1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Procedures for maintaining information about logical memory blocks.
4  *
5  * Peter Bergner, IBM Corp.	June 2001.
6  * Copyright (C) 2001 Peter Bergner.
7  */
8 
9 #include <common.h>
10 #include <efi_loader.h>
11 #include <image.h>
12 #include <mapmem.h>
13 #include <lmb.h>
14 #include <log.h>
15 #include <malloc.h>
16 
17 #include <asm/global_data.h>
18 #include <asm/sections.h>
19 
20 DECLARE_GLOBAL_DATA_PTR;
21 
22 #define LMB_ALLOC_ANYWHERE	0
23 
lmb_dump_region(struct lmb_region * rgn,char * name)24 static void lmb_dump_region(struct lmb_region *rgn, char *name)
25 {
26 	unsigned long long base, size, end;
27 	enum lmb_flags flags;
28 	int i;
29 
30 	printf(" %s.cnt = 0x%lx / max = 0x%lx\n", name, rgn->cnt, rgn->max);
31 
32 	for (i = 0; i < rgn->cnt; i++) {
33 		base = rgn->region[i].base;
34 		size = rgn->region[i].size;
35 		end = base + size - 1;
36 		flags = rgn->region[i].flags;
37 
38 		printf(" %s[%d]\t[0x%llx-0x%llx], 0x%08llx bytes flags: %x\n",
39 		       name, i, base, end, size, flags);
40 	}
41 }
42 
lmb_dump_all_force(struct lmb * lmb)43 void lmb_dump_all_force(struct lmb *lmb)
44 {
45 	printf("lmb_dump_all:\n");
46 	lmb_dump_region(&lmb->memory, "memory");
47 	lmb_dump_region(&lmb->reserved, "reserved");
48 }
49 
lmb_dump_all(struct lmb * lmb)50 void lmb_dump_all(struct lmb *lmb)
51 {
52 #ifdef DEBUG
53 	lmb_dump_all_force(lmb);
54 #endif
55 }
56 
lmb_addrs_overlap(phys_addr_t base1,phys_size_t size1,phys_addr_t base2,phys_size_t size2)57 static long lmb_addrs_overlap(phys_addr_t base1, phys_size_t size1,
58 			      phys_addr_t base2, phys_size_t size2)
59 {
60 	const phys_addr_t base1_end = base1 + size1 - 1;
61 	const phys_addr_t base2_end = base2 + size2 - 1;
62 
63 	return ((base1 <= base2_end) && (base2 <= base1_end));
64 }
65 
lmb_addrs_adjacent(phys_addr_t base1,phys_size_t size1,phys_addr_t base2,phys_size_t size2)66 static long lmb_addrs_adjacent(phys_addr_t base1, phys_size_t size1,
67 			       phys_addr_t base2, phys_size_t size2)
68 {
69 	if (base2 == base1 + size1)
70 		return 1;
71 	else if (base1 == base2 + size2)
72 		return -1;
73 
74 	return 0;
75 }
76 
lmb_regions_adjacent(struct lmb_region * rgn,unsigned long r1,unsigned long r2)77 static long lmb_regions_adjacent(struct lmb_region *rgn, unsigned long r1,
78 				 unsigned long r2)
79 {
80 	phys_addr_t base1 = rgn->region[r1].base;
81 	phys_size_t size1 = rgn->region[r1].size;
82 	phys_addr_t base2 = rgn->region[r2].base;
83 	phys_size_t size2 = rgn->region[r2].size;
84 
