1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (c) 2013, Google Inc.
4 */
5
6 #ifndef USE_HOSTCC
7 #include <common.h>
8 #include <fdtdec.h>
9 #include <log.h>
10 #include <malloc.h>
11 #include <asm/types.h>
12 #include <asm/byteorder.h>
13 #include <linux/errno.h>
14 #include <asm/types.h>
15 #include <asm/unaligned.h>
16 #include <dm.h>
17 #else
18 #include "fdt_host.h"
19 #include "mkimage.h"
20 #include <fdt_support.h>
21 #endif
22 #include <linux/kconfig.h>
23 #include <u-boot/rsa-mod-exp.h>
24 #include <u-boot/rsa.h>
25
26 /* Default public exponent for backward compatibility */
27 #define RSA_DEFAULT_PUBEXP 65537
28
29 /**
30 * rsa_verify_padding() - Verify RSA message padding is valid
31 *
32 * Verify a RSA message's padding is consistent with PKCS1.5
33 * padding as described in the RSA PKCS#1 v2.1 standard.
34 *
35 * @msg: Padded message
36 * @pad_len: Number of expected padding bytes
37 * @algo: Checksum algo structure having information on DER encoding etc.
38 * Return: 0 on success, != 0 on failure
39 */
rsa_verify_padding(const uint8_t * msg,const int pad_len,struct checksum_algo * algo)40 static int rsa_verify_padding(const uint8_t *msg, const int pad_len,
41 struct checksum_algo *algo)
42 {
43 int ff_len;
44 int ret;
45
46 /* first byte must be 0x00 */
47 ret = *msg++;
48 /* second byte must be 0x01 */
49 ret |= *msg++ ^ 0x01;
50 /* next ff_len bytes must be 0xff */
51 ff_len = pad_len - algo->der_len - 3;
52 ret |= *msg ^ 0xff;
53 ret |= memcmp(msg, msg+1, ff_len-1);
54 msg += ff_len;
55 /* next byte must be 0x00 */
56 ret |= *msg++;
57 /* next der_len bytes must match der_prefix */
58 ret |= memcmp(msg, algo->der_prefix, algo->der_len);
59
60 return ret;
61 }
62
padding_pkcs_15_verify(struct image_sign_info * info,const uint8_t * msg,int msg_len,const uint8_t * hash,int hash_len)63 int padding_pkcs_15_verify(struct image_sign_info *info,
64 const uint8_t *msg, int msg_len,
65 const uint8_t *hash, int hash_len)
66 {
67 struct checksum_algo *checksum = info->checksum;
68 int ret, pad_len = msg_len - checksum->checksum_len;
69
70 /* Check pkcs1.5 padding bytes */
71 ret = rsa_verify_padding(msg, pad_len, checksum);
72 if (ret) {
73 debug("In RSAVerify(): Padding check failed!\n");
74 return -EINVAL;
75 }
76
77 /* Check hash */
78 if (memcmp((uint8_t *)msg + pad_len, hash, msg_len - pad_len)) {
79 debug("In RSAVerify(): Hash check failed!\n");
80 return -EACCES;
81 }
82
83 return 0;
84 }
85
86 #ifndef USE_HOSTCC
87 U_BOOT_PADDING_ALGO(pkcs_15) = {
88 .name = "pkcs-1.5",
89 .verify = padding_pkcs_15_verify,
90 };
91 #endif
92
93 #if CONFIG_IS_ENABLED(FIT_RSASSA_PSS)
u32_i2osp(uint32_t val,uint8_t * buf)94 static void u32_i2osp(uint32_t val, uint8_t *buf)
95 {
96 buf[0] = (uint8_t)((val >> 24) & 0xff);
97 buf[1] = (uint8_t)((val >> 16) & 0xff);
98 buf[2] = (uint8_t)((val >> 8) & 0xff);
99 buf[3] = (uint8_t)((val >> 0) & 0xff);
100 }
101
102 /**
103 * mask_generation_function1() - generate an octet string
104 *
105 * Generate an octet string used to check rsa signature.
106 * It use an input octet string and a hash function.
