1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * phy-zynqmp.c - PHY driver for Xilinx ZynqMP GT.
4  *
5  * Copyright (C) 2018-2021 Xilinx Inc.
6  *
7  * Author: Anurag Kumar Vulisha <anuragku@xilinx.com>
8  * Author: Subbaraya Sundeep <sundeep.lkml@gmail.com>
9  * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
10  */
11 
12 #include <common.h>
13 #include <clk-uclass.h>
14 #include <dm.h>
15 #include <generic-phy.h>
16 #include <log.h>
17 #include <power-domain.h>
18 #include <regmap.h>
19 #include <syscon.h>
20 #include <asm/io.h>
21 #include <asm/arch/sys_proto.h>
22 #include <asm/arch/hardware.h>
23 #include <dm/device.h>
24 #include <dm/device_compat.h>
25 #include <dm/lists.h>
26 #include <dt-bindings/phy/phy.h>
27 #include <linux/bitops.h>
28 #include <linux/delay.h>
29 #include <linux/err.h>
30 
31 /*
32  * Lane Registers
33  */
34 
35 /* TX De-emphasis parameters */
36 #define L0_TX_ANA_TM_18			0x0048
37 #define L0_TX_ANA_TM_118		0x01d8
38 #define L0_TX_ANA_TM_118_FORCE_17_0	BIT(0)
39 
40 /* DN Resistor calibration code parameters */
41 #define L0_TXPMA_ST_3			0x0b0c
42 #define L0_DN_CALIB_CODE		0x3f
43 
44 /* PMA control parameters */
45 #define L0_TXPMD_TM_45			0x0cb4
46 #define L0_TXPMD_TM_48			0x0cc0
47 #define L0_TXPMD_TM_45_OVER_DP_MAIN	BIT(0)
48 #define L0_TXPMD_TM_45_ENABLE_DP_MAIN	BIT(1)
49 #define L0_TXPMD_TM_45_OVER_DP_POST1	BIT(2)
50 #define L0_TXPMD_TM_45_ENABLE_DP_POST1	BIT(3)
51 #define L0_TXPMD_TM_45_OVER_DP_POST2	BIT(4)
52 #define L0_TXPMD_TM_45_ENABLE_DP_POST2	BIT(5)
53 
54 /* PCS control parameters */
55 #define L0_TM_DIG_6			0x106c
56 #define L0_TM_DIS_DESCRAMBLE_DECODER	0x0f
57 #define L0_TX_DIG_61			0x00f4
58 #define L0_TM_DISABLE_SCRAMBLE_ENCODER	0x0f
59 
60 /* PLL Test Mode register parameters */
61 #define L0_TM_PLL_DIG_37		0x2094
62 #define L0_TM_COARSE_CODE_LIMIT		0x10
63 
64 /* PLL SSC step size offsets */
65 #define L0_PLL_SS_STEPS_0_LSB		0x2368
66 #define L0_PLL_SS_STEPS_1_MSB		0x236c
67 #define L0_PLL_SS_STEP_SIZE_0_LSB	0x2370
68 #define L0_PLL_SS_STEP_SIZE_1		0x2374
69 #define L0_PLL_SS_STEP_SIZE_2		0x2378
70 #define L0_PLL_SS_STEP_SIZE_3_MSB	0x237c
71 #define L0_PLL_STATUS_READ_1		0x23e4
72 
73 /* SSC step size parameters */
74 #define STEP_SIZE_0_MASK		0xff
75 #define STEP_SIZE_1_MASK		0xff
76 #define STEP_SIZE_2_MASK		0xff
77 #define STEP_SIZE_3_MASK		0x3
78 #define STEP_SIZE_SHIFT			8
79 #define FORCE_STEP_SIZE			0x10
80 #define FORCE_STEPS			0x20
81 #define STEPS_0_MASK			0xff
82 #define STEPS_1_MASK			0x07
83 
84 /* Reference clock selection parameters */
85 #define L0_Ln_REF_CLK_SEL(n)		(0x2860 + (n) * 4)
86 #define L0_REF_CLK_SEL_MASK		0x8f
87 
88 /* Calibration digital logic parameters */
89 #define L3_TM_CALIB_DIG19		0xec4c
90 #define L3_CALIB_DONE_STATUS		0xef14
91 #define L3_TM_CALIB_DIG18		0xec48
92 #define L3_TM_CALIB_DIG19_NSW		0x07
93 #define L3_TM_CALIB_DIG18_NSW		0xe0
94 #define L3_TM_OVERRIDE_NSW_CODE         0x20
95 #define L3_CALIB_DONE			0x02
96 #define L3_NSW_SHIFT			5