85 	return lmb_addrs_adjacent(base1, size1, base2, size2);
86 }
87 
lmb_remove_region(struct lmb_region * rgn,unsigned long r)88 static void lmb_remove_region(struct lmb_region *rgn, unsigned long r)
89 {
90 	unsigned long i;
91 
92 	for (i = r; i < rgn->cnt - 1; i++) {
93 		rgn->region[i].base = rgn->region[i + 1].base;
94 		rgn->region[i].size = rgn->region[i + 1].size;
95 		rgn->region[i].flags = rgn->region[i + 1].flags;
96 	}
97 	rgn->cnt--;
98 }
99 
100 /* Assumption: base addr of region 1 < base addr of region 2 */
lmb_coalesce_regions(struct lmb_region * rgn,unsigned long r1,unsigned long r2)101 static void lmb_coalesce_regions(struct lmb_region *rgn, unsigned long r1,
102 				 unsigned long r2)
103 {
104 	rgn->region[r1].size += rgn->region[r2].size;
105 	lmb_remove_region(rgn, r2);
106 }
107 
lmb_init(struct lmb * lmb)108 void lmb_init(struct lmb *lmb)
109 {
110 #if IS_ENABLED(CONFIG_LMB_USE_MAX_REGIONS)
111 	lmb->memory.max = CONFIG_LMB_MAX_REGIONS;
112 	lmb->reserved.max = CONFIG_LMB_MAX_REGIONS;
113 #else
114 	lmb->memory.max = CONFIG_LMB_MEMORY_REGIONS;
115 	lmb->reserved.max = CONFIG_LMB_RESERVED_REGIONS;
116 	lmb->memory.region = lmb->memory_regions;
117 	lmb->reserved.region = lmb->reserved_regions;
118 #endif
119 	lmb->memory.cnt = 0;
120 	lmb->reserved.cnt = 0;
121 }
122 
arch_lmb_reserve_generic(struct lmb * lmb,ulong sp,ulong end,ulong align)123 void arch_lmb_reserve_generic(struct lmb *lmb, ulong sp, ulong end, ulong align)
124 {
125 	ulong bank_end;
126 	int bank;
127 
128 	/*
129 	 * Reserve memory from aligned address below the bottom of U-Boot stack
130 	 * until end of U-Boot area using LMB to prevent U-Boot from overwriting
131 	 * that memory.
132 	 */
133 	debug("## Current stack ends at 0x%08lx ", sp);
134 
135 	/* adjust sp by 4K to be safe */
136 	sp -= align;
137 	for (bank = 0; bank < CONFIG_NR_DRAM_BANKS; bank++) {
138 		if (!gd->bd->bi_dram[bank].size ||
139 		    sp < gd->bd->bi_dram[bank].start)
140 			continue;
141 		/* Watch out for RAM at end of address space! */
142 		bank_end = gd->bd->bi_dram[bank].start +
143 			gd->bd->bi_dram[bank].size - 1;
144 		if (sp > bank_end)
145 			continue;
146 		if (bank_end > end)
147 			bank_end = end - 1;
148 
149 		lmb_reserve(lmb, sp, bank_end - sp + 1);
150 
151 		if (gd->flags & GD_FLG_SKIP_RELOC)
152 			lmb_reserve(lmb, (phys_addr_t)(uintptr_t)_start, gd->mon_len);
153 
154 		break;
155 	}
156 }
157 
158 /**
159  * efi_lmb_reserve() - add reservations for EFI memory
160  *
161  * Add reservations for all EFI memory areas that are not
162  * EFI_CONVENTIONAL_MEMORY.