107 *
108 * @checksum: A Hash function
109 * @seed: Specifies an input variable octet string
110 * @seed_len: Size of the input octet string
111 * @output: Specifies the output octet string
112 * @output_len: Size of the output octet string
113 * Return: 0 if the octet string was correctly generated, others on error
114 */
mask_generation_function1(struct checksum_algo * checksum,const uint8_t * seed,int seed_len,uint8_t * output,int output_len)115 static int mask_generation_function1(struct checksum_algo *checksum,
116 const uint8_t *seed, int seed_len,
117 uint8_t *output, int output_len)
118 {
119 struct image_region region[2];
120 int ret = 0, i, i_output = 0, region_count = 2;
121 uint32_t counter = 0;
122 uint8_t buf_counter[4], *tmp;
123 int hash_len = checksum->checksum_len;
124
125 memset(output, 0, output_len);
126
127 region[0].data = seed;
128 region[0].size = seed_len;
129 region[1].data = &buf_counter[0];
130 region[1].size = 4;
131
132 tmp = malloc(hash_len);
133 if (!tmp) {
134 debug("%s: can't allocate array tmp\n", __func__);
135 ret = -ENOMEM;
136 goto out;
137 }
138
139 while (i_output < output_len) {
140 u32_i2osp(counter, &buf_counter[0]);
141
142 ret = checksum->calculate(checksum->name,
143 region, region_count,
144 tmp);
145 if (ret < 0) {
146 debug("%s: Error in checksum calculation\n", __func__);
147 goto out;
148 }
149
150 i = 0;
151 while ((i_output < output_len) && (i < hash_len)) {
152 output[i_output] = tmp[i];
153 i_output++;
154 i++;
155 }
156
157 counter++;
158 }
159
160 out:
161 free(tmp);
162
163 return ret;
164 }
165
compute_hash_prime(struct checksum_algo * checksum,const uint8_t * pad,int pad_len,const uint8_t * hash,int hash_len,const uint8_t * salt,int salt_len,uint8_t * hprime)166 static int compute_hash_prime(struct checksum_algo *checksum,
167 const uint8_t *pad, int pad_len,
168 const uint8_t *hash, int hash_len,
169 const uint8_t *salt, int salt_len,
170 uint8_t *hprime)
171 {
172 struct image_region region[3];
173 int ret, region_count = 3;
174
175 region[0].data = pad;
176 region[0].size = pad_len;
177 region[1].data = hash;
178 region[1].size = hash_len;
179 region[2].data = salt;
180 region[2].size = salt_len;
181
182 ret = checksum->calculate(checksum->name, region, region_count, hprime);
183 if (ret < 0) {
184 debug("%s: Error in checksum calculation\n", __func__);
185 goto out;
186 }
187
188 out:
189 return ret;
190 }
191
192 /*
193 * padding_pss_verify() - verify the pss padding of a signature
194 *
195 * Works with any salt length
196 *
197 * msg is a concatenation of : masked_db + h + 0xbc
198 * Once unmasked, db is a concatenation of : [0x00]* + 0x01 + salt
199 * Length of 0-padding at begin of db depends on salt length.
200 *
201 * @info: Specifies key and FIT information
202 * @msg: byte array of message, len equal to msg_len
203 * @msg_len: Message length
204 * @hash: Pointer to the expected hash
205 * @hash_len: Length of the hash
206 *
207 * Return: 0 if padding is correct, non-zero otherwise
208 */
padding_pss_verify(struct image_sign_info * info,const uint8_t * msg,int msg_len,const uint8_t * hash,int hash_len)209 int padding_pss_verify(struct image_sign_info *info,
210 const uint8_t *msg, int msg_len,
211 const uint8_t *hash, int hash_len)
212 {
213 const uint8_t *masked_db = NULL;
214 uint8_t *db_mask = NULL;
215 uint8_t *db = NULL;
216 int db_len = msg_len - hash_len - 1;
217 const uint8_t *h = NULL;
218 uint8_t *hprime = NULL;
219 int h_len = hash_len;
220 uint8_t *db_nopad = NULL, *salt = NULL;
221 int db_padlen, salt_len;
222 uint8_t pad_zero[8] = { 0 };
223 int ret, i, leftmost_bits = 1;
224 uint8_t leftmost_mask;
225 struct checksum_algo *checksum = info->checksum;
226
227 if (db_len <= 0)
228 return -EINVAL;
229
230 /* first, allocate everything */
231 db_mask = malloc(db_len);
232 db = malloc(db_len);
233 hprime = malloc(hash_len);
234 if (!db_mask || !db || !hprime) {
235 printf("%s: can't allocate some buffer\n", __func__);
