1 /*
2 * Copyright (c) 2015, Freescale Semiconductor, Inc.
3 * Copyright 2016-2017 NXP
4 *
5 * Redistribution and use in source and binary forms, with or without modification,
6 * are permitted provided that the following conditions are met:
7 *
8 * o Redistributions of source code must retain the above copyright notice, this list
9 * of conditions and the following disclaimer.
10 *
11 * o Redistributions in binary form must reproduce the above copyright notice, this
12 * list of conditions and the following disclaimer in the documentation and/or
13 * other materials provided with the distribution.
14 *
15 * o Neither the name of the copyright holder nor the names of its
16 * contributors may be used to endorse or promote products derived from this
17 * software without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
26 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
28 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 */
30
31 #include "fsl_ftm.h"
32
33 /*******************************************************************************
34 * Prototypes
35 ******************************************************************************/
36 /*!
37 * @brief Gets the instance from the base address
38 *
39 * @param base FTM peripheral base address
40 *
41 * @return The FTM instance
42 */
43 static uint32_t FTM_GetInstance(FTM_Type *base);
44
45 /*!
46 * @brief Sets the FTM register PWM synchronization method
47 *
48 * This function will set the necessary bits for the PWM synchronization mode that
49 * user wishes to use.
50 *
51 * @param base FTM peripheral base address
52 * @param syncMethod Syncronization methods to use to update buffered registers. This is a logical
53 * OR of members of the enumeration ::ftm_pwm_sync_method_t
54 */
55 static void FTM_SetPwmSync(FTM_Type *base, uint32_t syncMethod);
56
57 /*!
58 * @brief Sets the reload points used as loading points for register update
59 *
60 * This function will set the necessary bits based on what the user wishes to use as loading
61 * points for FTM register update. When using this it is not required to use PWM synchnronization.
62 *
63 * @param base FTM peripheral base address
64 * @param reloadPoints FTM reload points. This is a logical OR of members of the
65 * enumeration ::ftm_reload_point_t
66 */
67 static void FTM_SetReloadPoints(FTM_Type *base, uint32_t reloadPoints);
68
69 /*******************************************************************************
70 * Variables
71 ******************************************************************************/
72 /*! @brief Pointers to FTM bases for each instance. */
73 static FTM_Type *const s_ftmBases[] = FTM_BASE_PTRS;
74
75 #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
76 /*! @brief Pointers to FTM clocks for each instance. */
77 static const clock_ip_name_t s_ftmClocks[] = FTM_CLOCKS;
78 #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
79
80 /*******************************************************************************
81 * Code
82 ******************************************************************************/
FTM_GetInstance(FTM_Type * base)83 static uint32_t FTM_GetInstance(FTM_Type *base)
84 {
85 uint32_t instance;
86 uint32_t ftmArrayCount = (sizeof(s_ftmBases) / sizeof(s_ftmBases[0]));
87
88 /* Find the instance index from base address mappings. */
89 for (instance = 0; instance < ftmArrayCount; instance++)
90 {
91 if (s_ftmBases[instance] == base)
92 {
93 break;
94 }
95 }
96
97 assert(instance < ftmArrayCount);
98
99 return instance;
100 }
101
FTM_SetPwmSync(FTM_Type * base,uint32_t syncMethod)102 static void FTM_SetPwmSync(FTM_Type *base, uint32_t syncMethod)
103 {
104 uint8_t chnlNumber = 0;
105 uint32_t reg = 0, syncReg = 0;
106
107 syncReg = base->SYNC;
108 /* Enable PWM synchronization of output mask register */