97 #define L3_NSW_PIPE_SHIFT		4
98 #define L3_NSW_CALIB_SHIFT		3
99 
100 #define PHY_REG_OFFSET			0x4000
101 
102 /*
103  * Global Registers
104  */
105 
106 /* Refclk selection parameters */
107 #define PLL_REF_SEL(n)			(0x10000 + (n) * 4)
108 #define PLL_FREQ_MASK			0x1f
109 #define PLL_STATUS_LOCKED		0x10
110 
111 /* Inter Connect Matrix parameters */
112 #define ICM_CFG0			0x10010
113 #define ICM_CFG1			0x10014
114 #define ICM_CFG0_L0_MASK		0x07
115 #define ICM_CFG0_L1_MASK		0x70
116 #define ICM_CFG1_L2_MASK		0x07
117 #define ICM_CFG2_L3_MASK		0x70
118 #define ICM_CFG_SHIFT			4
119 
120 /* Inter Connect Matrix allowed protocols */
121 #define ICM_PROTOCOL_PD			0x0
122 #define ICM_PROTOCOL_PCIE		0x1
123 #define ICM_PROTOCOL_SATA		0x2
124 #define ICM_PROTOCOL_USB		0x3
125 #define ICM_PROTOCOL_DP			0x4
126 #define ICM_PROTOCOL_SGMII		0x5
127 
128 /* Test Mode common reset control  parameters */
129 #define TM_CMN_RST			0x10018
130 #define TM_CMN_RST_EN			0x1
131 #define TM_CMN_RST_SET			0x2
132 #define TM_CMN_RST_MASK			0x3
133 
134 /* Bus width parameters */
135 #define TX_PROT_BUS_WIDTH		0x10040
136 #define RX_PROT_BUS_WIDTH		0x10044
137 #define PROT_BUS_WIDTH_10		0x0
138 #define PROT_BUS_WIDTH_20		0x1
139 #define PROT_BUS_WIDTH_40		0x2
140 #define PROT_BUS_WIDTH_MASK		0x3
141 #define PROT_BUS_WIDTH_SHIFT		2
142 
143 /* Number of GT lanes */
144 #define NUM_LANES			4
145 
146 /* SIOU SATA control register */
147 #define SATA_CONTROL_OFFSET		0x0100
148 
149 /* Total number of controllers */
150 #define CONTROLLERS_PER_LANE		5
151 
152 /* Protocol Type parameters */
153 enum {
154 	XPSGTR_TYPE_USB0 = 0, /* USB controller 0 */
155 	XPSGTR_TYPE_USB1 = 1, /* USB controller 1 */
156 	XPSGTR_TYPE_SATA_0 = 2, /* SATA controller lane 0 */
157 	XPSGTR_TYPE_SATA_1 = 3, /* SATA controller lane 1 */
158 	XPSGTR_TYPE_PCIE_0 = 4, /* PCIe controller lane 0 */
159 	XPSGTR_TYPE_PCIE_1 = 5, /* PCIe controller lane 1 */
160 	XPSGTR_TYPE_PCIE_2 = 6, /* PCIe controller lane 2 */
161 	XPSGTR_TYPE_PCIE_3 = 7, /* PCIe controller lane 3 */
162 	XPSGTR_TYPE_DP_0 = 8, /* Display Port controller lane 0 */
163 	XPSGTR_TYPE_DP_1 = 9, /* Display Port controller lane 1 */
164 	XPSGTR_TYPE_SGMII0 = 10, /* Ethernet SGMII controller 0 */
165 	XPSGTR_TYPE_SGMII1 = 11, /* Ethernet SGMII controller 1 */
166 	XPSGTR_TYPE_SGMII2 = 12, /* Ethernet SGMII controller 2 */
167 	XPSGTR_TYPE_SGMII3 = 13, /* Ethernet SGMII controller 3 */
168 };
169 
170 /* Timeout values */
171 #define TIMEOUT_US			10000
172 
173 #define IOU_SLCR_GEM_CLK_CTRL		0x308
174 #define GEM_CTRL_GEM_SGMII_MODE		BIT(2)
175 #define GEM_CTRL_GEM_REF_SRC_SEL	BIT(1)
176 
177 #define IOU_SLCR_GEM_CTRL		0x360
178 #define GEM_CTRL_GEM_SGMII_SD		BIT(0)
179 
180 /**
181  * struct xpsgtr_ssc - structure to hold SSC settings for a lane
182  * @refclk_rate: PLL reference clock frequency
183  * @pll_ref_clk: value to be written to register for corresponding ref clk rate
184  * @steps: number of steps of SSC (Spread Spectrum Clock)
