, int *lane, int *invert)
998 {
999 	int res, i, j;
1000 
1001 	for (i = 0; ; i++) {
1002 		struct fdtdec_phandle_args args;
1003 
1004 		res = fdtdec_parse_phandle_with_args(gd->fdt_blob, node, "phys",
1005 						     "#phy-cells", 0, i, &args);
1006 		if (res)
1007 			return false;
1008 
1009 		for (j = 0; j < 3; j++) {
1010 			if (nodes[j] >= 0 && args.node == nodes[j] &&
1011 			    (args.args_count >= 1 ? args.args[0] : 0) == port) {
1012 				*lane = j;
1013 				*invert = args.args_count >= 2 ? args.args[1]
1014 							       : 0;
1015 				return true;
1016 			}
1017 		}
1018 	}
1019 
1020 	return false;
1021 }
1022 
comphy_a3700_fill_cfg(struct chip_serdes_phy_config * cfg,const int nodes[3],const char * compatible,int type)1023 static void comphy_a3700_fill_cfg(struct chip_serdes_phy_config *cfg,
1024 				  const int nodes[3], const char *compatible,
1025 				  int type)
1026 {
1027 	int node, lane, port, speed, invert;
1028 
1029 	port = (type == COMPHY_TYPE_SGMII1) ? 1 : 0;
1030 
1031 	node = -1;
1032 	while (1) {
1033 		node = find_available_node_by_compatible(node, compatible);
1034 		if (node < 0)
1035 			return;
1036 
1037 		if (comphy_a3700_find_lane(nodes, node, port, &lane, &invert))
1038 			break;
1039 	}
1040 
1041 	if (cfg->comphy_map_data[lane].type != COMPHY_TYPE_UNCONNECTED) {
1042 		printf("Error: More PHYs defined for lane %d, skipping\n",
1043 		       lane);
1044 		return;
1045 	}
1046 
1047 	if (type == COMPHY_TYPE_SGMII0 || type == COMPHY_TYPE_SGMII1) {
1048 		const char *phy_mode;
1049 
1050 		phy_mode = fdt_getprop(gd->fdt_blob, node, "phy-mode", NULL);
1051 		if (phy_mode &&
1052 		    !strcmp(phy_mode,
1053 			    phy_string_for_interface(PHY_INTERFACE_MODE_2500BASEX)))
1054 			speed = COMPHY_SPEED_3_125G;
1055 		else
1056 			speed = COMPHY_SPEED_1_25G;
1057 	} else if (type == COMPHY_TYPE_SATA0) {
1058 		speed = COMPHY_SPEED_6G;
1059 	} else {
1060 		speed = COMPHY_SPEED_5G;
1061 	}
1062 
1063 	cfg->comphy_map_data[lane].type = type;
1064 	cfg->comphy_map_data[lane].speed = speed;
1065 	cfg->comphy_map_data[lane].invert = invert;
1066 }
1067 
1068 static const fdt32_t comphy_a3700_mux_lane_order[3] = {
1069 	__constant_cpu_to_be32(1),
1070 	__constant_cpu_to_be32(0),
1071 	__constant_cpu_to_be32(2),
1072 };
1073 
comphy_a3700_init_serdes_map(int node,struct chip_serdes_phy_config * cfg)1074 int comphy_a3700_init_serdes_map(int node, struct chip_serdes_phy_config *cfg)
1075 {
1076 	int comphy_nodes[3];
1077 	int child, i;
1078 
1079 	for (i = 0; i < ARRAY_SIZE(comphy_nodes); i++)
1080 		comphy_nodes[i] = -FDT_ERR_NOTFOUND;
1081 
1082 	fdt_for_each_subnode(child, gd->fdt_blob, node) {
1083 		if (!fdtdec_get_is_enabled(gd->fdt_blob, child))
1084 			continue;
1085 
1086 		i = fdtdec_get_int(gd->fdt_blob, child, "reg", -1);
1087 		if (i < 0 || i >= ARRAY_SIZE(comphy_nodes))
1088 			continue;
1089 
1090 		comphy_nodes[i] = child;