109 syncReg |= FTM_SYNC_SYNCHOM_MASK;
110
111 reg = base->COMBINE;
112 for (chnlNumber = 0; chnlNumber < (FSL_FEATURE_FTM_CHANNEL_COUNTn(base) / 2); chnlNumber++)
113 {
114 /* Enable PWM synchronization of registers C(n)V and C(n+1)V */
115 reg |= (1U << (FTM_COMBINE_SYNCEN0_SHIFT + (FTM_COMBINE_COMBINE1_SHIFT * chnlNumber)));
116 }
117 base->COMBINE = reg;
118
119 reg = base->SYNCONF;
120
121 /* Use enhanced PWM synchronization method. Use PWM sync to update register values */
122 reg |= (FTM_SYNCONF_SYNCMODE_MASK | FTM_SYNCONF_CNTINC_MASK | FTM_SYNCONF_INVC_MASK | FTM_SYNCONF_SWOC_MASK);
123
124 if (syncMethod & FTM_SYNC_SWSYNC_MASK)
125 {
126 /* Enable needed bits for software trigger to update registers with its buffer value */
127 reg |= (FTM_SYNCONF_SWRSTCNT_MASK | FTM_SYNCONF_SWWRBUF_MASK | FTM_SYNCONF_SWINVC_MASK |
128 FTM_SYNCONF_SWSOC_MASK | FTM_SYNCONF_SWOM_MASK);
129 }
130
131 if (syncMethod & (FTM_SYNC_TRIG0_MASK | FTM_SYNC_TRIG1_MASK | FTM_SYNC_TRIG2_MASK))
132 {
133 /* Enable needed bits for hardware trigger to update registers with its buffer value */
134 reg |= (FTM_SYNCONF_HWRSTCNT_MASK | FTM_SYNCONF_HWWRBUF_MASK | FTM_SYNCONF_HWINVC_MASK |
135 FTM_SYNCONF_HWSOC_MASK | FTM_SYNCONF_HWOM_MASK);
136
137 /* Enable the appropriate hardware trigger that is used for PWM sync */
138 if (syncMethod & FTM_SYNC_TRIG0_MASK)
139 {
140 syncReg |= FTM_SYNC_TRIG0_MASK;
141 }
142 if (syncMethod & FTM_SYNC_TRIG1_MASK)
143 {
144 syncReg |= FTM_SYNC_TRIG1_MASK;
145 }
146 if (syncMethod & FTM_SYNC_TRIG2_MASK)
147 {
148 syncReg |= FTM_SYNC_TRIG2_MASK;
149 }
150 }
151
152 /* Write back values to the SYNC register */
153 base->SYNC = syncReg;
154
155 /* Write the PWM synch values to the SYNCONF register */
156 base->SYNCONF = reg;
157 }
158
FTM_SetReloadPoints(FTM_Type * base,uint32_t reloadPoints)159 static void FTM_SetReloadPoints(FTM_Type *base, uint32_t reloadPoints)
160 {
161 uint32_t chnlNumber = 0;
162 uint32_t reg = 0;
163
164 /* Need CNTINC bit to be 1 for CNTIN register to update with its buffer value on reload */
165 base->SYNCONF |= FTM_SYNCONF_CNTINC_MASK;
166
167 reg = base->COMBINE;
168 for (chnlNumber = 0; chnlNumber < (FSL_FEATURE_FTM_CHANNEL_COUNTn(base) / 2); chnlNumber++)
169 {
170 /* Need SYNCEN bit to be 1 for CnV reg to update with its buffer value on reload */
171 reg |= (1U << (FTM_COMBINE_SYNCEN0_SHIFT + (FTM_COMBINE_COMBINE1_SHIFT * chnlNumber)));
172 }
173 base->COMBINE = reg;
174
175 /* Set the reload points */
176 reg = base->PWMLOAD;
177
178 /* Enable the selected channel match reload points */
179 reg &= ~((1U << FSL_FEATURE_FTM_CHANNEL_COUNTn(base)) - 1);
180 reg |= (reloadPoints & ((1U << FSL_FEATURE_FTM_CHANNEL_COUNTn(base)) - 1));
181
182 #if defined(FSL_FEATURE_FTM_HAS_HALFCYCLE_RELOAD) && (FSL_FEATURE_FTM_HAS_HALFCYCLE_RELOAD)
183 /* Enable half cycle match as a reload point */
184 if (reloadPoints & kFTM_HalfCycMatch)
185 {
186 reg |= FTM_PWMLOAD_HCSEL_MASK;
187 }
188 else
189 {
190 reg &= ~FTM_PWMLOAD_HCSEL_MASK;
191 }
192 #endif /* FSL_FEATURE_FTM_HAS_HALFCYCLE_RELOAD */
193
194 base->PWMLOAD = reg;
195
196 /* These reload points are used when counter is in up-down counting mode */
197 reg = base->SYNC;
198 if (reloadPoints & kFTM_CntMax)
199 {
200 /* Reload when counter turns from up to down */
201 reg |= FTM_SYNC_CNTMAX_MASK;
202 }
203 else
204 {
205 reg &= ~FTM_SYNC_CNTMAX_MASK;
206 }
207
208 if (reloadPoints & kFTM_CntMin)
209 {
210 /* Reload when counter turns from down to up */
211 reg |= FTM_SYNC_CNTMIN_MASK;
212 }
213 else
214 {
215 reg &= ~FTM_SYNC_CNTMIN_MASK;
216 }
217 base->SYNC = reg;
218 }
219
FTM_Init(FTM_Type * base,const ftm_config_t * config)220 status_t FTM_Init(FTM_Type *base, const ftm_config_t *config)
221 {
222 assert(config);
223
224 uint32_t reg;
225
226 if (!(config->pwmSyncMode &