185  * @step_size: step size of each step
186  */
187 struct xpsgtr_ssc {
188 	u32 refclk_rate;
189 	u8  pll_ref_clk;
190 	u32 steps;
191 	u32 step_size;
192 };
193 
194 /**
195  * struct xpsgtr_phy - representation of a lane
196  * @dev: pointer to the xpsgtr_dev instance
197  * @refclk: reference clock index
198  * @type: controller which uses this lane
199  * @lane: lane number
200  * @protocol: protocol in which the lane operates
201  */
202 struct xpsgtr_phy {
203 	struct xpsgtr_dev *dev;
204 	unsigned int refclk;
205 	u8 type;
206 	u8 lane;
207 	u8 protocol;
208 };
209 
210 /**
211  * struct xpsgtr_dev - representation of a ZynMP GT device
212  * @dev: pointer to device
213  * @serdes: serdes base address
214  * @siou: siou base address
215  * @phys: PHY lanes
216  * @refclk_sscs: spread spectrum settings for the reference clocks
217  * @clk: reference clocks
218  */
219 struct xpsgtr_dev {
220 	struct udevice *dev;
221 	u8 *serdes;
222 	u8 *siou;
223 	struct xpsgtr_phy phys[NUM_LANES];
224 	const struct xpsgtr_ssc *refclk_sscs[NUM_LANES];
225 	struct clk clk[NUM_LANES];
226 };
227 
228 /* Configuration Data */
229 /* lookup table to hold all settings needed for a ref clock frequency */
230 static const struct xpsgtr_ssc ssc_lookup[] = {
231 	{  19200000, 0x05,  608, 264020 },
232 	{  20000000, 0x06,  634, 243454 },
233 	{  24000000, 0x07,  760, 168973 },
234 	{  26000000, 0x08,  824, 143860 },
235 	{  27000000, 0x09,  856,  86551 },
236 	{  38400000, 0x0a, 1218,  65896 },
237 	{  40000000, 0x0b,  634, 243454 },
238 	{  52000000, 0x0c,  824, 143860 },
239 	{ 100000000, 0x0d, 1058,  87533 },
240 	{ 108000000, 0x0e,  856,  86551 },
241 	{ 125000000, 0x0f,  992, 119497 },
242 	{ 135000000, 0x10, 1070,  55393 },
243 	{ 150000000, 0x11,  792, 187091 }
244 };
245 
246 /* I/O Accessors */
xpsgtr_read(struct xpsgtr_dev * gtr_dev,u32 reg)247 static u32 xpsgtr_read(struct xpsgtr_dev *gtr_dev, u32 reg)
248 {
249 	return readl(gtr_dev->serdes + reg);
250 }
251 
xpsgtr_write(struct xpsgtr_dev * gtr_dev,u32 reg,u32 value)252 static void xpsgtr_write(struct xpsgtr_dev *gtr_dev, u32 reg, u32 value)
253 {
254 	writel(value, gtr_dev->serdes + reg);
255 }
256 
xpsgtr_clr_set(struct xpsgtr_dev * gtr_dev,u32 reg,u32 clr,u32 set)257 static void xpsgtr_clr_set(struct xpsgtr_dev *gtr_dev, u32 reg,
258 			   u32 clr, u32 set)
259 {
260 	u32 value = xpsgtr_read(gtr_dev, reg);
261 
262 	value &= ~clr;
263 	value |= set;
264 	xpsgtr_write(gtr_dev, reg, value);
265 }
266 
xpsgtr_read_phy(struct xpsgtr_phy * gtr_phy,u32 reg)267 static u32 xpsgtr_read_phy(struct xpsgtr_phy *gtr_phy, u32 reg)
268 {
269 	void __iomem *addr = gtr_phy->dev->serdes
270 			   + gtr_phy->lane * PHY_REG_OFFSET + reg;
271 
272 	return readl(addr);
273 }
274 
xpsgtr_write_phy(struct xpsgtr_phy * gtr_phy,u32 reg,u32 value)275 static void xpsgtr_write_phy(struct xpsgtr_phy *gtr_phy,
276 			     u32 reg, u32 value)
277 {
278 	void __iomem *addr = gtr_phy->dev->serdes
279 			   + gtr_phy->lane * PHY_REG_OFFSET + reg;
280 