236 ret = -ENOMEM;
237 goto out;
238 }
239
240 /* step 4: check if the last byte is 0xbc */
241 if (msg[msg_len - 1] != 0xbc) {
242 printf("%s: invalid pss padding (0xbc is missing)\n", __func__);
243 ret = -EINVAL;
244 goto out;
245 }
246
247 /* step 5 */
248 masked_db = &msg[0];
249 h = &msg[db_len];
250
251 /* step 6 */
252 leftmost_mask = (0xff >> (8 - leftmost_bits)) << (8 - leftmost_bits);
253 if (masked_db[0] & leftmost_mask) {
254 printf("%s: invalid pss padding ", __func__);
255 printf("(leftmost bit of maskedDB not zero)\n");
256 ret = -EINVAL;
257 goto out;
258 }
259
260 /* step 7 */
261 mask_generation_function1(checksum, h, h_len, db_mask, db_len);
262
263 /* step 8 */
264 for (i = 0; i < db_len; i++)
265 db[i] = masked_db[i] ^ db_mask[i];
266
267 /* step 9 */
268 db[0] &= 0xff >> leftmost_bits;
269
270 /* step 10 */
271 db_padlen = 0;
272 while (db[db_padlen] == 0x00 && db_padlen < (db_len - 1))
273 db_padlen++;
274 db_nopad = &db[db_padlen];
275 if (db_nopad[0] != 0x01) {
276 printf("%s: invalid pss padding ", __func__);
277 printf("(leftmost byte of db after 0-padding isn't 0x01)\n");
278 ret = EINVAL;
279 goto out;
280 }
281
282 /* step 11 */
283 salt_len = db_len - db_padlen - 1;
284 salt = &db_nopad[1];
285
286 /* step 12 & 13 */
287 compute_hash_prime(checksum, pad_zero, 8,
288 hash, hash_len,
289 salt, salt_len, hprime);
290
291 /* step 14 */
292 ret = memcmp(h, hprime, hash_len);
293
294 out:
295 free(hprime);
296 free(db);
297 free(db_mask);
298
299 return ret;
300 }
301
302 #ifndef USE_HOSTCC
303 U_BOOT_PADDING_ALGO(pss) = {
304 .name = "pss",
305 .verify = padding_pss_verify,
306 };
307 #endif
308
309 #endif
310
311 /**
312 * rsa_verify_key() - Verify a signature against some data using RSA Key
313 *
314 * Verify a RSA PKCS1.5 signature against an expected hash using
315 * the RSA Key properties in prop structure.
316 *
317 * @info: Specifies key and FIT information
318 * @prop: Specifies key
319 * @sig: Signature
320 * @sig_len: Number of bytes in signature
321 * @hash: Pointer to the expected hash
322 * @key_len: Number of bytes in rsa key
323 * Return: 0 if verified, -ve on error
324 */
rsa_verify_key(struct image_sign_info * info,struct key_prop * prop,const uint8_t * sig,const uint32_t sig_len,const uint8_t * hash,const uint32_t key_len)325 static int rsa_verify_key(struct image_sign_info *info,
326 struct key_prop *prop, const uint8_t *sig,
327 const uint32_t sig_len, const uint8_t *hash,
328 const uint32_t key_len)
329 {
330 int ret;
331 #if !defined(USE_HOSTCC)
332 struct udevice *mod_exp_dev;
333 #endif
334 struct checksum_algo *checksum = info->checksum;
335 struct padding_algo *padding = info->padding;
336 int hash_len;
337
338 if (!prop || !sig || !hash || !checksum || !padding)
339 return -EIO;
340
341 if (sig_len != (prop->num_bits / 8)) {
342 debug("Signature is of incorrect length %d\n", sig_len);
343 return -EINVAL;
344 }
345
346 debug("Checksum algorithm: %s", checksum->name);
347
348 /* Sanity check for stack size */
349 if (sig_len > RSA_MAX_SIG_BITS / 8) {
350 debug("Signature length %u exceeds maximum %d\n", sig_len,
351 RSA_MAX_SIG_BITS / 8);
352 return -EINVAL;
353 }
354
355 uint8_t buf[sig_len];
356 hash_len = checksum->checksum_len;
357
358 #if !defined(USE_HOSTCC)
359 ret = uclass_get_device(UCLASS_MOD_EXP, 0, &mod_exp_dev);
360 if (ret) {
361 printf("RSA: Can't find Modular Exp implementation\n");
362 return -EINVAL;
363 }
364
365 ret = rsa_mod_exp(mod_exp_dev, sig, sig_len, prop, buf);
366 #else
367 ret = rsa_mod_exp_sw(sig, sig_len, prop, buf);
368 #endif
369 if (ret) {
370 debug("Error in Modular exponentation\n");
371 return ret;
372 }
373
374 ret = padding->verify(info, buf, key_len, hash, hash_len);
375 if (ret) {
376 debug("In RSAVerify(): padding check failed!\n");
377 return ret;
378 }
379
380 return 0;
381 }
382
383 /**
384 * rsa_verify_with_pkey() - Verify a signature against some data using
385 * only modulus and exponent as RSA key properties.