227 (FTM_SYNC_TRIG0_MASK | FTM_SYNC_TRIG1_MASK | FTM_SYNC_TRIG2_MASK | FTM_SYNC_SWSYNC_MASK)))
228 {
229 /* Invalid PWM sync mode */
230 return kStatus_Fail;
231 }
232
233 #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
234 /* Ungate the FTM clock*/
235 CLOCK_EnableClock(s_ftmClocks[FTM_GetInstance(base)]);
236 #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
237
238 /* Configure the fault mode, enable FTM mode and disable write protection */
239 base->MODE = FTM_MODE_FAULTM(config->faultMode) | FTM_MODE_FTMEN_MASK | FTM_MODE_WPDIS_MASK;
240
241 /* Configure the update mechanism for buffered registers */
242 FTM_SetPwmSync(base, config->pwmSyncMode);
243
244 /* Setup intermediate register reload points */
245 FTM_SetReloadPoints(base, config->reloadPoints);
246
247 /* Set the clock prescale factor */
248 base->SC = FTM_SC_PS(config->prescale);
249
250 /* Setup the counter operation */
251 base->CONF = (FTM_CONF_BDMMODE(config->bdmMode) | FTM_CONF_GTBEEN(config->useGlobalTimeBase));
252
253 /* Initial state of channel output */
254 base->OUTINIT = config->chnlInitState;
255
256 /* Channel polarity */
257 base->POL = config->chnlPolarity;
258
259 /* Set the external trigger sources */
260 base->EXTTRIG = config->extTriggers;
261 #if defined(FSL_FEATURE_FTM_HAS_RELOAD_INITIALIZATION_TRIGGER) && (FSL_FEATURE_FTM_HAS_RELOAD_INITIALIZATION_TRIGGER)
262 if (config->extTriggers & kFTM_ReloadInitTrigger)
263 {
264 base->CONF |= FTM_CONF_ITRIGR_MASK;
265 }
266 else
267 {
268 base->CONF &= ~FTM_CONF_ITRIGR_MASK;
269 }
270 #endif /* FSL_FEATURE_FTM_HAS_RELOAD_INITIALIZATION_TRIGGER */
271
272 /* FTM deadtime insertion control */
273 base->DEADTIME = (0u |
274 #if defined(FSL_FEATURE_FTM_HAS_EXTENDED_DEADTIME_VALUE) && (FSL_FEATURE_FTM_HAS_EXTENDED_DEADTIME_VALUE)
275 /* Has extended deadtime value register) */
276 FTM_DEADTIME_DTVALEX(config->deadTimeValue >> 6) |
277 #endif /* FSL_FEATURE_FTM_HAS_EXTENDED_DEADTIME_VALUE */
278 FTM_DEADTIME_DTPS(config->deadTimePrescale) |
279 FTM_DEADTIME_DTVAL(config->deadTimeValue));
280
281 /* FTM fault filter value */
282 reg = base->FLTCTRL;
283 reg &= ~FTM_FLTCTRL_FFVAL_MASK;
284 reg |= FTM_FLTCTRL_FFVAL(config->faultFilterValue);
285 base->FLTCTRL = reg;
286
287 return kStatus_Success;
288 }
289
FTM_Deinit(FTM_Type * base)290 void FTM_Deinit(FTM_Type *base)
291 {
292 /* Set clock source to none to disable counter */
293 base->SC &= ~(FTM_SC_CLKS_MASK);
294
295 #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
296 /* Gate the FTM clock */
297 CLOCK_DisableClock(s_ftmClocks[FTM_GetInstance(base)]);
298 #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
299 }
300
FTM_GetDefaultConfig(ftm_config_t * config)301 void FTM_GetDefaultConfig(ftm_config_t *config)
302 {
303 assert(config);
304
305 /* Divide FTM clock by 1 */
306 config->prescale = kFTM_Prescale_Divide_1;
307 /* FTM behavior in BDM mode */
308 config->bdmMode = kFTM_BdmMode_0;
309 /* Software trigger will be used to update registers */
310 config->pwmSyncMode = kFTM_SoftwareTrigger;
311 /* No intermediate register load */
312 config->reloadPoints = 0;
313 /* Fault control disabled for all channels */
314 config->faultMode = kFTM_Fault_Disable;
315 /* Disable the fault filter */
316 config->faultFilterValue = 0;
317 /* Divide the system clock by 1 */
318 config->deadTimePrescale = kFTM_Deadtime_Prescale_1;
319 /* No counts are inserted */
320 config->deadTimeValue = 0;
321 /* No external trigger */
322 config->extTriggers = 0;
323 /* Initialization value is 0 for all channels */
324 config->chnlInitState = 0;
325 /* Active high polarity for all channels */
326 config->chnlPolarity = 0;
327 /* Use internal FTM counter as timebase */
328 config->useGlobalTimeBase = false;
329 }
330