281 	writel(value, addr);
282 }
283 
xpsgtr_clr_set_phy(struct xpsgtr_phy * gtr_phy,u32 reg,u32 clr,u32 set)284 static void xpsgtr_clr_set_phy(struct xpsgtr_phy *gtr_phy,
285 			       u32 reg, u32 clr, u32 set)
286 {
287 	void __iomem *addr = gtr_phy->dev->serdes
288 			   + gtr_phy->lane * PHY_REG_OFFSET + reg;
289 
290 	writel((readl(addr) & ~clr) | set, addr);
291 }
292 
293 /* Configure PLL and spread-sprectrum clock. */
xpsgtr_configure_pll(struct xpsgtr_phy * gtr_phy)294 static void xpsgtr_configure_pll(struct xpsgtr_phy *gtr_phy)
295 {
296 	const struct xpsgtr_ssc *ssc;
297 	u32 step_size;
298 
299 	ssc = gtr_phy->dev->refclk_sscs[gtr_phy->refclk];
300 	step_size = ssc->step_size;
301 
302 	xpsgtr_clr_set(gtr_phy->dev, PLL_REF_SEL(gtr_phy->lane),
303 		       PLL_FREQ_MASK, ssc->pll_ref_clk);
304 
305 	/* Enable lane clock sharing, if required */
306 	if (gtr_phy->refclk != gtr_phy->lane) {
307 		/* Lane3 Ref Clock Selection Register */
308 		xpsgtr_clr_set(gtr_phy->dev, L0_Ln_REF_CLK_SEL(gtr_phy->lane),
309 			       L0_REF_CLK_SEL_MASK, 1 << gtr_phy->refclk);
310 	}
311 
312 	/* SSC step size [7:0] */
313 	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_0_LSB,
314 			   STEP_SIZE_0_MASK, step_size & STEP_SIZE_0_MASK);
315 
316 	/* SSC step size [15:8] */
317 	step_size >>= STEP_SIZE_SHIFT;
318 	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_1,
319 			   STEP_SIZE_1_MASK, step_size & STEP_SIZE_1_MASK);
320 
321 	/* SSC step size [23:16] */
322 	step_size >>= STEP_SIZE_SHIFT;
323 	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_2,
324 			   STEP_SIZE_2_MASK, step_size & STEP_SIZE_2_MASK);
325 
326 	/* SSC steps [7:0] */
327 	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEPS_0_LSB,
328 			   STEPS_0_MASK, ssc->steps & STEPS_0_MASK);
329 
330 	/* SSC steps [10:8] */
331 	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEPS_1_MSB,
332 			   STEPS_1_MASK,
333 			   (ssc->steps >> STEP_SIZE_SHIFT) & STEPS_1_MASK);
334 
335 	/* SSC step size [24:25] */
336 	step_size >>= STEP_SIZE_SHIFT;
337 	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_3_MSB,
338 			   STEP_SIZE_3_MASK, (step_size & STEP_SIZE_3_MASK) |
339 			   FORCE_STEP_SIZE | FORCE_STEPS);
340 }
341 
342 /* Configure the lane protocol. */
xpsgtr_lane_set_protocol(struct xpsgtr_phy * gtr_phy)343 static void xpsgtr_lane_set_protocol(struct xpsgtr_phy *gtr_phy)
344 {
345 	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
346 	u8 protocol = gtr_phy->protocol;
347 
348 	switch (gtr_phy->lane) {
349 	case 0:
350 		xpsgtr_clr_set(gtr_dev, ICM_CFG0, ICM_CFG0_L0_MASK, protocol);
351 		break;
352 	case 1:
353 		xpsgtr_clr_set(gtr_dev, ICM_CFG0, ICM_CFG0_L1_MASK,
354 			       protocol << ICM_CFG_SHIFT);
355 		break;
356 	case 2:
357 		xpsgtr_clr_set(gtr_dev, ICM_CFG1, ICM_CFG0_L0_MASK, protocol);
358 		break;
359 	case 3:
360 		xpsgtr_clr_set(gtr_dev, ICM_CFG1, ICM_CFG0_L1_MASK,
361 			       protocol << ICM_CFG_SHIFT);
362 		break;
363 	default:
