1 // SPDX-License-Identifier: LGPL-2.1+
2 /*
3  * This implementation is based on code from uClibc-0.9.30.3 but was
4  * modified and extended for use within U-Boot.
5  *
6  * Copyright (C) 2010-2013 Wolfgang Denk <wd@denx.de>
7  *
8  * Original license header:
9  *
10  * Copyright (C) 1993, 1995, 1996, 1997, 2002 Free Software Foundation, Inc.
11  * This file is part of the GNU C Library.
12  * Contributed by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1993.
13  */
14 
15 #include <errno.h>
16 #include <log.h>
17 #include <malloc.h>
18 #include <sort.h>
19 
20 #ifdef USE_HOSTCC		/* HOST build */
21 # include <string.h>
22 # include <assert.h>
23 # include <ctype.h>
24 
25 # ifndef debug
26 #  ifdef DEBUG
27 #   define debug(fmt,args...)	printf(fmt ,##args)
28 #  else
29 #   define debug(fmt,args...)
30 #  endif
31 # endif
32 #else				/* U-Boot build */
33 # include <common.h>
34 # include <linux/string.h>
35 # include <linux/ctype.h>
36 #endif
37 
38 #define USED_FREE 0
39 #define USED_DELETED -1
40 
41 #include <env_callback.h>
42 #include <env_flags.h>
43 #include <search.h>
44 #include <slre.h>
45 
46 /*
47  * [Aho,Sethi,Ullman] Compilers: Principles, Techniques and Tools, 1986
48  * [Knuth]	      The Art of Computer Programming, part 3 (6.4)
49  */
50 
51 /*
52  * The reentrant version has no static variables to maintain the state.
53  * Instead the interface of all functions is extended to take an argument
54  * which describes the current status.
55  */
56 
57 struct env_entry_node {
58 	int used;
59 	struct env_entry entry;
60 };
61 
62 
63 static void _hdelete(const char *key, struct hsearch_data *htab,
64 		     struct env_entry *ep, int idx);
65 
66 /*
67  * hcreate()
68  */
69 
70 /*
71  * For the used double hash method the table size has to be a prime. To
72  * correct the user given table size we need a prime test.  This trivial
73  * algorithm is adequate because
74  * a)  the code is (most probably) called a few times per program run and
75  * b)  the number is small because the table must fit in the core
76  * */
isprime(unsigned int number)77 static int isprime(unsigned int number)
78 {
79 	/* no even number will be passed */
80 	unsigned int div = 3;
81 
82 	while (div * div < number && number % div != 0)
83 		div += 2;
84 
85 	return number % div != 0;
86 }
87 
88 /*
89  * Before using the hash table we must allocate memory for it.
90  * Test for an existing table are done. We allocate one element
91  * more as the found prime number says. This is done for more effective
92  * indexing as explained in the comment for the hsearch function.
93  * The contents of the table is zeroed, especially the field used
94  * becomes zero.
95  */
96 
hcreate_r(size_t nel,struct hsearch_data * htab)97 int hcreate_r(size_t nel, struct hsearch_data *htab)
98 {
99 	/* Test for correct arguments.  */
100 	if (htab == NULL) {
101 		__set_errno(EINVAL);
102 		return 0;
103 	}
104 
105 	/* There is still another table active. Return with error. */
106 	if (htab->table != NULL) {
107 		__set_errno(EINVAL);
108 		return 0;
109 	}
110 
111 	/* Change nel to the first prime number not smaller as nel. */
112 	nel |= 1;		/* make odd */
113 	while (!isprime(nel))
114 		nel += 2;
115 
116 	htab->size = nel;
117 	htab->filled = 0;
118 
119 	/* allocate memory and zero out */
120 	htab->table = (struct env_entry_node *)calloc(htab->size + 1,
121 						sizeof(struct env_entry_node));
122 	if (htab->table == NULL) {
123 		__set_errno(ENOMEM);
124 		return 0;
125 	}
126 
127 	/* everything went alright */
128 	return 1;
129 }
130 
131 
132 /*
133  * hdestroy()
134  */
135 
136 /*
137  * After using the hash table it has to be destroyed. The used memory can
138  * be freed and the local static variable can be marked as not used.