FTM_SetupPwm(FTM_Type * base,const ftm_chnl_pwm_signal_param_t * chnlParams,uint8_t numOfChnls,ftm_pwm_mode_t mode,uint32_t pwmFreq_Hz,uint32_t srcClock_Hz)331 status_t FTM_SetupPwm(FTM_Type *base,
332 const ftm_chnl_pwm_signal_param_t *chnlParams,
333 uint8_t numOfChnls,
334 ftm_pwm_mode_t mode,
335 uint32_t pwmFreq_Hz,
336 uint32_t srcClock_Hz)
337 {
338 assert(chnlParams);
339 assert(srcClock_Hz);
340 assert(pwmFreq_Hz);
341 assert(numOfChnls);
342
343 uint32_t mod, reg;
344 uint32_t ftmClock = (srcClock_Hz / (1U << (base->SC & FTM_SC_PS_MASK)));
345 uint16_t cnv, cnvFirstEdge;
346 uint8_t i;
347
348 switch (mode)
349 {
350 case kFTM_EdgeAlignedPwm:
351 case kFTM_CombinedPwm:
352 base->SC &= ~FTM_SC_CPWMS_MASK;
353 mod = (ftmClock / pwmFreq_Hz) - 1;
354 break;
355 case kFTM_CenterAlignedPwm:
356 base->SC |= FTM_SC_CPWMS_MASK;
357 mod = ftmClock / (pwmFreq_Hz * 2);
358 break;
359 default:
360 return kStatus_Fail;
361 }
362
363 /* Return an error in case we overflow the registers, probably would require changing
364 * clock source to get the desired frequency */
365 if (mod > 65535U)
366 {
367 return kStatus_Fail;
368 }
369 /* Set the PWM period */
370 base->MOD = mod;
371
372 /* Setup each FTM channel */
373 for (i = 0; i < numOfChnls; i++)
374 {
375 /* Return error if requested dutycycle is greater than the max allowed */
376 if (chnlParams->dutyCyclePercent > 100)
377 {
378 return kStatus_Fail;
379 }
380
381 if ((mode == kFTM_EdgeAlignedPwm) || (mode == kFTM_CenterAlignedPwm))
382 {
383 /* Clear the current mode and edge level bits */
384 reg = base->CONTROLS[chnlParams->chnlNumber].CnSC;
385 reg &= ~(FTM_CnSC_MSA_MASK | FTM_CnSC_MSB_MASK | FTM_CnSC_ELSA_MASK | FTM_CnSC_ELSB_MASK);
386
387 /* Setup the active level */
388 reg |= (uint32_t)(chnlParams->level << FTM_CnSC_ELSA_SHIFT);
389
390 /* Edge-aligned mode needs MSB to be 1, don't care for Center-aligned mode */
391 reg |= FTM_CnSC_MSB(1U);
392
393 /* Update the mode and edge level */
394 base->CONTROLS[chnlParams->chnlNumber].CnSC = reg;
395
396 if (chnlParams->dutyCyclePercent == 0)
397 {
398 /* Signal stays low */
399 cnv = 0;
400 }
401 else
402 {
403 cnv = (mod * chnlParams->dutyCyclePercent) / 100;
404 /* For 100% duty cycle */
405 if (cnv >= mod)
406 {
407 cnv = mod + 1;
408 }
409 }
410
411 base->CONTROLS[chnlParams->chnlNumber].CnV = cnv;
412 #if defined(FSL_FEATURE_FTM_HAS_ENABLE_PWM_OUTPUT) && (FSL_FEATURE_FTM_HAS_ENABLE_PWM_OUTPUT)
413 /* Set to output mode */
414 FTM_SetPwmOutputEnable(base, chnlParams->chnlNumber, true);
415 #endif
416 }
417 else
418 {
419 /* This check is added for combined mode as the channel number should be the pair number */
420 if (chnlParams->chnlNumber >= (FSL_FEATURE_FTM_CHANNEL_COUNTn(base) / 2))
421 {
422 return kStatus_Fail;
423 }
424
425 /* Return error if requested value is greater than the max allowed */
426 if (chnlParams->firstEdgeDelayPercent > 100)
427 {
428 return kStatus_Fail;
429 }
430
431 /* Configure delay of the first edge */
432 if (chnlParams->firstEdgeDelayPercent == 0)
433 {
434 /* No delay for the first edge */
435 cnvFirstEdge = 0;
436 }
437 else
438 {
439 cnvFirstEdge = (mod * chnlParams->firstEdgeDelayPercent) / 100;
440 }
441
442 /* Configure dutycycle */
443 if (chnlParams->dutyCyclePercent == 0)
444 {
445 /* Signal stays low */
446 cnv = 0;
447 cnvFirstEdge = 0;
448 }
449 else
450 {
451 cnv = (mod * chnlParams->dutyCyclePercent) / 100;
452 /* For 100% duty cycle */
453 if (cnv >= mod)
454 {
455 cnv = mod + 1;
456 }
457 }
458
459 /* Clear the current mode and edge level bits for channel n */
460 reg = base->CONTROLS[chnlParams->chnlNumber * 2].CnSC;
461 reg &= ~(FTM_CnSC_MSA_MASK | FTM_CnSC_MSB_MASK | FTM_CnSC_ELSA_MASK | FTM_CnSC_ELSB_MASK);
462
463 /* Setup the active level for channel n */
464 reg |= (uint32_t)(chnlParams->level << FTM_CnSC_ELSA_SHIFT);
465
466 /* Update the mode and edge level for channel n */