364 		/* We already checked 0 <= lane <= 3 */
365 		break;
366 	}
367 }
368 
369 /* Bypass (de)scrambler and 8b/10b decoder and encoder. */
xpsgtr_bypass_scrambler_8b10b(struct xpsgtr_phy * gtr_phy)370 static void xpsgtr_bypass_scrambler_8b10b(struct xpsgtr_phy *gtr_phy)
371 {
372 	xpsgtr_write_phy(gtr_phy, L0_TM_DIG_6, L0_TM_DIS_DESCRAMBLE_DECODER);
373 	xpsgtr_write_phy(gtr_phy, L0_TX_DIG_61, L0_TM_DISABLE_SCRAMBLE_ENCODER);
374 }
375 
376 /* DP-specific initialization. */
xpsgtr_phy_init_dp(struct xpsgtr_phy * gtr_phy)377 static void xpsgtr_phy_init_dp(struct xpsgtr_phy *gtr_phy)
378 {
379 	xpsgtr_write_phy(gtr_phy, L0_TXPMD_TM_45,
380 			 L0_TXPMD_TM_45_OVER_DP_MAIN |
381 			 L0_TXPMD_TM_45_ENABLE_DP_MAIN |
382 			 L0_TXPMD_TM_45_OVER_DP_POST1 |
383 			 L0_TXPMD_TM_45_OVER_DP_POST2 |
384 			 L0_TXPMD_TM_45_ENABLE_DP_POST2);
385 	xpsgtr_write_phy(gtr_phy, L0_TX_ANA_TM_118,
386 			 L0_TX_ANA_TM_118_FORCE_17_0);
387 }
388 
389 /* SATA-specific initialization. */
xpsgtr_phy_init_sata(struct xpsgtr_phy * gtr_phy)390 static void xpsgtr_phy_init_sata(struct xpsgtr_phy *gtr_phy)
391 {
392 	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
393 
394 	xpsgtr_bypass_scrambler_8b10b(gtr_phy);
395 
396 	writel(gtr_phy->lane, gtr_dev->siou + SATA_CONTROL_OFFSET);
397 }
398 
399 /* SGMII-specific initialization. */
xpsgtr_phy_init_sgmii(struct xpsgtr_phy * gtr_phy)400 static void xpsgtr_phy_init_sgmii(struct xpsgtr_phy *gtr_phy)
401 {
402 	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
403 	u32 shift = gtr_phy->lane * PROT_BUS_WIDTH_SHIFT;
404 
405 	/* Set SGMII protocol TX and RX bus width to 10 bits. */
406 	xpsgtr_clr_set(gtr_dev, TX_PROT_BUS_WIDTH, PROT_BUS_WIDTH_MASK << shift,
407 		       PROT_BUS_WIDTH_10 << shift);
408 
409 	xpsgtr_clr_set(gtr_dev, RX_PROT_BUS_WIDTH, PROT_BUS_WIDTH_MASK << shift,
410 		       PROT_BUS_WIDTH_10 << shift);
411 
412 	xpsgtr_bypass_scrambler_8b10b(gtr_phy);
413 
414 	/*
415 	 * Below code is just temporary solution till we have a way how to
416 	 * do it via firmware interface in sync with Linux. Till that happen
417 	 * this is the most sensible thing to do here.
418 	 */
419 	/* GEM I/O Clock Control */
420 	clrsetbits_le32(ZYNQMP_IOU_SLCR_BASEADDR + IOU_SLCR_GEM_CLK_CTRL,
421 			0xf << shift,
422 			(GEM_CTRL_GEM_SGMII_MODE | GEM_CTRL_GEM_REF_SRC_SEL) <<
423 			shift);
424 
425 	/* Setup signal detect */
426 	clrsetbits_le32(ZYNQMP_IOU_SLCR_BASEADDR + IOU_SLCR_GEM_CTRL,
427 			PROT_BUS_WIDTH_MASK << shift,
428 			GEM_CTRL_GEM_SGMII_SD << shift);
429 }
430 
xpsgtr_init(struct phy * x)431 static int xpsgtr_init(struct phy *x)
432 {
433 	struct xpsgtr_dev *gtr_dev = dev_get_priv(x->dev);
434 	struct xpsgtr_phy *gtr_phy;
435 	u32 phy_lane = x->id;
436 
437 	gtr_phy = &gtr_dev->phys[phy_lane];
438 
439 	/* Enable coarse code saturation limiting logic. */
440 	xpsgtr_write_phy(gtr_phy, L0_TM_PLL_DIG_37, L0_TM_COARSE_CODE_LIMIT);
441 
442 	/*
443 	 * Configure the PLL, the lane protocol, and perform protocol-specific
444 	 * initialization.