163  *
164  * @lmb:	lmb environment
165  * Return:	0 on success, 1 on failure
166  */
efi_lmb_reserve(struct lmb * lmb)167 static __maybe_unused int efi_lmb_reserve(struct lmb *lmb)
168 {
169 	struct efi_mem_desc *memmap = NULL, *map;
170 	efi_uintn_t i, map_size = 0;
171 	efi_status_t ret;
172 
173 	ret = efi_get_memory_map_alloc(&map_size, &memmap);
174 	if (ret != EFI_SUCCESS)
175 		return 1;
176 
177 	for (i = 0, map = memmap; i < map_size / sizeof(*map); ++map, ++i) {
178 		if (map->type != EFI_CONVENTIONAL_MEMORY) {
179 			lmb_reserve_flags(lmb,
180 					  map_to_sysmem((void *)(uintptr_t)
181 							map->physical_start),
182 					  map->num_pages * EFI_PAGE_SIZE,
183 					  map->type == EFI_RESERVED_MEMORY_TYPE
184 					      ? LMB_NOMAP : LMB_NONE);
185 		}
186 	}
187 	efi_free_pool(memmap);
188 
189 	return 0;
190 }
191 
lmb_reserve_common(struct lmb * lmb,void * fdt_blob)192 static void lmb_reserve_common(struct lmb *lmb, void *fdt_blob)
193 {
194 	arch_lmb_reserve(lmb);
195 	board_lmb_reserve(lmb);
196 
197 	if (CONFIG_IS_ENABLED(OF_LIBFDT) && fdt_blob)
198 		boot_fdt_add_mem_rsv_regions(lmb, fdt_blob);
199 
200 	if (CONFIG_IS_ENABLED(EFI_LOADER))
201 		efi_lmb_reserve(lmb);
202 }
203 
204 /* Initialize the struct, add memory and call arch/board reserve functions */
lmb_init_and_reserve(struct lmb * lmb,struct bd_info * bd,void * fdt_blob)205 void lmb_init_and_reserve(struct lmb *lmb, struct bd_info *bd, void *fdt_blob)
206 {
207 	int i;
208 
209 	lmb_init(lmb);
210 
211 	for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
212 		if (bd->bi_dram[i].size) {
213 			lmb_add(lmb, bd->bi_dram[i].start,
214 				bd->bi_dram[i].size);
215 		}
216 	}
217 
218 	lmb_reserve_common(lmb, fdt_blob);
219 }
220 
221 /* Initialize the struct, add memory and call arch/board reserve functions */
lmb_init_and_reserve_range(struct lmb * lmb,phys_addr_t base,phys_size_t size,void * fdt_blob)222 void lmb_init_and_reserve_range(struct lmb *lmb, phys_addr_t base,
223 				phys_size_t size, void *fdt_blob)
224 {
225 	lmb_init(lmb);
226 	lmb_add(lmb, base, size);
227 	lmb_reserve_common(lmb, fdt_blob);
228 }
229 
230 /* This routine called with relocation disabled. */
lmb_add_region_flags(struct lmb_region * rgn,phys_addr_t base,phys_size_t size,enum lmb_flags flags)231 static long lmb_add_region_flags(struct lmb_region *rgn, phys_addr_t base,
232 				 phys_size_t size, enum lmb_flags flags)
233 {
234 	unsigned long coalesced = 0;
235 	long adjacent, i;
236 
237 	if (rgn->cnt == 0) {
238 		rgn->region[0].base = base;
239 		rgn->region[0].size = size;
240 		rgn->region[0].flags = flags;
241 		rgn->cnt = 1;
242 		return 0;
243 	}
244 
245 	/* First try and coalesce this LMB with another. */
246 	for (i = 0; i < rgn->cnt; i++) {
247 		phys_addr_t rgnbase = rgn->region[i].base;
248 		phys_size_t rgnsize = rgn->region[i].size;
249 		phys_size_t rgnflags = rgn->region[i].flags;
250 		phys_addr_t end = base + size - 1;
251 		phys_addr_t rgnend = rgnbase + rgnsize - 1;
252 
253 		if (rgnbase <= base && end <= rgnend) {
254 			if (flags == rgnflags)
255 				/* Already have this region, so we're done */
256 				return 0;
257 			else
258 				return -1; /* regions with new flags */
259 		}
260 
261 		adjacent = lmb_addrs_adjacent(base, size, rgnbase, rgnsize);
262 		if (adjacent > 0) {