467 base->CONTROLS[chnlParams->chnlNumber * 2].CnSC = reg;
468
469 /* Clear the current mode and edge level bits for channel n + 1 */
470 reg = base->CONTROLS[(chnlParams->chnlNumber * 2) + 1].CnSC;
471 reg &= ~(FTM_CnSC_MSA_MASK | FTM_CnSC_MSB_MASK | FTM_CnSC_ELSA_MASK | FTM_CnSC_ELSB_MASK);
472
473 /* Setup the active level for channel n + 1 */
474 reg |= (uint32_t)(chnlParams->level << FTM_CnSC_ELSA_SHIFT);
475
476 /* Update the mode and edge level for channel n + 1*/
477 base->CONTROLS[(chnlParams->chnlNumber * 2) + 1].CnSC = reg;
478
479 /* Set the combine bit for the channel pair */
480 base->COMBINE |=
481 (1U << (FTM_COMBINE_COMBINE0_SHIFT + (FTM_COMBINE_COMBINE1_SHIFT * chnlParams->chnlNumber)));
482
483 /* Set the channel pair values */
484 base->CONTROLS[chnlParams->chnlNumber * 2].CnV = cnvFirstEdge;
485 base->CONTROLS[(chnlParams->chnlNumber * 2) + 1].CnV = cnvFirstEdge + cnv;
486
487 #if defined(FSL_FEATURE_FTM_HAS_ENABLE_PWM_OUTPUT) && (FSL_FEATURE_FTM_HAS_ENABLE_PWM_OUTPUT)
488 /* Set to output mode */
489 FTM_SetPwmOutputEnable(base, (ftm_chnl_t)((uint8_t)chnlParams->chnlNumber * 2), true);
490 FTM_SetPwmOutputEnable(base, (ftm_chnl_t)((uint8_t)chnlParams->chnlNumber * 2 + 1), true);
491 #endif
492 }
493 chnlParams++;
494 }
495
496 return kStatus_Success;
497 }
498
FTM_UpdatePwmDutycycle(FTM_Type * base,ftm_chnl_t chnlNumber,ftm_pwm_mode_t currentPwmMode,uint8_t dutyCyclePercent)499 void FTM_UpdatePwmDutycycle(FTM_Type *base,
500 ftm_chnl_t chnlNumber,
501 ftm_pwm_mode_t currentPwmMode,
502 uint8_t dutyCyclePercent)
503 {
504 uint16_t cnv, cnvFirstEdge = 0, mod;
505
506 mod = base->MOD;
507 if ((currentPwmMode == kFTM_EdgeAlignedPwm) || (currentPwmMode == kFTM_CenterAlignedPwm))
508 {
509 cnv = (mod * dutyCyclePercent) / 100;
510 /* For 100% duty cycle */
511 if (cnv >= mod)
512 {
513 cnv = mod + 1;
514 }
515 base->CONTROLS[chnlNumber].CnV = cnv;
516 }
517 else
518 {
519 /* This check is added for combined mode as the channel number should be the pair number */
520 if (chnlNumber >= (FSL_FEATURE_FTM_CHANNEL_COUNTn(base) / 2))
521 {
522 return;
523 }
524
525 cnv = (mod * dutyCyclePercent) / 100;
526 cnvFirstEdge = base->CONTROLS[chnlNumber * 2].CnV;
527 /* For 100% duty cycle */
528 if (cnv >= mod)
529 {
530 cnv = mod + 1;
531 }
532 base->CONTROLS[(chnlNumber * 2) + 1].CnV = cnvFirstEdge + cnv;
533 }
534 }
535
FTM_UpdateChnlEdgeLevelSelect(FTM_Type * base,ftm_chnl_t chnlNumber,uint8_t level)536 void FTM_UpdateChnlEdgeLevelSelect(FTM_Type *base, ftm_chnl_t chnlNumber, uint8_t level)
537 {
538 uint32_t reg = base->CONTROLS[chnlNumber].CnSC;
539
540 /* Clear the field and write the new level value */
541 reg &= ~(FTM_CnSC_ELSA_MASK | FTM_CnSC_ELSB_MASK);
542 reg |= ((uint32_t)level << FTM_CnSC_ELSA_SHIFT) & (FTM_CnSC_ELSA_MASK | FTM_CnSC_ELSB_MASK);
543
544 base->CONTROLS[chnlNumber].CnSC = reg;
545 }
546
FTM_SetupInputCapture(FTM_Type * base,ftm_chnl_t chnlNumber,ftm_input_capture_edge_t captureMode,uint32_t filterValue)547 void FTM_SetupInputCapture(FTM_Type *base,
548 ftm_chnl_t chnlNumber,
549 ftm_input_capture_edge_t captureMode,
550 uint32_t filterValue)
551 {
552 uint32_t reg;
553
554 /* Clear the combine bit for the channel pair */
555 base->COMBINE &= ~(1U << (FTM_COMBINE_COMBINE0_SHIFT + (FTM_COMBINE_COMBINE1_SHIFT * (chnlNumber >> 1))));
556 /* Clear the dual edge capture mode because it's it's higher priority */
557 base->COMBINE &= ~(1U << (FTM_COMBINE_DECAPEN0_SHIFT + (FTM_COMBINE_COMBINE1_SHIFT * (chnlNumber >> 1))));
558 /* Clear the quadrature decoder mode beacause it's higher priority */
559 base->QDCTRL &= ~FTM_QDCTRL_QUADEN_MASK;
560
561 reg = base->CONTROLS[chnlNumber].CnSC;
562 reg &= ~(FTM_CnSC_MSA_MASK | FTM_CnSC_MSB_MASK | FTM_CnSC_ELSA_MASK | FTM_CnSC_ELSB_MASK);
563 reg |= captureMode;
564