445 	 */
446 	xpsgtr_configure_pll(gtr_phy);
447 	xpsgtr_lane_set_protocol(gtr_phy);
448 
449 	switch (gtr_phy->protocol) {
450 	case ICM_PROTOCOL_SGMII:
451 		xpsgtr_phy_init_sgmii(gtr_phy);
452 		break;
453 	case ICM_PROTOCOL_SATA:
454 		xpsgtr_phy_init_sata(gtr_phy);
455 		break;
456 	case ICM_PROTOCOL_DP:
457 		xpsgtr_phy_init_dp(gtr_phy);
458 		break;
459 	}
460 
461 	dev_dbg(gtr_dev->dev, "lane %u (type %u, protocol %u): init done\n",
462 		gtr_phy->lane, gtr_phy->type, gtr_phy->protocol);
463 
464 	return 0;
465 }
466 
467 /* Wait for the PLL to lock (with a timeout). */
xpsgtr_wait_pll_lock(struct phy * phy)468 static int xpsgtr_wait_pll_lock(struct phy *phy)
469 {
470 	struct xpsgtr_dev *gtr_dev = dev_get_priv(phy->dev);
471 	struct xpsgtr_phy *gtr_phy;
472 	u32 phy_lane = phy->id;
473 	int ret = 0;
474 	unsigned int timeout = TIMEOUT_US;
475 
476 	gtr_phy = &gtr_dev->phys[phy_lane];
477 
478 	dev_dbg(gtr_dev->dev, "Waiting for PLL lock\n");
479 
480 	while (1) {
481 		u32 reg = xpsgtr_read_phy(gtr_phy, L0_PLL_STATUS_READ_1);
482 
483 		if ((reg & PLL_STATUS_LOCKED) == PLL_STATUS_LOCKED) {
484 			ret = 0;
485 			break;
486 		}
487 
488 		if (--timeout == 0) {
489 			ret = -ETIMEDOUT;
490 			break;
491 		}
492 
493 		udelay(1);
494 	}
495 
496 	if (ret == -ETIMEDOUT)
497 		dev_err(gtr_dev->dev,
498 			"lane %u (type %u, protocol %u): PLL lock timeout\n",
499 			gtr_phy->lane, gtr_phy->type, gtr_phy->protocol);
500 
501 	return ret;
502 }
503 
xpsgtr_power_on(struct phy * phy)504 static int xpsgtr_power_on(struct phy *phy)
505 {
506 	struct xpsgtr_dev *gtr_dev = dev_get_priv(phy->dev);
507 	struct xpsgtr_phy *gtr_phy;
508 	u32 phy_lane = phy->id;
509 	int ret = 0;
510 
511 	gtr_phy = &gtr_dev->phys[phy_lane];
512 
513 	/*
514 	 * Wait for the PLL to lock. For DP, only wait on DP0 to avoid
515 	 * cumulating waits for both lanes. The user is expected to initialize
516 	 * lane 0 last.
517 	 */
518 	if (gtr_phy->protocol != ICM_PROTOCOL_DP ||
519 	    gtr_phy->type == XPSGTR_TYPE_DP_0)
520 		ret = xpsgtr_wait_pll_lock(phy);
521 
522 	return ret;
523 }
524 
525 /*
526  * OF Xlate Support
527  */
528 
529 /* Set the lane type and protocol based on the PHY type and instance number. */
xpsgtr_set_lane_type(struct xpsgtr_phy * gtr_phy,u8 phy_type,unsigned int phy_instance)530 static int xpsgtr_set_lane_type(struct xpsgtr_phy *gtr_phy, u8 phy_type,
531 				unsigned int phy_instance)
532 {
533 	unsigned int num_phy_types;
534 	const int *phy_types;
535 
536 	switch (phy_type) {
537 	case PHY_TYPE_SATA: {
538 		static const int types[] = {
539 			XPSGTR_TYPE_SATA_0,
540 			XPSGTR_TYPE_SATA_1,
541 		};
542 
543 		phy_types = types;
544 		num_phy_types = ARRAY_SIZE(types);
545 		gtr_phy->protocol = ICM_PROTOCOL_SATA;
546 		break;
547 	}
548 	case PHY_TYPE_USB3: {
549 		static const int types[] = {
550 			XPSGTR_TYPE_USB0,
551 			XPSGTR_TYPE_USB1,
552 		};
553 
554 		phy_types = types;
555 		num_phy_types = ARRAY_SIZE(types);
556 		gtr_phy->protocol = ICM_PROTOCOL_USB;
557 		break;
558 	}
559 	case PHY_TYPE_DP: {
560 		static const int types[] = {
561 			XPSGTR_TYPE_DP_0,
562 			XPSGTR_TYPE_DP_1,
563 		};
564 
565 		phy_types = types;