139  */
140 
hdestroy_r(struct hsearch_data * htab)141 void hdestroy_r(struct hsearch_data *htab)
142 {
143 	int i;
144 
145 	/* Test for correct arguments.  */
146 	if (htab == NULL) {
147 		__set_errno(EINVAL);
148 		return;
149 	}
150 
151 	/* free used memory */
152 	for (i = 1; i <= htab->size; ++i) {
153 		if (htab->table[i].used > 0) {
154 			struct env_entry *ep = &htab->table[i].entry;
155 
156 			free((void *)ep->key);
157 			free(ep->data);
158 		}
159 	}
160 	free(htab->table);
161 
162 	/* the sign for an existing table is an value != NULL in htable */
163 	htab->table = NULL;
164 }
165 
166 /*
167  * hsearch()
168  */
169 
170 /*
171  * This is the search function. It uses double hashing with open addressing.
172  * The argument item.key has to be a pointer to an zero terminated, most
173  * probably strings of chars. The function for generating a number of the
174  * strings is simple but fast. It can be replaced by a more complex function
175  * like ajw (see [Aho,Sethi,Ullman]) if the needs are shown.
176  *
177  * We use an trick to speed up the lookup. The table is created by hcreate
178  * with one more element available. This enables us to use the index zero
179  * special. This index will never be used because we store the first hash
180  * index in the field used where zero means not used. Every other value
181  * means used. The used field can be used as a first fast comparison for
182  * equality of the stored and the parameter value. This helps to prevent
183  * unnecessary expensive calls of strcmp.
184  *
185  * This implementation differs from the standard library version of
186  * this function in a number of ways:
187  *
188  * - While the standard version does not make any assumptions about
189  *   the type of the stored data objects at all, this implementation
190  *   works with NUL terminated strings only.
191  * - Instead of storing just pointers to the original objects, we
192  *   create local copies so the caller does not need to care about the
193  *   data any more.
194  * - The standard implementation does not provide a way to update an
195  *   existing entry.  This version will create a new entry or update an
196  *   existing one when both "action == ENV_ENTER" and "item.data != NULL".
197  * - Instead of returning 1 on success, we return the index into the
198  *   internal hash table, which is also guaranteed to be positive.
199  *   This allows us direct access to the found hash table slot for
200  *   example for functions like hdelete().
201  */
202 
hmatch_r(const char * match,int last_idx,struct env_entry ** retval,struct hsearch_data * htab)203 int hmatch_r(const char *match, int last_idx, struct env_entry **retval,
204 	     struct hsearch_data *htab)
205 {
206 	unsigned int idx;
207 	size_t key_len = strlen(match);
208 
209 	for (idx = last_idx + 1; idx < htab->size; ++idx) {
210 		if (htab->table[idx].used <= 0)
211 			continue;
212 		if (!strncmp(match, htab->table[idx].entry.key, key_len)) {
213 			*retval = &htab->table[idx].entry;
214 			return idx;
215 		}
216 	}
217 
218 	__set_errno(ESRCH);
219 	*retval = NULL;
220 	return 0;
221 }
222 
223 static int
do_callback(const struct env_entry * e,const char * name,const char * value,enum env_op op,int flags)224 do_callback(const struct env_entry *e, const char *name, const char *value,
225 	    enum env_op op, int flags)
226 {
227 #ifndef CONFIG_SPL_BUILD
228 	if (e->callback)
229 		return e->callback(name, value, op, flags);
230 #endif
231 	return 0;
232 }
233 
234 /*
235  * Compare an existing entry with the desired key, and overwrite if the action
236  * is ENV_ENTER.  This is simply a helper function for hsearch_r().