565 /* Set the requested input capture mode */
566 base->CONTROLS[chnlNumber].CnSC = reg;
567 /* Input filter available only for channels 0, 1, 2, 3 */
568 if (chnlNumber < kFTM_Chnl_4)
569 {
570 reg = base->FILTER;
571 reg &= ~(FTM_FILTER_CH0FVAL_MASK << (FTM_FILTER_CH1FVAL_SHIFT * chnlNumber));
572 reg |= (filterValue << (FTM_FILTER_CH1FVAL_SHIFT * chnlNumber));
573 base->FILTER = reg;
574 }
575 #if defined(FSL_FEATURE_FTM_HAS_ENABLE_PWM_OUTPUT) && (FSL_FEATURE_FTM_HAS_ENABLE_PWM_OUTPUT)
576 /* Set to input mode */
577 FTM_SetPwmOutputEnable(base, chnlNumber, false);
578 #endif
579 }
580
FTM_SetupOutputCompare(FTM_Type * base,ftm_chnl_t chnlNumber,ftm_output_compare_mode_t compareMode,uint32_t compareValue)581 void FTM_SetupOutputCompare(FTM_Type *base,
582 ftm_chnl_t chnlNumber,
583 ftm_output_compare_mode_t compareMode,
584 uint32_t compareValue)
585 {
586 uint32_t reg;
587
588 /* Clear the combine bit for the channel pair */
589 base->COMBINE &= ~(1U << (FTM_COMBINE_COMBINE0_SHIFT + (FTM_COMBINE_COMBINE1_SHIFT * (chnlNumber >> 1))));
590 /* Clear the dual edge capture mode because it's it's higher priority */
591 base->COMBINE &= ~(1U << (FTM_COMBINE_DECAPEN0_SHIFT + (FTM_COMBINE_COMBINE1_SHIFT * (chnlNumber >> 1))));
592 /* Clear the quadrature decoder mode beacause it's higher priority */
593 base->QDCTRL &= ~FTM_QDCTRL_QUADEN_MASK;
594
595 reg = base->CONTROLS[chnlNumber].CnSC;
596 reg &= ~(FTM_CnSC_MSA_MASK | FTM_CnSC_MSB_MASK | FTM_CnSC_ELSA_MASK | FTM_CnSC_ELSB_MASK);
597 reg |= compareMode;
598 /* Setup the channel output behaviour when a match occurs with the compare value */
599 base->CONTROLS[chnlNumber].CnSC = reg;
600
601 /* Set output on match to the requested level */
602 base->CONTROLS[chnlNumber].CnV = compareValue;
603
604 #if defined(FSL_FEATURE_FTM_HAS_ENABLE_PWM_OUTPUT) && (FSL_FEATURE_FTM_HAS_ENABLE_PWM_OUTPUT)
605 /* Set to output mode */
606 FTM_SetPwmOutputEnable(base, chnlNumber, true);
607 #endif
608 }
609
FTM_SetupDualEdgeCapture(FTM_Type * base,ftm_chnl_t chnlPairNumber,const ftm_dual_edge_capture_param_t * edgeParam,uint32_t filterValue)610 void FTM_SetupDualEdgeCapture(FTM_Type *base,
611 ftm_chnl_t chnlPairNumber,
612 const ftm_dual_edge_capture_param_t *edgeParam,
613 uint32_t filterValue)
614 {
615 assert(edgeParam);
616
617 uint32_t reg;
618
619 reg = base->COMBINE;
620 /* Clear the combine bit for the channel pair */
621 reg &= ~(1U << (FTM_COMBINE_COMBINE0_SHIFT + (FTM_COMBINE_COMBINE1_SHIFT * chnlPairNumber)));
622 /* Enable the DECAPEN bit */
623 reg |= (1U << (FTM_COMBINE_DECAPEN0_SHIFT + (FTM_COMBINE_COMBINE1_SHIFT * chnlPairNumber)));
624 reg |= (1U << (FTM_COMBINE_DECAP0_SHIFT + (FTM_COMBINE_COMBINE1_SHIFT * chnlPairNumber)));
625 base->COMBINE = reg;
626
627 /* Setup the edge detection from channel n and n + 1 */
628 reg = base->CONTROLS[chnlPairNumber * 2].CnSC;
629 reg &= ~(FTM_CnSC_MSA_MASK | FTM_CnSC_MSB_MASK | FTM_CnSC_ELSA_MASK | FTM_CnSC_ELSB_MASK);
630 reg |= ((uint32_t)edgeParam->mode | (uint32_t)edgeParam->currChanEdgeMode);
631 base->CONTROLS[chnlPairNumber * 2].CnSC = reg;
632
633 reg = base->CONTROLS[(chnlPairNumber * 2) + 1].CnSC;
634 reg &= ~(FTM_CnSC_MSA_MASK | FTM_CnSC_MSB_MASK | FTM_CnSC_ELSA_MASK | FTM_CnSC_ELSB_MASK);
635 reg |= ((uint32_t)edgeParam->mode | (uint32_t)edgeParam->nextChanEdgeMode);
636 base->CONTROLS[(chnlPairNumber * 2) + 1].CnSC = reg;
637
638 /* Input filter available only for channels 0, 1, 2, 3 */
639 if (chnlPairNumber < kFTM_Chnl_4)
640 {
641 reg = base->FILTER;
642 reg &= ~(FTM_FILTER_CH0FVAL_MASK << (FTM_FILTER_CH1FVAL_SHIFT * chnlPairNumber));
643 reg |= (filterValue << (FTM_FILTER_CH1FVAL_SHIFT * chnlPairNumber));
644 base->FILTER = reg;
645 }
646
647 #if defined(FSL_FEATURE_FTM_HAS_ENABLE_PWM_OUTPUT) && (FSL_FEATURE_FTM_HAS_ENABLE_PWM_OUTPUT)
648 /* Set to input mode */
