1
2 /****************************************************************************
3 *
4 * Copyright Raph Levien 2022
5 * Copyright Nicolas Silva 2022
6 * Copyright NXP 2022
7 *
8 * Licensed under the Apache License, Version 2.0 (the "License");
9 * you may not use this file except in compliance with the License.
10 * You may obtain a copy of the License at
11 *
12 * http://www.apache.org/licenses/LICENSE-2.0
13 *
14 * Unless required by applicable law or agreed to in writing, software
15 * distributed under the License is distributed on an "AS IS" BASIS,
16 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17 * See the License for the specific language governing permissions and
18 * limitations under the License.
19 *
20 *****************************************************************************/
21
22 #include <math.h>
23
24 #include "vg_lite_flat.h"
25
26 /*
27 * Stop IAR compiler from warning about implicit conversions from float to
28 * double
29 */
30 #if (defined(__ICCARM__))
31 #pragma diag_suppress = Pa205
32 #endif
33
34 #ifndef VG_CURVE_FLATTENING_TOLERANCE
35 #define VG_CURVE_FLATTENING_TOLERANCE 0.25
36 #endif /* defined(VG_CURVE_FLATTENING_TOLERANCE) */
37
38 #define FABSF(x) ((vg_lite_float_t) fabs(x))
39 #define SQRTF(x) ((vg_lite_float_t) sqrt(x))
40 #define CEILF(x) ((vg_lite_float_t) ceil(x))
41
42 #define VG_LITE_ERROR_HANDLER(func) \
43 if ((error = func) != VG_LITE_SUCCESS) \
44 goto ErrorHandler
45
46 /* Point flatten type for flattened line segments. */
47 #define vgcFLATTEN_NO 0
48 #define vgcFLATTEN_START 1
49 #define vgcFLATTEN_MIDDLE 2
50 #define vgcFLATTEN_END 3
51
52 /*
53 * Algorithm originally created by Raph Levien:
54 * https://raphlinus.github.io/graphics/curves/2019/12/23/flatten-quadbez.html
55 */
56
57 #define FHYPOTF(x, y) ((vg_lite_float_t) hypotf(x, y))
58 #define FPOWF(x, y) ((vg_lite_float_t) powf(x, y))
59
60 /*
61 * Contains the fields that are used to represent the quadratic Bezier curve
62 * as a 'y = x^2' parabola.
63 */
64 typedef struct parabola_approx {
65 vg_lite_float_t x0;
66 vg_lite_float_t x2;
67 vg_lite_float_t scale;
68 vg_lite_float_t cross;
69 } parabola_approx_t;
70
71 /*
72 * Keeps the quadratic Bezier's control points. This makes life easier when
73 * passing quadratics as parameters, so we don't have to give 6 floats every
74 * time.
75 */
76 typedef struct quad_bezier {
77 vg_lite_float_t X0;
78 vg_lite_float_t Y0;
79 vg_lite_float_t X1;
80 vg_lite_float_t Y1;
81 vg_lite_float_t X2;
82 vg_lite_float_t Y2;
83 } quad_bezier_t;
84
85 /*
86 * Parameters which are used by the flattening algorithm.
87 */
88 typedef struct quad_bezier_flatten_params {
89 vg_lite_float_t a0;
90 vg_lite_float_t a2;
91 int num_points;
92 vg_lite_float_t u0;
93 vg_lite_float_t u2;
94 } quad_bezier_flatten_params_t;
95
96 /*
97 * Keeps the cubic Bezier's control points.
98 */
99 typedef struct cubic_bezier {
100 vg_lite_float_t X0;
101 vg_lite_float_t Y0;
102 vg_lite_float_t X1;
103 vg_lite_float_t Y1;
104 vg_lite_float_t X2;
105 vg_lite_float_t Y2;
106 vg_lite_float_t X3;
107 vg_lite_float_t Y3;
108 } cubic_bezier_t;
109
110
111 vg_lite_error_t _add_point_to_point_list(
112 vg_lite_stroke_conversion_t * stroke_conversion,
113 vg_lite_float_t X,
114 vg_lite_float_t Y,
115 uint8_t flatten_flag);
116
117 vg_lite_error_t _add_point_to_point_list_wdelta(
118 vg_lite_stroke_conversion_t * stroke_conversion,
119 vg_lite_float_t X,
120 vg_lite_float_t Y,
121 vg_lite_float_t DX,
122 vg_lite_float_t DY,
123 uint8_t flatten_flag);
124
125
126 /*
127 * Evaluates the Bernstein polynomial that represents the curve, at 't'.