237  */
_compare_and_overwrite_entry(struct env_entry item,enum env_action action,struct env_entry ** retval,struct hsearch_data * htab,int flag,unsigned int hval,unsigned int idx)238 static inline int _compare_and_overwrite_entry(struct env_entry item,
239 		enum env_action action, struct env_entry **retval,
240 		struct hsearch_data *htab, int flag, unsigned int hval,
241 		unsigned int idx)
242 {
243 	if (htab->table[idx].used == hval
244 	    && strcmp(item.key, htab->table[idx].entry.key) == 0) {
245 		/* Overwrite existing value? */
246 		if (action == ENV_ENTER && item.data) {
247 			/* check for permission */
248 			if (htab->change_ok != NULL && htab->change_ok(
249 			    &htab->table[idx].entry, item.data,
250 			    env_op_overwrite, flag)) {
251 				debug("change_ok() rejected setting variable "
252 					"%s, skipping it!\n", item.key);
253 				__set_errno(EPERM);
254 				*retval = NULL;
255 				return 0;
256 			}
257 
258 			/* If there is a callback, call it */
259 			if (do_callback(&htab->table[idx].entry, item.key,
260 					item.data, env_op_overwrite, flag)) {
261 				debug("callback() rejected setting variable "
262 					"%s, skipping it!\n", item.key);
263 				__set_errno(EINVAL);
264 				*retval = NULL;
265 				return 0;
266 			}
267 
268 			free(htab->table[idx].entry.data);
269 			htab->table[idx].entry.data = strdup(item.data);
270 			if (!htab->table[idx].entry.data) {
271 				__set_errno(ENOMEM);
272 				*retval = NULL;
273 				return 0;
274 			}
275 		}
276 		/* return found entry */
277 		*retval = &htab->table[idx].entry;
278 		return idx;
279 	}
280 	/* keep searching */
281 	return -1;
282 }
283 
hsearch_r(struct env_entry item,enum env_action action,struct env_entry ** retval,struct hsearch_data * htab,int flag)284 int hsearch_r(struct env_entry item, enum env_action action,
285 	      struct env_entry **retval, struct hsearch_data *htab, int flag)
286 {
287 	unsigned int hval;
288 	unsigned int count;
289 	unsigned int len = strlen(item.key);
290 	unsigned int idx;
291 	unsigned int first_deleted = 0;
292 	int ret;
293 
294 	/* Compute an value for the given string. Perhaps use a better method. */
295 	hval = len;
296 	count = len;
297 	while (count-- > 0) {
298 		hval <<= 4;
299 		hval += item.key[count];
300 	}
301 
302 	/*
303 	 * First hash function:
304 	 * simply take the modul but prevent zero.
305 	 */
306 	hval %= htab->size;
307 	if (hval == 0)
308 		++hval;
309 
310 	/* The first index tried. */
311 	idx = hval;
312 
313 	if (htab->table[idx].used) {
314 		/*
315 		 * Further action might be required according to the
316 		 * action value.
317 		 */
318 		unsigned hval2;
319 
320 		if (htab->table[idx].used == USED_DELETED)
321 			first_deleted = idx;
322 
323 		ret = _compare_and_overwrite_entry(item, action, retval, htab,
324 			flag, hval, idx);
325 		if (ret != -1)
326 			return ret;
327 
328 		/*
329 		 * Second hash function:
330 		 * as suggested in [Knuth]
331 		 */
332 		hval2 = 1 + hval % (htab->size - 2);
333 
334 		do {
335 			/*
336 			 * Because SIZE is prime this guarantees to
337 			 * step through all available indices.
338 			 */
339 			if (idx <= hval2)
340 				idx = htab->size + idx - hval2;
341 			else
342 				idx -= hval2;
343 
344 			/*
345 			 * If we visited all entries leave the loop
346 			 * unsuccessfully.
347 			 */
348 			if (idx == hval)
349 				break;
350 
351 			if (htab->table[idx].used == USED_DELETED
352 			    && !first_deleted)
353 				first_deleted = idx;
354 
355 			/* If entry is found use it. */
356 			ret = _compare_and_overwrite_entry(item, action, retval,
357 				htab, flag, hval, idx);
358 			if (ret != -1)
359 				return ret;
360 		}
361 		while (htab->table[idx].used != USED_FREE);
362 	}
363 
364 	/* An empty bucket has been found. */
365 	if (action == ENV_ENTER) {
366 		/*
367 		 * If table is full and another entry should be
368 		 * entered return with error.