1091 	}
1092 
1093 	for (i = 0; i < ARRAY_SIZE(comphy_nodes); i++) {
1094 		cfg->comphy_map_data[i].type = COMPHY_TYPE_UNCONNECTED;
1095 		cfg->comphy_map_data[i].speed = COMPHY_SPEED_INVALID;
1096 	}
1097 
1098 	comphy_a3700_fill_cfg(cfg, comphy_nodes, "marvell,armada3700-u3d",
1099 			      COMPHY_TYPE_USB3_DEVICE);
1100 	comphy_a3700_fill_cfg(cfg, comphy_nodes, "marvell,armada3700-xhci",
1101 			      COMPHY_TYPE_USB3_HOST0);
1102 	comphy_a3700_fill_cfg(cfg, comphy_nodes, "marvell,armada-3700-pcie",
1103 			      COMPHY_TYPE_PEX0);
1104 	comphy_a3700_fill_cfg(cfg, comphy_nodes, "marvell,armada-3700-ahci",
1105 			      COMPHY_TYPE_SATA0);
1106 	comphy_a3700_fill_cfg(cfg, comphy_nodes, "marvell,armada-3700-neta",
1107 			      COMPHY_TYPE_SGMII0);
1108 	comphy_a3700_fill_cfg(cfg, comphy_nodes, "marvell,armada-3700-neta",
1109 			      COMPHY_TYPE_SGMII1);
1110 
1111 	cfg->comphy_lanes_count = 3;
1112 	cfg->comphy_mux_bitcount = 4;
1113 	cfg->comphy_mux_lane_order = comphy_a3700_mux_lane_order;
1114 
1115 	return 0;
1116 }
1117 
comphy_a3700_init(struct chip_serdes_phy_config * chip_cfg,struct comphy_map * serdes_map)1118 int comphy_a3700_init(struct chip_serdes_phy_config *chip_cfg,
1119 		      struct comphy_map *serdes_map)
1120 {
1121 	struct comphy_map *comphy_map;
1122 	u32 comphy_max_count = chip_cfg->comphy_lanes_count;
1123 	u32 lane, ret = 0;
1124 
1125 	debug_enter();
1126 
1127 	/* Initialize PHY mux */
1128 	chip_cfg->mux_data = a3700_comphy_mux_data;
1129 	comphy_mux_init(chip_cfg, serdes_map, COMPHY_SEL_ADDR);
1130 
1131 	for (lane = 0, comphy_map = serdes_map; lane < comphy_max_count;
1132 	     lane++, comphy_map++) {
1133 		debug("Initialize serdes number %d\n", lane);
1134 		debug("Serdes type = 0x%x invert=%d\n",
1135 		      comphy_map->type, comphy_map->invert);
1136 
1137 		switch (comphy_map->type) {
1138 		case COMPHY_TYPE_UNCONNECTED:
1139 			continue;
1140 			break;
1141 
1142 		case COMPHY_TYPE_PEX0:
1143 			ret = comphy_pcie_power_up(comphy_map->speed,
1144 						   comphy_map->invert);
1145 			break;
1146 
1147 		case COMPHY_TYPE_USB3_HOST0:
1148 		case COMPHY_TYPE_USB3_DEVICE:
1149 			ret = comphy_usb3_power_up(lane,
1150 						   comphy_map->type,
1151 						   comphy_map->speed,
1152 						   comphy_map->invert);
1153 			break;
1154 
1155 		case COMPHY_TYPE_SGMII0:
1156 		case COMPHY_TYPE_SGMII1:
1157 			ret = comphy_sgmii_power_up(lane, comphy_map->speed,
1158 						    comphy_map->invert);
1159 			break;
1160 
1161 		case COMPHY_TYPE_SATA0:
1162 			ret = comphy_sata_power_up(comphy_map->invert);
1163 			break;
1164 
1165 		default:
1166 			debug("Unknown SerDes type, skip initialize SerDes %d\n",
1167 			      lane);
1168 			ret = 1;
1169 			break;
1170 		}
1171 		if (!ret)
1172 			printf("PLL is not locked - Failed to initialize lane %d\n",
1173 			       lane);
1174 	}
1175 
1176 	debug_exit();
1177 	return ret;
1178 }
1179