128 * 't' should be a value between 0.0 and 1.0 (though it can be any float, but
129 * the relevant values are between 0 and 1).
130 * 'x' and 'y' will contain the coordinates of the evaluated point.
131 */
quad_bezier_eval(const quad_bezier_t * q,vg_lite_float_t t,vg_lite_float_t * x,vg_lite_float_t * y)132 static void quad_bezier_eval(
133 const quad_bezier_t *q,
134 vg_lite_float_t t,
135 vg_lite_float_t *x,
136 vg_lite_float_t *y
137 )
138 {
139 const vg_lite_float_t omt = 1.0 - t;
140 *x = q->X0 * omt * omt + 2.0 * q->X1 * t * omt + q->X2 * t * t;
141 *y = q->Y0 * omt * omt + 2.0 * q->Y1 * t * omt + q->Y2 * t * t;
142 }
143
144 /*
145 * Approximates the integral which uses the arclength and curvature of the
146 * parabola.
147 */
approx_integral(vg_lite_float_t x)148 static vg_lite_float_t approx_integral(vg_lite_float_t x)
149 {
150 const vg_lite_float_t D = 0.67;
151 return x / (1.0 - D + FPOWF(FPOWF(D, 4) + 0.25 * x * x, 0.25));
152 }
153
154 /*
155 * Approximates the inverse of the previous integral.
156 */
approx_inverse_integral(vg_lite_float_t x)157 static vg_lite_float_t approx_inverse_integral(vg_lite_float_t x)
158 {
159 const vg_lite_float_t B = 0.39;
160 return x * (1.0 - B + SQRTF(B * B + 0.25 * x * x));
161 }
162
163 /*
164 * Represents a quadratic Bezier curve as a parabola.
165 */
map_to_parabola(const quad_bezier_t * q)166 static parabola_approx_t map_to_parabola(const quad_bezier_t *q)
167 {
168 const vg_lite_float_t ddx = 2 * q->X1 - q->X0 - q->X2;
169 const vg_lite_float_t ddy = 2 * q->Y1 - q->Y0 - q->Y2;
170 const vg_lite_float_t u0 = (q->X1 - q->X0) * ddx + (q->Y1 - q->Y0) * ddy;
171 const vg_lite_float_t u2 = (q->X2 - q->X1) * ddx + (q->Y2 - q->Y1) * ddy;
172 const vg_lite_float_t cross = (q->X2 - q->X0) * ddy - (q->Y2 - q->Y0) * ddx;
173 const vg_lite_float_t x0 = u0 / cross;
174 const vg_lite_float_t x2 = u2 / cross;
175 const vg_lite_float_t scale = FABSF(cross) / (FHYPOTF(ddx, ddy) * FABSF(x2 - x0));
176
177 return (parabola_approx_t) {
178 .x0 = x0,
179 .x2 = x2,
180 .scale = scale,
181 .cross = cross
182 };
183 }
184
185 /*
186 * Tolerance influences the number of lines generated. The lower the tolerance,
187 * the more lines it generates, thus the flattening will have a higher quality,
188 * but it will also consume more memory. The bigger the tolerance, the less lines
189 * will be generated, so the quality will be worse, but the memory consumption
190 * will be better.
191 *
192 * A good default value could be 0.25.
193 */
quad_bezier_flatten_params_init(const quad_bezier_t * q,vg_lite_float_t tolerance)194 static quad_bezier_flatten_params_t quad_bezier_flatten_params_init(
195 const quad_bezier_t *q,
196 vg_lite_float_t tolerance
197 )
198 {
199 const parabola_approx_t params = map_to_parabola(q);
200 const vg_lite_float_t a0 = approx_integral(params.x0);
201 const vg_lite_float_t a2 = approx_integral(params.x2);
202 const vg_lite_float_t count = 0.5 * FABSF(a2 - a0) * SQRTF(params.scale / tolerance);
203 const int num_points = (int)CEILF(count);
204 const vg_lite_float_t u0 = approx_inverse_integral(a0);
205 const vg_lite_float_t u2 = approx_inverse_integral(a2);
206
207 return (quad_bezier_flatten_params_t) {
208 .a0 = a0,
209 .a2 = a2,
210 .num_points = num_points,
211 .u0 = u0,
212 .u2 = u2
213 };
214 }
215
216 /*
217 * Puts into (x, y) the coordinate to which a line should be drawn given the step.