369 		 */
370 		if (htab->filled == htab->size) {
371 			__set_errno(ENOMEM);
372 			*retval = NULL;
373 			return 0;
374 		}
375 
376 		/*
377 		 * Create new entry;
378 		 * create copies of item.key and item.data
379 		 */
380 		if (first_deleted)
381 			idx = first_deleted;
382 
383 		htab->table[idx].used = hval;
384 		htab->table[idx].entry.key = strdup(item.key);
385 		htab->table[idx].entry.data = strdup(item.data);
386 		if (!htab->table[idx].entry.key ||
387 		    !htab->table[idx].entry.data) {
388 			__set_errno(ENOMEM);
389 			*retval = NULL;
390 			return 0;
391 		}
392 
393 		++htab->filled;
394 
395 		/* This is a new entry, so look up a possible callback */
396 		env_callback_init(&htab->table[idx].entry);
397 		/* Also look for flags */
398 		env_flags_init(&htab->table[idx].entry);
399 
400 		/* check for permission */
401 		if (htab->change_ok != NULL && htab->change_ok(
402 		    &htab->table[idx].entry, item.data, env_op_create, flag)) {
403 			debug("change_ok() rejected setting variable "
404 				"%s, skipping it!\n", item.key);
405 			_hdelete(item.key, htab, &htab->table[idx].entry, idx);
406 			__set_errno(EPERM);
407 			*retval = NULL;
408 			return 0;
409 		}
410 
411 		/* If there is a callback, call it */
412 		if (do_callback(&htab->table[idx].entry, item.key, item.data,
413 				env_op_create, flag)) {
414 			debug("callback() rejected setting variable "
415 				"%s, skipping it!\n", item.key);
416 			_hdelete(item.key, htab, &htab->table[idx].entry, idx);
417 			__set_errno(EINVAL);
418 			*retval = NULL;
419 			return 0;
420 		}
421 
422 		/* return new entry */
423 		*retval = &htab->table[idx].entry;
424 		return 1;
425 	}
426 
427 	__set_errno(ESRCH);
428 	*retval = NULL;
429 	return 0;
430 }
431 
432 
433 /*
434  * hdelete()
435  */
436 
437 /*
438  * The standard implementation of hsearch(3) does not provide any way
439  * to delete any entries from the hash table.  We extend the code to
440  * do that.
441  */
442 
_hdelete(const char * key,struct hsearch_data * htab,struct env_entry * ep,int idx)443 static void _hdelete(const char *key, struct hsearch_data *htab,
444 		     struct env_entry *ep, int idx)
445 {
446 	/* free used entry */
447 	debug("hdelete: DELETING key \"%s\"\n", key);
448 	free((void *)ep->key);
449 	free(ep->data);
450 	ep->flags = 0;
451 	htab->table[idx].used = USED_DELETED;
452 
453 	--htab->filled;
454 }
455 
hdelete_r(const char * key,struct hsearch_data * htab,int flag)456 int hdelete_r(const char *key, struct hsearch_data *htab, int flag)
457 {
458 	struct env_entry e, *ep;
459 	int idx;
460 
461 	debug("hdelete: DELETE key \"%s\"\n", key);
462 
463 	e.key = (char *)key;
464 
465 	idx = hsearch_r(e, ENV_FIND, &ep, htab, 0);
466 	if (idx == 0) {
467 		__set_errno(ESRCH);
468 		return -ENOENT;	/* not found */
469 	}
470 
471 	/* Check for permission */
472 	if (htab->change_ok != NULL &&
473 	    htab->change_ok(ep, NULL, env_op_delete, flag)) {
474 		debug("change_ok() rejected deleting variable "
475 			"%s, skipping it!\n", key);
476 		__set_errno(EPERM);
477 		return -EPERM;
478 	}
479 
480 	/* If there is a callback, call it */
481 	if (do_callback(&htab->table[idx].entry, key, NULL,
482 			env_op_delete, flag)) {
483 		debug("callback() rejected deleting variable "
484 			"%s, skipping it!\n", key);
485 		__set_errno(EINVAL);
486 		return -EINVAL;
487 	}
488 
489 	_hdelete(key, htab, ep, idx);
490 
491 	return 0;
492 }
493 
494 #if !(defined(CONFIG_SPL_BUILD) && !defined(CONFIG_SPL_SAVEENV))
495 /*
496  * hexport()
497  */
498 
499 /*
500  * Export the data stored in the hash table in linearized form.
501  *
502  * Entries are exported as "name=value" strings, separated by an
503  * arbitrary (non-NUL, of course) separator character. This allows to
504  * use this function both when formatting the U-Boot environment for
505  * external storage (using '\0' as separator), but also when using it
506  * for the "printenv" command to print all variables, simply by using
507  * as '\n" as separator. This can also be used for new features like
508  * exporting the environment data as text file, including the option
509  * for later re-import.
510  *
511  * The entries in the result list will be sorted by ascending key
512  * values.
513  *
514  * If the separator character is different from NUL, then any
515  * separator characters and backslash characters in the values will
516  * be escaped by a preceding backslash in output. This is needed for
517  * example to enable multi-line values, especially when the output
518  * shall later be parsed (for example, for re-import).