566 		num_phy_types = ARRAY_SIZE(types);
567 		gtr_phy->protocol = ICM_PROTOCOL_DP;
568 		break;
569 	}
570 	case PHY_TYPE_PCIE: {
571 		static const int types[] = {
572 			XPSGTR_TYPE_PCIE_0,
573 			XPSGTR_TYPE_PCIE_1,
574 			XPSGTR_TYPE_PCIE_2,
575 			XPSGTR_TYPE_PCIE_3,
576 		};
577 
578 		phy_types = types;
579 		num_phy_types = ARRAY_SIZE(types);
580 		gtr_phy->protocol = ICM_PROTOCOL_PCIE;
581 		break;
582 	}
583 	case PHY_TYPE_SGMII: {
584 		static const int types[] = {
585 			XPSGTR_TYPE_SGMII0,
586 			XPSGTR_TYPE_SGMII1,
587 			XPSGTR_TYPE_SGMII2,
588 			XPSGTR_TYPE_SGMII3,
589 		};
590 
591 		phy_types = types;
592 		num_phy_types = ARRAY_SIZE(types);
593 		gtr_phy->protocol = ICM_PROTOCOL_SGMII;
594 		break;
595 	}
596 	default:
597 		return -EINVAL;
598 	}
599 
600 	if (phy_instance >= num_phy_types)
601 		return -EINVAL;
602 
603 	gtr_phy->type = phy_types[phy_instance];
604 	return 0;
605 }
606 
607 /*
608  * Valid combinations of controllers and lanes (Interconnect Matrix).
609  */
610 static const unsigned int icm_matrix[NUM_LANES][CONTROLLERS_PER_LANE] = {
611 	{ XPSGTR_TYPE_PCIE_0, XPSGTR_TYPE_SATA_0, XPSGTR_TYPE_USB0,
612 		XPSGTR_TYPE_DP_1, XPSGTR_TYPE_SGMII0 },
613 	{ XPSGTR_TYPE_PCIE_1, XPSGTR_TYPE_SATA_1, XPSGTR_TYPE_USB0,
614 		XPSGTR_TYPE_DP_0, XPSGTR_TYPE_SGMII1 },
615 	{ XPSGTR_TYPE_PCIE_2, XPSGTR_TYPE_SATA_0, XPSGTR_TYPE_USB0,
616 		XPSGTR_TYPE_DP_1, XPSGTR_TYPE_SGMII2 },
617 	{ XPSGTR_TYPE_PCIE_3, XPSGTR_TYPE_SATA_1, XPSGTR_TYPE_USB1,
618 		XPSGTR_TYPE_DP_0, XPSGTR_TYPE_SGMII3 }
619 };
620 
621 /* Translate OF phandle and args to PHY instance. */
xpsgtr_of_xlate(struct phy * x,struct ofnode_phandle_args * args)622 static int xpsgtr_of_xlate(struct phy *x,
623 			   struct ofnode_phandle_args *args)
624 {
625 	struct xpsgtr_dev *gtr_dev = dev_get_priv(x->dev);
626 	struct xpsgtr_phy *gtr_phy;
627 	struct udevice *dev = x->dev;
628 	unsigned int phy_instance;
629 	unsigned int phy_lane;
630 	unsigned int phy_type;
631 	unsigned int refclk;
632 	unsigned int i;
633 	int ret;
634 
635 	if (args->args_count != 4) {
636 		dev_err(dev, "Invalid number of cells in 'phy' property\n");
637 		return -EINVAL;
638 	}
639 
640 	/*
641 	 * Get the PHY parameters from the OF arguments and derive the lane
642 	 * type.
643 	 */
644 	phy_lane = args->args[0];
645 	if (phy_lane >= NUM_LANES) {
646 		dev_err(dev, "Invalid lane number %u\n", phy_lane);
647 		return -EINVAL;
648 	}
649 
650 	gtr_phy = &gtr_dev->phys[phy_lane];
651 	phy_type = args->args[1];
652 	phy_instance = args->args[2];
653 
654 	ret = xpsgtr_set_lane_type(gtr_phy, phy_type, phy_instance);
655 	if (ret) {
656 		dev_err(dev, "Invalid PHY type and/or instance\n");
657 		return ret;
658 	}
659 
660 	refclk = args->args[3];
661 	if (refclk >= ARRAY_SIZE(gtr_dev->refclk_sscs) ||
662 	    !gtr_dev->refclk_sscs[refclk]) {
663 		dev_err(dev, "Invalid reference clock number %u\n", refclk);
664 		return -EINVAL;
665 	}
666 
667 	gtr_phy->refclk = refclk;
668 
669 	/* This is difference compare to Linux */
670 	gtr_phy->dev = gtr_dev;
671 	gtr_phy->lane = phy_lane;
672 
673 	/*
674 	 * Ensure that the Interconnect Matrix is obeyed, i.e a given lane type
675 	 * is allowed to operate on the lane.