218 * This should be used in a loop to flatten a curve, like this:
219 * ```
220 * params = quad_bezier_flatten_params_init(&q, tolerance);
221 * for (int i = 1; i < params.num_points; ++i) {
222 * vg_lite_float_t x, y;
223 * quad_bezier_flatten_at(&q, ¶ms, i, &x, &y);
224 * draw_line_to(x, y);
225 * }
226 * ```
227 */
quad_bezier_flatten_at(const quad_bezier_t * q,const quad_bezier_flatten_params_t * params,int step,vg_lite_float_t * x,vg_lite_float_t * y)228 static void quad_bezier_flatten_at(
229 const quad_bezier_t *q,
230 const quad_bezier_flatten_params_t *params,
231 int step,
232 vg_lite_float_t *x,
233 vg_lite_float_t *y
234 )
235 {
236 const vg_lite_float_t a0 = params->a0, a2 = params->a2, u0 = params->u0, u2 = params->u2;
237 const int num_points = params->num_points;
238 const vg_lite_float_t u = approx_inverse_integral(a0 + ((a2 - a0) * step) / num_points);
239 const vg_lite_float_t t = (u - u0) / (u2 - u0);
240
241 quad_bezier_eval(q, t, x, y);
242 }
243
244 vg_lite_error_t
_flatten_quad_bezier(vg_lite_stroke_conversion_t * stroke_conversion,vg_lite_float_t X0,vg_lite_float_t Y0,vg_lite_float_t X1,vg_lite_float_t Y1,vg_lite_float_t X2,vg_lite_float_t Y2)245 _flatten_quad_bezier(
246 vg_lite_stroke_conversion_t *stroke_conversion,
247 vg_lite_float_t X0,
248 vg_lite_float_t Y0,
249 vg_lite_float_t X1,
250 vg_lite_float_t Y1,
251 vg_lite_float_t X2,
252 vg_lite_float_t Y2
253 )
254 {
255 vg_lite_error_t error = VG_LITE_SUCCESS;
256 vg_lite_path_point_ptr point0, point1;
257 vg_lite_float_t x, y;
258
259 const vg_lite_float_t tolerance = VG_CURVE_FLATTENING_TOLERANCE;
260 const quad_bezier_t q = {
261 .X0 = X0,
262 .Y0 = Y0,
263 .X1 = X1,
264 .Y1 = Y1,
265 .X2 = X2,
266 .Y2 = Y2
267 };
268 const quad_bezier_flatten_params_t params = quad_bezier_flatten_params_init(&q, tolerance);
269
270 if(!stroke_conversion)
271 return VG_LITE_INVALID_ARGUMENT;
272
273 /* Add extra P0 for incoming tangent. */
274 point0 = stroke_conversion->path_last_point;
275 /* First add P1 to calculate incoming tangent, which is saved in P0. */
276 VG_LITE_ERROR_HANDLER(_add_point_to_point_list(stroke_conversion, X1, Y1, vgcFLATTEN_START));
277
278 point1 = stroke_conversion->path_last_point;
279 /* Change the point1's coordinates back to P0. */
280 point1->x = X0;
281 point1->y = Y0;
282 point0->length = 0.0f;
283
284 for (int i = 1; i < params.num_points; ++i) {
285 quad_bezier_flatten_at(&q, ¶ms, i, &x, &y);
286 _add_point_to_point_list(stroke_conversion, x, y, vgcFLATTEN_MIDDLE);
287 }
288
289 /* Add point 2 separately to avoid cumulative errors. */
290 VG_LITE_ERROR_HANDLER(_add_point_to_point_list(stroke_conversion, X2, Y2, vgcFLATTEN_END));
291
292 /* Add extra P2 for outgoing tangent. */
293 /* First change P2(point0)'s coordinates to P1. */
294 point0 = stroke_conversion->path_last_point;
295 point0->x = X1;
296 point0->y = Y1;
297
298 /* Add P2 to calculate outgoing tangent. */
299 VG_LITE_ERROR_HANDLER(_add_point_to_point_list(stroke_conversion, X2, Y2, vgcFLATTEN_NO));
300
301 point1 = stroke_conversion->path_last_point;
302
303 /* Change point0's coordinates back to P2. */
304 point0->x = X2;
305 point0->y = Y2;
306 point0->length = 0.0f;
307
308 ErrorHandler:
309 return error;
310 }
311
312 /*
313 * Like eval_quad_bezier, computes the coordinates of the point which resides at
314 * `t` for the cubic.