519  *
520  * There are several options how the result buffer is handled:
521  *
522  * *resp  size
523  * -----------
524  *  NULL    0	A string of sufficient length will be allocated.
525  *  NULL   >0	A string of the size given will be
526  *		allocated. An error will be returned if the size is
527  *		not sufficient.  Any unused bytes in the string will
528  *		be '\0'-padded.
529  * !NULL    0	The user-supplied buffer will be used. No length
530  *		checking will be performed, i. e. it is assumed that
531  *		the buffer size will always be big enough. DANGEROUS.
532  * !NULL   >0	The user-supplied buffer will be used. An error will
533  *		be returned if the size is not sufficient.  Any unused
534  *		bytes in the string will be '\0'-padded.
535  */
536 
cmpkey(const void * p1,const void * p2)537 static int cmpkey(const void *p1, const void *p2)
538 {
539 	struct env_entry *e1 = *(struct env_entry **)p1;
540 	struct env_entry *e2 = *(struct env_entry **)p2;
541 
542 	return (strcmp(e1->key, e2->key));
543 }
544 
match_string(int flag,const char * str,const char * pat,void * priv)545 static int match_string(int flag, const char *str, const char *pat, void *priv)
546 {
547 	switch (flag & H_MATCH_METHOD) {
548 	case H_MATCH_IDENT:
549 		if (strcmp(str, pat) == 0)
550 			return 1;
551 		break;
552 	case H_MATCH_SUBSTR:
553 		if (strstr(str, pat))
554 			return 1;
555 		break;
556 #ifdef CONFIG_REGEX
557 	case H_MATCH_REGEX:
558 		{
559 			struct slre *slrep = (struct slre *)priv;
560 
561 			if (slre_match(slrep, str, strlen(str), NULL))
562 				return 1;
563 		}
564 		break;
565 #endif
566 	default:
567 		printf("## ERROR: unsupported match method: 0x%02x\n",
568 			flag & H_MATCH_METHOD);
569 		break;
570 	}
571 	return 0;
572 }
573 
match_entry(struct env_entry * ep,int flag,int argc,char * const argv[])574 static int match_entry(struct env_entry *ep, int flag, int argc,
575 		       char *const argv[])
576 {
577 	int arg;
578 	void *priv = NULL;
579 
580 	for (arg = 0; arg < argc; ++arg) {
581 #ifdef CONFIG_REGEX
582 		struct slre slre;
583 
584 		if (slre_compile(&slre, argv[arg]) == 0) {
585 			printf("Error compiling regex: %s\n", slre.err_str);
586 			return 0;
587 		}
588 
589 		priv = (void *)&slre;
590 #endif
591 		if (flag & H_MATCH_KEY) {
592 			if (match_string(flag, ep->key, argv[arg], priv))
593 				return 1;
594 		}
595 		if (flag & H_MATCH_DATA) {
596 			if (match_string(flag, ep->data, argv[arg], priv))
597 				return 1;
598 		}
599 	}
600 	return 0;
601 }
602 
hexport_r(struct hsearch_data * htab,const char sep,int flag,char ** resp,size_t size,int argc,char * const argv[])603 ssize_t hexport_r(struct hsearch_data *htab, const char sep, int flag,
604 		 char **resp, size_t size,
605 		 int argc, char *const argv[])
606 {
607 	struct env_entry *list[htab->size];
608 	char *res, *p;
609 	size_t totlen;
610 	int i, n;
611 
612 	/* Test for correct arguments.  */
613 	if ((resp == NULL) || (htab == NULL)) {
614 		__set_errno(EINVAL);
615 		return (-1);
616 	}
617 
618 	debug("EXPORT  table = %p, htab.size = %d, htab.filled = %d, size = %lu\n",
619 	      htab, htab->size, htab->filled, (ulong)size);
620 	/*
621 	 * Pass 1:
622 	 * search used entries,
623 	 * save addresses and compute total length
624 	 */
625 	for (i = 1, n = 0, totlen = 0; i <= htab->size; ++i) {
626 
627 		if (htab->table[i].used > 0) {
628 			struct env_entry *ep = &htab->table[i].entry;
629 			int found = match_entry(ep, flag, argc, argv);
630 
631 			if ((argc > 0) && (found == 0))
632 				continue;
633 
634 			if ((flag & H_HIDE_DOT) && ep->key[0] == '.')