263 			if (flags != rgnflags)
264 				break;
265 			rgn->region[i].base -= size;
266 			rgn->region[i].size += size;
267 			coalesced++;
268 			break;
269 		} else if (adjacent < 0) {
270 			if (flags != rgnflags)
271 				break;
272 			rgn->region[i].size += size;
273 			coalesced++;
274 			break;
275 		} else if (lmb_addrs_overlap(base, size, rgnbase, rgnsize)) {
276 			/* regions overlap */
277 			return -1;
278 		}
279 	}
280 
281 	if ((i < rgn->cnt - 1) && lmb_regions_adjacent(rgn, i, i + 1)) {
282 		if (rgn->region[i].flags == rgn->region[i + 1].flags) {
283 			lmb_coalesce_regions(rgn, i, i + 1);
284 			coalesced++;
285 		}
286 	}
287 
288 	if (coalesced)
289 		return coalesced;
290 	if (rgn->cnt >= rgn->max)
291 		return -1;
292 
293 	/* Couldn't coalesce the LMB, so add it to the sorted table. */
294 	for (i = rgn->cnt-1; i >= 0; i--) {
295 		if (base < rgn->region[i].base) {
296 			rgn->region[i + 1].base = rgn->region[i].base;
297 			rgn->region[i + 1].size = rgn->region[i].size;
298 			rgn->region[i + 1].flags = rgn->region[i].flags;
299 		} else {
300 			rgn->region[i + 1].base = base;
301 			rgn->region[i + 1].size = size;
302 			rgn->region[i + 1].flags = flags;
303 			break;
304 		}
305 	}
306 
307 	if (base < rgn->region[0].base) {
308 		rgn->region[0].base = base;
309 		rgn->region[0].size = size;
310 		rgn->region[0].flags = flags;
311 	}
312 
313 	rgn->cnt++;
314 
315 	return 0;
316 }
317 
lmb_add_region(struct lmb_region * rgn,phys_addr_t base,phys_size_t size)318 static long lmb_add_region(struct lmb_region *rgn, phys_addr_t base,
319 			   phys_size_t size)
320 {
321 	return lmb_add_region_flags(rgn, base, size, LMB_NONE);
322 }
323 
324 /* This routine may be called with relocation disabled. */
lmb_add(struct lmb * lmb,phys_addr_t base,phys_size_t size)325 long lmb_add(struct lmb *lmb, phys_addr_t base, phys_size_t size)
326 {
327 	struct lmb_region *_rgn = &(lmb->memory);
328 
329 	return lmb_add_region(_rgn, base, size);
330 }
331 
lmb_free(struct lmb * lmb,phys_addr_t base,phys_size_t size)332 long lmb_free(struct lmb *lmb, phys_addr_t base, phys_size_t size)
333 {
334 	struct lmb_region *rgn = &(lmb->reserved);
335 	phys_addr_t rgnbegin, rgnend;
336 	phys_addr_t end = base + size - 1;
337 	int i;
338 
339 	rgnbegin = rgnend = 0; /* supress gcc warnings */
340 
341 	/* Find the region where (base, size) belongs to */
342 	for (i = 0; i < rgn->cnt; i++) {
343 		rgnbegin = rgn->region[i].base;
344 		rgnend = rgnbegin + rgn->region[i].size - 1;
345 
346 		if ((rgnbegin <= base) && (end <= rgnend))
347 			break;
348 	}
349 
350 	/* Didn't find the region */
351 	if (i == rgn->cnt)
352 		return -1;
353 
354 	/* Check to see if we are removing entire region */
355 	if ((rgnbegin == base) && (rgnend == end)) {
356 		lmb_remove_region(rgn, i);
357 		return 0;
358 	}
359 
360 	/* Check to see if region is matching at the front */
361 	if (rgnbegin == base) {
362 		rgn->region[i].base = end + 1;
363 		rgn->region[i].size -= size;
364 		return 0;
365 	}
366 
367 	/* Check to see if the region is matching at the end */
368 	if (rgnend == end) {
369 		rgn->region[i].size -= size;
370 		return 0;
371 	}
372 
373 	/*
374 	 * We need to split the entry -  adjust the current one to the
375 	 * beginging of the hole and add the region after hole.