386 * @info: Specifies key information
387 * @hash: Pointer to the expected hash
388 * @sig: Signature
389 * @sig_len: Number of bytes in signature
390 *
391 * Parse a RSA public key blob in DER format pointed to in @info and fill
392 * a key_prop structure with properties of the key. Then verify a RSA PKCS1.5
393 * signature against an expected hash using the calculated properties.
394 *
395 * Return 0 if verified, -ve on error
396 */
rsa_verify_with_pkey(struct image_sign_info * info,const void * hash,uint8_t * sig,uint sig_len)397 int rsa_verify_with_pkey(struct image_sign_info *info,
398 const void *hash, uint8_t *sig, uint sig_len)
399 {
400 struct key_prop *prop;
401 int ret;
402
403 if (!CONFIG_IS_ENABLED(RSA_VERIFY_WITH_PKEY))
404 return -EACCES;
405
406 /* Public key is self-described to fill key_prop */
407 ret = rsa_gen_key_prop(info->key, info->keylen, &prop);
408 if (ret) {
409 debug("Generating necessary parameter for decoding failed\n");
410 return ret;
411 }
412
413 ret = rsa_verify_key(info, prop, sig, sig_len, hash,
414 info->crypto->key_len);
415
416 rsa_free_key_prop(prop);
417
418 return ret;
419 }
420
421 #if CONFIG_IS_ENABLED(FIT_SIGNATURE)
422 /**
423 * rsa_verify_with_keynode() - Verify a signature against some data using
424 * information in node with prperties of RSA Key like modulus, exponent etc.
425 *
426 * Parse sign-node and fill a key_prop structure with properties of the
427 * key. Verify a RSA PKCS1.5 signature against an expected hash using
428 * the properties parsed
429 *
430 * @info: Specifies key and FIT information
431 * @hash: Pointer to the expected hash
432 * @sig: Signature
433 * @sig_len: Number of bytes in signature
434 * @node: Node having the RSA Key properties
435 * Return: 0 if verified, -ve on error
436 */
rsa_verify_with_keynode(struct image_sign_info * info,const void * hash,uint8_t * sig,uint sig_len,int node)437 static int rsa_verify_with_keynode(struct image_sign_info *info,
438 const void *hash, uint8_t *sig,
439 uint sig_len, int node)
440 {
441 const void *blob = info->fdt_blob;
442 struct key_prop prop;
443 int length;
444 int ret = 0;
445 const char *algo;
446
447 if (node < 0) {
448 debug("%s: Skipping invalid node", __func__);
449 return -EBADF;
450 }
451
452 algo = fdt_getprop(blob, node, "algo", NULL);
453 if (strcmp(info->name, algo)) {
454 debug("%s: Wrong algo: have %s, expected %s", __func__,
455 info->name, algo);
456 return -EFAULT;
457 }
458
459 prop.num_bits = fdtdec_get_int(blob, node, "rsa,num-bits", 0);
460
461 prop.n0inv = fdtdec_get_int(blob, node, "rsa,n0-inverse", 0);
462
463 prop.public_exponent = fdt_getprop(blob, node, "rsa,exponent", &length);
464 if (!prop.public_exponent || length < sizeof(uint64_t))
465 prop.public_exponent = NULL;
466
467 prop.exp_len = sizeof(uint64_t);
468
469 prop.modulus = fdt_getprop(blob, node, "rsa,modulus", NULL);
470
471 prop.rr = fdt_getprop(blob, node, "rsa,r-squared", NULL);
472
473 if (!prop.num_bits || !prop.modulus || !prop.rr) {
474 debug("%s: Missing RSA key info", __func__);
475 return -EFAULT;
476 }
477
478 ret = rsa_verify_key(info, &prop, sig, sig_len, hash,
479 info->crypto->key_len);
480
481 return ret;
482 }
483 #else
rsa_verify_with_keynode(struct image_sign_info * info,const void * hash,uint8_t * sig,uint sig_len,int node)484 static int rsa_verify_with_keynode(struct image_sign_info *info,
485 const void *hash, uint8_t *sig,
486 uint sig_len, int node)
487 {
488 return -EACCES;
489 }
490 #endif
491
rsa_verify_hash(struct image_sign_info * info,const uint8_t * hash,uint8_t * sig,uint sig_len)492 int rsa_verify_hash(struct image_sign_info *info,
493 const uint8_t *hash, uint8_t *sig, uint sig_len)
494 {
495 int ret = -EACCES;
496
497 /*
498 * Since host tools, like mkimage, make use of openssl library for
499 * RSA encryption, rsa_verify_with_pkey()/rsa_gen_key_prop() are
500 * of no use and should not be compiled in.