635 				continue;
636 
637 			list[n++] = ep;
638 
639 			totlen += strlen(ep->key);
640 
641 			if (sep == '\0') {
642 				totlen += strlen(ep->data);
643 			} else {	/* check if escapes are needed */
644 				char *s = ep->data;
645 
646 				while (*s) {
647 					++totlen;
648 					/* add room for needed escape chars */
649 					if ((*s == sep) || (*s == '\\'))
650 						++totlen;
651 					++s;
652 				}
653 			}
654 			totlen += 2;	/* for '=' and 'sep' char */
655 		}
656 	}
657 
658 #ifdef DEBUG
659 	/* Pass 1a: print unsorted list */
660 	printf("Unsorted: n=%d\n", n);
661 	for (i = 0; i < n; ++i) {
662 		printf("\t%3d: %p ==> %-10s => %s\n",
663 		       i, list[i], list[i]->key, list[i]->data);
664 	}
665 #endif
666 
667 	/* Sort list by keys */
668 	qsort(list, n, sizeof(struct env_entry *), cmpkey);
669 
670 	/* Check if the user supplied buffer size is sufficient */
671 	if (size) {
672 		if (size < totlen + 1) {	/* provided buffer too small */
673 			printf("Env export buffer too small: %lu, but need %lu\n",
674 			       (ulong)size, (ulong)totlen + 1);
675 			__set_errno(ENOMEM);
676 			return (-1);
677 		}
678 	} else {
679 		size = totlen + 1;
680 	}
681 
682 	/* Check if the user provided a buffer */
683 	if (*resp) {
684 		/* yes; clear it */
685 		res = *resp;
686 		memset(res, '\0', size);
687 	} else {
688 		/* no, allocate and clear one */
689 		*resp = res = calloc(1, size);
690 		if (res == NULL) {
691 			__set_errno(ENOMEM);
692 			return (-1);
693 		}
694 	}
695 	/*
696 	 * Pass 2:
697 	 * export sorted list of result data
698 	 */
699 	for (i = 0, p = res; i < n; ++i) {
700 		const char *s;
701 
702 		s = list[i]->key;
703 		while (*s)
704 			*p++ = *s++;
705 		*p++ = '=';
706 
707 		s = list[i]->data;
708 
709 		while (*s) {
710 			if ((*s == sep) || (*s == '\\'))
711 				*p++ = '\\';	/* escape */
712 			*p++ = *s++;
713 		}
714 		*p++ = sep;
715 	}
716 	*p = '\0';		/* terminate result */
717 
718 	return size;
719 }
720 #endif
721 
722 
723 /*
724  * himport()
725  */
726 
727 /*
728  * Check whether variable 'name' is amongst vars[],
729  * and remove all instances by setting the pointer to NULL
730  */
drop_var_from_set(const char * name,int nvars,char * vars[])731 static int drop_var_from_set(const char *name, int nvars, char * vars[])
732 {
733 	int i = 0;
734 	int res = 0;
735 
736 	/* No variables specified means process all of them */
737 	if (nvars == 0)
738 		return 1;
739 
740 	for (i = 0; i < nvars; i++) {
741 		if (vars[i] == NULL)
742 			continue;
743 		/* If we found it, delete all of them */
744 		if (!strcmp(name, vars[i])) {
745 			vars[i] = NULL;
746 			res = 1;
747 		}
748 	}
749 	if (!res)
750 		debug("Skipping non-listed variable %s\n", name);
751 
752 	return res;
753 }
754 
755 /*
756  * Import linearized data into hash table.
757  *
758  * This is the inverse function to hexport(): it takes a linear list
759  * of "name=value" pairs and creates hash table entries from it.
760  *
761  * Entries without "value", i. e. consisting of only "name" or
762  * "name=", will cause this entry to be deleted from the hash table.
763  *
764  * The "flag" argument can be used to control the behaviour: when the
765  * H_NOCLEAR bit is set, then an existing hash table will kept, i. e.
766  * new data will be added to an existing hash table; otherwise, if no
767  * vars are passed, old data will be discarded and a new hash table
768  * will be created. If vars are passed, passed vars that are not in
769  * the linear list of "name=value" pairs will be removed from the
770  * current hash table.
771  *
772  * The separator character for the "name=value" pairs can be selected,
773  * so we both support importing from externally stored environment
774  * data (separated by NUL characters) and from plain text files
775  * (entries separated by newline characters).