376 	 */
377 	rgn->region[i].size = base - rgn->region[i].base;
378 	return lmb_add_region_flags(rgn, end + 1, rgnend - end,
379 				    rgn->region[i].flags);
380 }
381 
lmb_reserve_flags(struct lmb * lmb,phys_addr_t base,phys_size_t size,enum lmb_flags flags)382 long lmb_reserve_flags(struct lmb *lmb, phys_addr_t base, phys_size_t size,
383 		       enum lmb_flags flags)
384 {
385 	struct lmb_region *_rgn = &(lmb->reserved);
386 
387 	return lmb_add_region_flags(_rgn, base, size, flags);
388 }
389 
lmb_reserve(struct lmb * lmb,phys_addr_t base,phys_size_t size)390 long lmb_reserve(struct lmb *lmb, phys_addr_t base, phys_size_t size)
391 {
392 	return lmb_reserve_flags(lmb, base, size, LMB_NONE);
393 }
394 
lmb_overlaps_region(struct lmb_region * rgn,phys_addr_t base,phys_size_t size)395 static long lmb_overlaps_region(struct lmb_region *rgn, phys_addr_t base,
396 				phys_size_t size)
397 {
398 	unsigned long i;
399 
400 	for (i = 0; i < rgn->cnt; i++) {
401 		phys_addr_t rgnbase = rgn->region[i].base;
402 		phys_size_t rgnsize = rgn->region[i].size;
403 		if (lmb_addrs_overlap(base, size, rgnbase, rgnsize))
404 			break;
405 	}
406 
407 	return (i < rgn->cnt) ? i : -1;
408 }
409 
lmb_alloc(struct lmb * lmb,phys_size_t size,ulong align)410 phys_addr_t lmb_alloc(struct lmb *lmb, phys_size_t size, ulong align)
411 {
412 	return lmb_alloc_base(lmb, size, align, LMB_ALLOC_ANYWHERE);
413 }
414 
lmb_alloc_base(struct lmb * lmb,phys_size_t size,ulong align,phys_addr_t max_addr)415 phys_addr_t lmb_alloc_base(struct lmb *lmb, phys_size_t size, ulong align, phys_addr_t max_addr)
416 {
417 	phys_addr_t alloc;
418 
419 	alloc = __lmb_alloc_base(lmb, size, align, max_addr);
420 
421 	if (alloc == 0)
422 		printf("ERROR: Failed to allocate 0x%lx bytes below 0x%lx.\n",
423 		       (ulong)size, (ulong)max_addr);
424 
425 	return alloc;
426 }
427 
lmb_align_down(phys_addr_t addr,phys_size_t size)428 static phys_addr_t lmb_align_down(phys_addr_t addr, phys_size_t size)
429 {
430 	return addr & ~(size - 1);
431 }
432 
__lmb_alloc_base(struct lmb * lmb,phys_size_t size,ulong align,phys_addr_t max_addr)433 phys_addr_t __lmb_alloc_base(struct lmb *lmb, phys_size_t size, ulong align, phys_addr_t max_addr)
434 {
435 	long i, rgn;
436 	phys_addr_t base = 0;
437 	phys_addr_t res_base;
438 
439 	for (i = lmb->memory.cnt - 1; i >= 0; i--) {
440 		phys_addr_t lmbbase = lmb->memory.region[i].base;
441 		phys_size_t lmbsize = lmb->memory.region[i].size;
442 
443 		if (lmbsize < size)
444 			continue;
445 		if (max_addr == LMB_ALLOC_ANYWHERE)
446 			base = lmb_align_down(lmbbase + lmbsize - size, align);
447 		else if (lmbbase < max_addr) {
448 			base = lmbbase + lmbsize;
449 			if (base < lmbbase)
450 				base = -1;
451 			base = min(base, max_addr);
452 			base = lmb_align_down(base - size, align);
453 		} else
454 			continue;
455 
456 		while (base && lmbbase <= base) {
457 			rgn = lmb_overlaps_region(&lmb->reserved, base, size);
458 			if (rgn < 0) {
459 				/* This area isn't reserved, take it */
460 				if (lmb_add_region(&lmb->reserved, base,
461 						   size) < 0)
462 					return 0;
463 				return base;
464 			}
465 			res_base = lmb->reserved.region[rgn].base;
466 			if (res_base < size)
467 				break;
468 			base = lmb_align_down(res_base - size, align);
469 		}
470 	}
471 	return 0;
472 }
473 
474 /*
475  * Try to allocate a specific address range: must be in defined memory but not
476  * reserved
477  */
lmb_alloc_addr(struct lmb * lmb,phys_addr_t base,phys_size_t size)478 phys_addr_t lmb_alloc_addr(struct lmb *lmb, phys_addr_t base, phys_size_t size)
479 {
480 	long rgn;
481 
482 	/* Check if the requested address is in one of the memory regions */
483 	rgn = lmb_overlaps_region(&lmb->memory, base, size);
484 	if (rgn >= 0) {
485 		/*
486 		 * Check if the requested end address is in the same memory
487 		 * region we found.