649 FTM_SetPwmOutputEnable(base, chnlPairNumber, false);
650 #endif
651 }
652
FTM_SetupQuadDecode(FTM_Type * base,const ftm_phase_params_t * phaseAParams,const ftm_phase_params_t * phaseBParams,ftm_quad_decode_mode_t quadMode)653 void FTM_SetupQuadDecode(FTM_Type *base,
654 const ftm_phase_params_t *phaseAParams,
655 const ftm_phase_params_t *phaseBParams,
656 ftm_quad_decode_mode_t quadMode)
657 {
658 assert(phaseAParams);
659 assert(phaseBParams);
660
661 uint32_t reg;
662
663 /* Set Phase A filter value if phase filter is enabled */
664 if (phaseAParams->enablePhaseFilter)
665 {
666 reg = base->FILTER;
667 reg &= ~(FTM_FILTER_CH0FVAL_MASK);
668 reg |= FTM_FILTER_CH0FVAL(phaseAParams->phaseFilterVal);
669 base->FILTER = reg;
670 }
671
672 /* Set Phase B filter value if phase filter is enabled */
673 if (phaseBParams->enablePhaseFilter)
674 {
675 reg = base->FILTER;
676 reg &= ~(FTM_FILTER_CH1FVAL_MASK);
677 reg |= FTM_FILTER_CH1FVAL(phaseBParams->phaseFilterVal);
678 base->FILTER = reg;
679 }
680
681 /* Set Quadrature decode properties */
682 reg = base->QDCTRL;
683 reg &= ~(FTM_QDCTRL_QUADMODE_MASK | FTM_QDCTRL_PHAFLTREN_MASK | FTM_QDCTRL_PHBFLTREN_MASK | FTM_QDCTRL_PHAPOL_MASK |
684 FTM_QDCTRL_PHBPOL_MASK);
685 reg |= (FTM_QDCTRL_QUADMODE(quadMode) | FTM_QDCTRL_PHAFLTREN(phaseAParams->enablePhaseFilter) |
686 FTM_QDCTRL_PHBFLTREN(phaseBParams->enablePhaseFilter) | FTM_QDCTRL_PHAPOL(phaseAParams->phasePolarity) |
687 FTM_QDCTRL_PHBPOL(phaseBParams->phasePolarity));
688 base->QDCTRL = reg;
689 /* Enable Quad decode */
690 base->QDCTRL |= FTM_QDCTRL_QUADEN_MASK;
691 }
692
FTM_SetupFault(FTM_Type * base,ftm_fault_input_t faultNumber,const ftm_fault_param_t * faultParams)693 void FTM_SetupFault(FTM_Type *base, ftm_fault_input_t faultNumber, const ftm_fault_param_t *faultParams)
694 {
695 assert(faultParams);
696
697 uint32_t reg;
698
699 reg = base->FLTCTRL;
700 if (faultParams->enableFaultInput)
701 {
702 /* Enable the fault input */
703 reg |= (FTM_FLTCTRL_FAULT0EN_MASK << faultNumber);
704 }
705 else
706 {
707 /* Disable the fault input */
708 reg &= ~(FTM_FLTCTRL_FAULT0EN_MASK << faultNumber);
709 }
710
711 if (faultParams->useFaultFilter)
712 {
713 /* Enable the fault filter */
714 reg |= (FTM_FLTCTRL_FFLTR0EN_MASK << (FTM_FLTCTRL_FFLTR0EN_SHIFT + faultNumber));
715 }
716 else
717 {
718 /* Disable the fault filter */
719 reg &= ~(FTM_FLTCTRL_FFLTR0EN_MASK << (FTM_FLTCTRL_FFLTR0EN_SHIFT + faultNumber));
720 }
721 base->FLTCTRL = reg;
722
723 if (faultParams->faultLevel)
724 {
725 /* Active low polarity for the fault input pin */
726 base->FLTPOL |= (1U << faultNumber);
727 }
728 else
729 {
730 /* Active high polarity for the fault input pin */
731 base->FLTPOL &= ~(1U << faultNumber);
732 }
733 }
734
FTM_EnableInterrupts(FTM_Type * base,uint32_t mask)735 void FTM_EnableInterrupts(FTM_Type *base, uint32_t mask)
736 {
737 uint32_t chnlInts = (mask & 0xFFU);
738 uint8_t chnlNumber = 0;
739
740 /* Enable the timer overflow interrupt */
741 if (mask & kFTM_TimeOverflowInterruptEnable)
742 {
743 base->SC |= FTM_SC_TOIE_MASK;
744 }
745
746 /* Enable the fault interrupt */
747 if (mask & kFTM_FaultInterruptEnable)
748 {
749 base->MODE |= FTM_MODE_FAULTIE_MASK;
750 }
751
752 #if defined(FSL_FEATURE_FTM_HAS_RELOAD_INTERRUPT) && (FSL_FEATURE_FTM_HAS_RELOAD_INTERRUPT)
753 /* Enable the reload interrupt available only on certain SoC's */
754 if (mask & kFTM_ReloadInterruptEnable)
755 {
756 base->SC |= FTM_SC_RIE_MASK;
757 }
758 #endif
759
760 /* Enable the channel interrupts */
761 while (chnlInts)
762 {
763 if (chnlInts & 0x1)
764 {
765 base->CONTROLS[chnlNumber].CnSC |= FTM_CnSC_CHIE_MASK;
766 }
767 chnlNumber++;
768 chnlInts = chnlInts >> 1U;
769 }
770 }
771
FTM_DisableInterrupts(FTM_Type * base,uint32_t mask)772 void FTM_DisableInterrupts(FTM_Type *base, uint32_t mask)