776  *
777  * To allow for nicely formatted text input, leading white space
778  * (sequences of SPACE and TAB chars) is ignored, and entries starting
779  * (after removal of any leading white space) with a '#' character are
780  * considered comments and ignored.
781  *
782  * [NOTE: this means that a variable name cannot start with a '#'
783  * character.]
784  *
785  * When using a non-NUL separator character, backslash is used as
786  * escape character in the value part, allowing for example for
787  * multi-line values.
788  *
789  * In theory, arbitrary separator characters can be used, but only
790  * '\0' and '\n' have really been tested.
791  */
792 
himport_r(struct hsearch_data * htab,const char * env,size_t size,const char sep,int flag,int crlf_is_lf,int nvars,char * const vars[])793 int himport_r(struct hsearch_data *htab,
794 		const char *env, size_t size, const char sep, int flag,
795 		int crlf_is_lf, int nvars, char * const vars[])
796 {
797 	char *data, *sp, *dp, *name, *value;
798 	char *localvars[nvars];
799 	int i;
800 
801 	/* Test for correct arguments.  */
802 	if (htab == NULL) {
803 		__set_errno(EINVAL);
804 		return 0;
805 	}
806 
807 	/* we allocate new space to make sure we can write to the array */
808 	if ((data = malloc(size + 1)) == NULL) {
809 		debug("himport_r: can't malloc %lu bytes\n", (ulong)size + 1);
810 		__set_errno(ENOMEM);
811 		return 0;
812 	}
813 	memcpy(data, env, size);
814 	data[size] = '\0';
815 	dp = data;
816 
817 	/* make a local copy of the list of variables */
818 	if (nvars)
819 		memcpy(localvars, vars, sizeof(vars[0]) * nvars);
820 
821 #if CONFIG_IS_ENABLED(ENV_APPEND)
822 	flag |= H_NOCLEAR;
823 #endif
824 
825 	if ((flag & H_NOCLEAR) == 0 && !nvars) {
826 		/* Destroy old hash table if one exists */
827 		debug("Destroy Hash Table: %p table = %p\n", htab,
828 		       htab->table);
829 		if (htab->table)
830 			hdestroy_r(htab);
831 	}
832 
833 	/*
834 	 * Create new hash table (if needed).  The computation of the hash
835 	 * table size is based on heuristics: in a sample of some 70+
836 	 * existing systems we found an average size of 39+ bytes per entry
837 	 * in the environment (for the whole key=value pair). Assuming a
838 	 * size of 8 per entry (= safety factor of ~5) should provide enough
839 	 * safety margin for any existing environment definitions and still
840 	 * allow for more than enough dynamic additions. Note that the
841 	 * "size" argument is supposed to give the maximum environment size
842 	 * (CONFIG_ENV_SIZE).  This heuristics will result in
843 	 * unreasonably large numbers (and thus memory footprint) for
844 	 * big flash environments (>8,000 entries for 64 KB
845 	 * environment size), so we clip it to a reasonable value.
846 	 * On the other hand we need to add some more entries for free
847 	 * space when importing very small buffers. Both boundaries can
848 	 * be overwritten in the board config file if needed.