488 		 */
489 		if (lmb_addrs_overlap(lmb->memory.region[rgn].base,
490 				      lmb->memory.region[rgn].size,
491 				      base + size - 1, 1)) {
492 			/* ok, reserve the memory */
493 			if (lmb_reserve(lmb, base, size) >= 0)
494 				return base;
495 		}
496 	}
497 	return 0;
498 }
499 
500 /* Return number of bytes from a given address that are free */
lmb_get_free_size(struct lmb * lmb,phys_addr_t addr)501 phys_size_t lmb_get_free_size(struct lmb *lmb, phys_addr_t addr)
502 {
503 	int i;
504 	long rgn;
505 
506 	/* check if the requested address is in the memory regions */
507 	rgn = lmb_overlaps_region(&lmb->memory, addr, 1);
508 	if (rgn >= 0) {
509 		for (i = 0; i < lmb->reserved.cnt; i++) {
510 			if (addr < lmb->reserved.region[i].base) {
511 				/* first reserved range > requested address */
512 				return lmb->reserved.region[i].base - addr;
513 			}
514 			if (lmb->reserved.region[i].base +
515 			    lmb->reserved.region[i].size > addr) {
516 				/* requested addr is in this reserved range */
517 				return 0;
518 			}
519 		}
520 		/* if we come here: no reserved ranges above requested addr */
521 		return lmb->memory.region[lmb->memory.cnt - 1].base +
522 		       lmb->memory.region[lmb->memory.cnt - 1].size - addr;
523 	}
524 	return 0;
525 }
526 
lmb_is_reserved_flags(struct lmb * lmb,phys_addr_t addr,int flags)527 int lmb_is_reserved_flags(struct lmb *lmb, phys_addr_t addr, int flags)
528 {
529 	int i;
530 
531 	for (i = 0; i < lmb->reserved.cnt; i++) {
532 		phys_addr_t upper = lmb->reserved.region[i].base +
533 			lmb->reserved.region[i].size - 1;
534 		if ((addr >= lmb->reserved.region[i].base) && (addr <= upper))
535 			return (lmb->reserved.region[i].flags & flags) == flags;
536 	}
537 	return 0;
538 }
539 
lmb_is_reserved(struct lmb * lmb,phys_addr_t addr)540 int lmb_is_reserved(struct lmb *lmb, phys_addr_t addr)
541 {
542 	return lmb_is_reserved_flags(lmb, addr, LMB_NONE);
543 }
544 
board_lmb_reserve(struct lmb * lmb)545 __weak void board_lmb_reserve(struct lmb *lmb)
546 {
547 	/* please define platform specific board_lmb_reserve() */
548 }
549 
arch_lmb_reserve(struct lmb * lmb)550 __weak void arch_lmb_reserve(struct lmb *lmb)
551 {
552 	/* please define platform specific arch_lmb_reserve() */
553 }
554