773 {
774 uint32_t chnlInts = (mask & 0xFF);
775 uint8_t chnlNumber = 0;
776
777 /* Disable the timer overflow interrupt */
778 if (mask & kFTM_TimeOverflowInterruptEnable)
779 {
780 base->SC &= ~FTM_SC_TOIE_MASK;
781 }
782 /* Disable the fault interrupt */
783 if (mask & kFTM_FaultInterruptEnable)
784 {
785 base->MODE &= ~FTM_MODE_FAULTIE_MASK;
786 }
787
788 #if defined(FSL_FEATURE_FTM_HAS_RELOAD_INTERRUPT) && (FSL_FEATURE_FTM_HAS_RELOAD_INTERRUPT)
789 /* Disable the reload interrupt available only on certain SoC's */
790 if (mask & kFTM_ReloadInterruptEnable)
791 {
792 base->SC &= ~FTM_SC_RIE_MASK;
793 }
794 #endif
795
796 /* Disable the channel interrupts */
797 while (chnlInts)
798 {
799 if (chnlInts & 0x1)
800 {
801 base->CONTROLS[chnlNumber].CnSC &= ~FTM_CnSC_CHIE_MASK;
802 }
803 chnlNumber++;
804 chnlInts = chnlInts >> 1U;
805 }
806 }
807
FTM_GetEnabledInterrupts(FTM_Type * base)808 uint32_t FTM_GetEnabledInterrupts(FTM_Type *base)
809 {
810 uint32_t enabledInterrupts = 0;
811 int8_t chnlCount = FSL_FEATURE_FTM_CHANNEL_COUNTn(base);
812
813 /* The CHANNEL_COUNT macro returns -1 if it cannot match the FTM instance */
814 assert(chnlCount != -1);
815
816 /* Check if timer overflow interrupt is enabled */
817 if (base->SC & FTM_SC_TOIE_MASK)
818 {
819 enabledInterrupts |= kFTM_TimeOverflowInterruptEnable;
820 }
821 /* Check if fault interrupt is enabled */
822 if (base->MODE & FTM_MODE_FAULTIE_MASK)
823 {
824 enabledInterrupts |= kFTM_FaultInterruptEnable;
825 }
826
827 #if defined(FSL_FEATURE_FTM_HAS_RELOAD_INTERRUPT) && (FSL_FEATURE_FTM_HAS_RELOAD_INTERRUPT)
828 /* Check if the reload interrupt is enabled */
829 if (base->SC & FTM_SC_RIE_MASK)
830 {
831 enabledInterrupts |= kFTM_ReloadInterruptEnable;
832 }
833 #endif
834
835 /* Check if the channel interrupts are enabled */
836 while (chnlCount > 0)
837 {
838 chnlCount--;
839 if (base->CONTROLS[chnlCount].CnSC & FTM_CnSC_CHIE_MASK)
840 {
841 enabledInterrupts |= (1U << chnlCount);
842 }
843 }
844
845 return enabledInterrupts;
846 }
847
FTM_GetStatusFlags(FTM_Type * base)848 uint32_t FTM_GetStatusFlags(FTM_Type *base)
849 {
850 uint32_t statusFlags = 0;
851
852 /* Check the timer flag */
853 if (base->SC & FTM_SC_TOF_MASK)
854 {
855 statusFlags |= kFTM_TimeOverflowFlag;
856 }
857 /* Check fault flag */
858 if (base->FMS & FTM_FMS_FAULTF_MASK)
859 {
860 statusFlags |= kFTM_FaultFlag;
861 }
862 /* Check channel trigger flag */
863 if (base->EXTTRIG & FTM_EXTTRIG_TRIGF_MASK)
864 {
865 statusFlags |= kFTM_ChnlTriggerFlag;
866 }
867 #if defined(FSL_FEATURE_FTM_HAS_RELOAD_INTERRUPT) && (FSL_FEATURE_FTM_HAS_RELOAD_INTERRUPT)
868 /* Check reload flag */
869 if (base->SC & FTM_SC_RF_MASK)
870 {
871 statusFlags |= kFTM_ReloadFlag;
872 }
873 #endif
874
875 /* Lower 8 bits contain the channel status flags */
876 statusFlags |= (base->STATUS & 0xFFU);
877
878 return statusFlags;
879 }
880
FTM_ClearStatusFlags(FTM_Type * base,uint32_t mask)881 void FTM_ClearStatusFlags(FTM_Type *base, uint32_t mask)
882 {
883 /* Clear the timer overflow flag by writing a 0 to the bit while it is set */
884 if (mask & kFTM_TimeOverflowFlag)
885 {
886 base->SC &= ~FTM_SC_TOF_MASK;
887 }
888 /* Clear fault flag by writing a 0 to the bit while it is set */
889 if (mask & kFTM_FaultFlag)
890 {
891 base->FMS &= ~FTM_FMS_FAULTF_MASK;
892 }
893 /* Clear channel trigger flag */
894 if (mask & kFTM_ChnlTriggerFlag)
895 {
896 base->EXTTRIG &= ~FTM_EXTTRIG_TRIGF_MASK;
897 }
898
899 #if defined(FSL_FEATURE_FTM_HAS_RELOAD_INTERRUPT) && (FSL_FEATURE_FTM_HAS_RELOAD_INTERRUPT)
900 /* Check reload flag by writing a 0 to the bit while it is set */
901 if (mask & kFTM_ReloadFlag)
902 {
903 base->SC &= ~FTM_SC_RF_MASK;
904 }
905 #endif
906 /* Clear the channel status flags by writing a 0 to the bit */
907 base->STATUS &= ~(mask & 0xFFU);
908 }
909