849 	 */
850 
851 	if (!htab->table) {
852 		int nent = CONFIG_ENV_MIN_ENTRIES + size / 8;
853 
854 		if (nent > CONFIG_ENV_MAX_ENTRIES)
855 			nent = CONFIG_ENV_MAX_ENTRIES;
856 
857 		debug("Create Hash Table: N=%d\n", nent);
858 
859 		if (hcreate_r(nent, htab) == 0) {
860 			free(data);
861 			return 0;
862 		}
863 	}
864 
865 	if (!size) {
866 		free(data);
867 		return 1;		/* everything OK */
868 	}
869 	if(crlf_is_lf) {
870 		/* Remove Carriage Returns in front of Line Feeds */
871 		unsigned ignored_crs = 0;
872 		for(;dp < data + size && *dp; ++dp) {
873 			if(*dp == '\r' &&
874 			   dp < data + size - 1 && *(dp+1) == '\n')
875 				++ignored_crs;
876 			else
877 				*(dp-ignored_crs) = *dp;
878 		}
879 		size -= ignored_crs;
880 		dp = data;
881 	}
882 	/* Parse environment; allow for '\0' and 'sep' as separators */
883 	do {
884 		struct env_entry e, *rv;
885 
886 		/* skip leading white space */
887 		while (isblank(*dp))
888 			++dp;
889 
890 		/* skip comment lines */
891 		if (*dp == '#') {
892 			while (*dp && (*dp != sep))
893 				++dp;
894 			++dp;
895 			continue;
896 		}
897 
898 		/* parse name */
899 		for (name = dp; *dp != '=' && *dp && *dp != sep; ++dp)
900 			;
901 
902 		/* deal with "name" and "name=" entries (delete var) */
903 		if (*dp == '\0' || *(dp + 1) == '\0' ||
904 		    *dp == sep || *(dp + 1) == sep) {
905 			if (*dp == '=')
906 				*dp++ = '\0';
907 			*dp++ = '\0';	/* terminate name */
908 
909 			debug("DELETE CANDIDATE: \"%s\"\n", name);
910 			if (!drop_var_from_set(name, nvars, localvars))
911 				continue;
912 
913 			if (hdelete_r(name, htab, flag))
914 				debug("DELETE ERROR ##############################\n");
915 
916 			continue;
917 		}
918 		*dp++ = '\0';	/* terminate name */
919 
920 		/* parse value; deal with escapes */
921 		for (value = sp = dp; *dp && (*dp != sep); ++dp) {
922 			if ((*dp == '\\') && *(dp + 1))
923 				++dp;
924 			*sp++ = *dp;
925 		}
926 		*sp++ = '\0';	/* terminate value */
927 		++dp;
928 
929 		if (*name == 0) {
930 			debug("INSERT: unable to use an empty key\n");
931 			__set_errno(EINVAL);
932 			free(data);
933 			return 0;
934 		}
935 
936 		/* Skip variables which are not supposed to be processed */
937 		if (!drop_var_from_set(name, nvars, localvars))
938 			continue;
939 
940 		/* enter into hash table */
941 		e.key = name;
942 		e.data = value;
943 
944 		hsearch_r(e, ENV_ENTER, &rv, htab, flag);
945 #if !IS_ENABLED(CONFIG_ENV_WRITEABLE_LIST)
946 		if (rv == NULL) {
947 			printf("himport_r: can't insert \"%s=%s\" into hash table\n",
948 				name, value);
949 		}
950 #endif
951 
952 		debug("INSERT: table %p, filled %d/%d rv %p ==> name=\"%s\" value=\"%s\"\n",
953 			htab, htab->filled, htab->size,
954 			rv, name, value);
955 	} while ((dp < data + size) && *dp);	/* size check needed for text */
956 						/* without '\0' termination */
957 	debug("INSERT: free(data = %p)\n", data);
958 	free(data);
959 
960 	if (flag & H_NOCLEAR)
961 		goto end;
962 
963 	/* process variables which were not considered */
964 	for (i = 0; i < nvars; i++) {
965 		if (localvars[i] == NULL)
966 			continue;
967 		/*
968 		 * All variables which were not deleted from the variable list
969 		 * were not present in the imported env
970 		 * This could mean two things:
971 		 * a) if the variable was present in current env, we delete it
972 		 * b) if the variable was not present in current env, we notify
973 		 *    it might be a typo
974 		 */
975 		if (hdelete_r(localvars[i], htab, flag))
976 			printf("WARNING: '%s' neither in running nor in imported env!\n", localvars[i]);
977 		else
978 			printf("WARNING: '%s' not in imported env, deleting it!\n", localvars[i]);
979 	}
980 
981 end:
982 	debug("INSERT: done\n");
983 	return 1;		/* everything OK */
984 }
985 
986 /*
987  * hwalk_r()
988  */
989 
990 /*
991  * Walk all of the entries in the hash, calling the callback for each one.
992  * this allows some generic operation to be performed on each element.
993  */
hwalk_r(struct hsearch_data * htab,int (* callback)(struct env_entry * entry))994 int hwalk_r(struct hsearch_data *htab, int (*callback)(struct env_entry *entry))
995 {
996 	int i;
997 	int retval;
998 
999 	for (i = 1; i <= htab->size; ++i) {
1000 		if (htab->table[i].used > 0) {
1001 			retval = callback(&htab->table[i].entry);
1002 			if (retval)
1003 				return retval;
1004 		}
1005 	}
1006 
1007 	return 0;
1008 }
1009