501 */
502 if (!tools_build() && CONFIG_IS_ENABLED(RSA_VERIFY_WITH_PKEY) &&
503 !info->fdt_blob) {
504 /* don't rely on fdt properties */
505 ret = rsa_verify_with_pkey(info, hash, sig, sig_len);
506 if (ret)
507 debug("%s: rsa_verify_with_pkey() failed\n", __func__);
508 return ret;
509 }
510
511 if (CONFIG_IS_ENABLED(FIT_SIGNATURE)) {
512 const void *blob = info->fdt_blob;
513 int ndepth, noffset;
514 int sig_node, node;
515 char name[100];
516
517 sig_node = fdt_subnode_offset(blob, 0, FIT_SIG_NODENAME);
518 if (sig_node < 0) {
519 debug("%s: No signature node found\n", __func__);
520 return -ENOENT;
521 }
522
523 /* See if we must use a particular key */
524 if (info->required_keynode != -1) {
525 ret = rsa_verify_with_keynode(info, hash, sig, sig_len,
526 info->required_keynode);
527 if (ret)
528 debug("%s: Failed to verify required_keynode\n",
529 __func__);
530 return ret;
531 }
532
533 /* Look for a key that matches our hint */
534 snprintf(name, sizeof(name), "key-%s", info->keyname);
535 node = fdt_subnode_offset(blob, sig_node, name);
536 ret = rsa_verify_with_keynode(info, hash, sig, sig_len, node);
537 if (!ret)
538 return ret;
539 debug("%s: Could not verify key '%s', trying all\n", __func__,
540 name);
541
542 /* No luck, so try each of the keys in turn */
543 for (ndepth = 0, noffset = fdt_next_node(blob, sig_node,
544 &ndepth);
545 (noffset >= 0) && (ndepth > 0);
546 noffset = fdt_next_node(blob, noffset, &ndepth)) {
547 if (ndepth == 1 && noffset != node) {
548 ret = rsa_verify_with_keynode(info, hash,
549 sig, sig_len,
550 noffset);
551 if (!ret)
552 break;
553 }
554 }
555 }
556 debug("%s: Failed to verify by any means\n", __func__);
557
558 return ret;
559 }
560
rsa_verify(struct image_sign_info * info,const struct image_region region[],int region_count,uint8_t * sig,uint sig_len)561 int rsa_verify(struct image_sign_info *info,
562 const struct image_region region[], int region_count,
563 uint8_t *sig, uint sig_len)
564 {
565 /* Reserve memory for maximum checksum-length */
566 uint8_t hash[info->crypto->key_len];
567 int ret;
568
569 /*
570 * Verify that the checksum-length does not exceed the
571 * rsa-signature-length
572 */
573 if (info->checksum->checksum_len >
574 info->crypto->key_len) {
575 debug("%s: invalid checksum-algorithm %s for %s\n",
576 __func__, info->checksum->name, info->crypto->name);
577 return -EINVAL;
578 }
579
580 /* Calculate checksum with checksum-algorithm */
581 ret = info->checksum->calculate(info->checksum->name,
582 region, region_count, hash);
583 if (ret < 0) {
584 debug("%s: Error in checksum calculation\n", __func__);
585 return -EINVAL;
586 }
587
588 return rsa_verify_hash(info, hash, sig, sig_len);
589 }
590
591 #ifndef USE_HOSTCC
592
593 U_BOOT_CRYPTO_ALGO(rsa2048) = {
594 .name = "rsa2048",
595 .key_len = RSA2048_BYTES,
596 .verify = rsa_verify,
597 };
598
599 U_BOOT_CRYPTO_ALGO(rsa3072) = {
600 .name = "rsa3072",
601 .key_len = RSA3072_BYTES,
602 .verify = rsa_verify,
603 };
604
605 U_BOOT_CRYPTO_ALGO(rsa4096) = {
606 .name = "rsa4096",
607 .key_len = RSA4096_BYTES,
608 .verify = rsa_verify,
609 };
610
611 #endif
612