676 	 */
677 	for (i = 0; i < CONTROLLERS_PER_LANE; i++) {
678 		if (icm_matrix[phy_lane][i] == gtr_phy->type) {
679 			x->id = phy_lane;
680 			return 0;
681 		}
682 	}
683 
684 	return -EINVAL;
685 }
686 
687 /*
688  * Probe & Platform Driver
689  */
xpsgtr_get_ref_clocks(struct udevice * dev)690 static int xpsgtr_get_ref_clocks(struct udevice *dev)
691 {
692 	unsigned int refclk;
693 	struct xpsgtr_dev *gtr_dev = dev_get_priv(dev);
694 	int ret;
695 
696 	for (refclk = 0; refclk < NUM_LANES; ++refclk) {
697 		int i;
698 		u32 rate;
699 		char name[8];
700 		struct clk *clk = &gtr_dev->clk[refclk];
701 
702 		snprintf(name, sizeof(name), "ref%u", refclk);
703 		dev_dbg(dev, "Checking name: %s\n", name);
704 		ret = clk_get_by_name(dev, name, clk);
705 		if (ret == -ENODATA) {
706 			dev_dbg(dev, "%s clock not specified (err %d)\n",
707 				name, ret);
708 			continue;
709 		} else if (ret) {
710 			dev_dbg(dev, "couldn't get clock %s (err %d)\n",
711 				name, ret);
712 			return ret;
713 		}
714 
715 		rate = clk_get_rate(clk);
716 
717 		dev_dbg(dev, "clk rate %d\n", rate);
718 
719 		ret = clk_enable(clk);
720 		if (ret) {
721 			dev_err(dev, "failed to enable refclk %d clock\n",
722 				refclk);
723 			return ret;
724 		}
725 
726 		for (i = 0 ; i < ARRAY_SIZE(ssc_lookup); i++) {
727 			if (rate == ssc_lookup[i].refclk_rate) {
728 				gtr_dev->refclk_sscs[refclk] = &ssc_lookup[i];
729 				dev_dbg(dev, "Found rate %d\n", i);
730 				break;
731 			}
732 		}
733 
734 		if (i == ARRAY_SIZE(ssc_lookup)) {
735 			dev_err(dev,
736 				"Invalid rate %u for reference clock %u\n",
737 				rate, refclk);
738 			return -EINVAL;
739 		}
740 	}
741 
742 	return 0;
743 }
744 
xpsgtr_probe(struct udevice * dev)745 static int xpsgtr_probe(struct udevice *dev)
746 {
747 	struct xpsgtr_dev *gtr_dev = dev_get_priv(dev);
748 
749 	gtr_dev->serdes = dev_remap_addr_name(dev, "serdes");
750 	if (!gtr_dev->serdes)
751 		return -EINVAL;
752 
753 	gtr_dev->siou = dev_remap_addr_name(dev, "siou");
754 	if (!gtr_dev->siou)
755 		return -EINVAL;
756 
757 	gtr_dev->dev = dev;
758 
759 	return xpsgtr_get_ref_clocks(dev);
760 }
761 
762 static const struct udevice_id xpsgtr_phy_ids[] = {
763 	{ .compatible = "xlnx,zynqmp-psgtr-v1.1", },
764 	{ }
765 };
766 
767 static const struct phy_ops xpsgtr_phy_ops = {
768 	.init = xpsgtr_init,
769 	.of_xlate = xpsgtr_of_xlate,
770 	.power_on = xpsgtr_power_on,
771 };
772 
773 U_BOOT_DRIVER(psgtr_phy) = {
774 	.name = "psgtr_phy",
775 	.id = UCLASS_PHY,
776 	.of_match = xpsgtr_phy_ids,
777 	.ops = &xpsgtr_phy_ops,
778 	.probe = xpsgtr_probe,
779 	.priv_auto = sizeof(struct xpsgtr_dev),
780 };
781