315 */
cubic_bezier_eval(const cubic_bezier_t * c,vg_lite_float_t t,vg_lite_float_t * x,vg_lite_float_t * y)316 static void cubic_bezier_eval(
317 const cubic_bezier_t *c,
318 vg_lite_float_t t,
319 vg_lite_float_t *x,
320 vg_lite_float_t *y
321 )
322 {
323 const vg_lite_float_t omt = 1.0 - t;
324 const vg_lite_float_t omt2 = omt * omt;
325 const vg_lite_float_t omt3 = omt * omt2;
326 const vg_lite_float_t t2 = t * t;
327 const vg_lite_float_t t3 = t * t2;
328
329 *x = omt3 * c->X0 + 3.0 * t * omt2 * c->X1 + 3.0 * t2 * omt * c->X2 + t3 * c->X3;
330 *y = omt3 * c->Y0 + 3.0 * t * omt2 * c->Y1 + 3.0 * t2 * omt * c->Y2 + t3 * c->Y3;
331 }
332
cubic_bezier_derivative(const cubic_bezier_t * c)333 static quad_bezier_t cubic_bezier_derivative(const cubic_bezier_t *c)
334 {
335 const vg_lite_float_t x0 = 3.0 * (c->X1 - c->X0);
336 const vg_lite_float_t y0 = 3.0 * (c->Y1 - c->Y0);
337 const vg_lite_float_t x1 = 3.0 * (c->X2 - c->X1);
338 const vg_lite_float_t y1 = 3.0 * (c->Y2 - c->Y1);
339 const vg_lite_float_t x2 = 3.0 * (c->X3 - c->X2);
340 const vg_lite_float_t y2 = 3.0 * (c->Y3 - c->Y2);
341
342 return (quad_bezier_t) {
343 .X0 = x0,
344 .Y0 = y0,
345 .X1 = x1,
346 .Y1 = y1,
347 .X2 = x2,
348 .Y2 = y2
349 };
350 }
351
352 /*
353 * Returns the cubic bezier that is between t0 and t1 of c.
354 */
cubic_bezier_split_at(const cubic_bezier_t * c,vg_lite_float_t t0,vg_lite_float_t t1)355 static cubic_bezier_t cubic_bezier_split_at(
356 const cubic_bezier_t *c,
357 vg_lite_float_t t0,
358 vg_lite_float_t t1
359 )
360 {
361 vg_lite_float_t p0x, p0y, p1x, p1y, p2x, p2y, p3x, p3y, d1x, d1y, d2x, d2y;
362 vg_lite_float_t scale;
363 quad_bezier_t derivative;
364
365 cubic_bezier_eval(c, t0, &p0x, &p0y);
366 cubic_bezier_eval(c, t1, &p3x, &p3y);
367 derivative = cubic_bezier_derivative(c);
368 scale = (t1 - t0) * (1.0 / 3.0);
369 quad_bezier_eval(&derivative, t0, &d1x, &d1y);
370 quad_bezier_eval(&derivative, t1, &d2x, &d2y);
371 p1x = p0x + scale * d1x;
372 p1y = p0y + scale * d1y;
373 p2x = p3x - scale * d2x;
374 p2y = p3y - scale * d2y;
375
376 return (cubic_bezier_t) {
377 .X0 = p0x,
378 .Y0 = p0y,
379 .X1 = p1x,
380 .Y1 = p1y,
381 .X2 = p2x,
382 .Y2 = p2y,
383 .X3 = p3x,
384 .Y3 = p3y
385 };
386 }
387
388 /*
389 * This function returns the number of quadratic Bezier curves that are needed to
390 * represent the given cubic, respecting the tolerance.
391 *
392 * As with the flattening of quadratics, the lower the tolerance, the better the
393 * quality. The higher the tolerance, the worse the quality, but better performance
394 * or memory consumption.
395 *
396 * The algorithm comes from:
397 * https://web.archive.org/web/20210108052742/http://caffeineowl.com/graphics/2d/vectorial/cubic2quad01.html
398 *
399 * Implementation adapted from:
400 * https://github.com/linebender/kurbo/blob/master/src/cubicbez.rs
401 * and:
402 * https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=1000&context=facpub#section.10.6
403 */
cubic_bezier_get_flatten_count(const cubic_bezier_t * c,vg_lite_float_t tolerance)404 static int cubic_bezier_get_flatten_count(
405 const cubic_bezier_t *c,
406 vg_lite_float_t tolerance
407 )
408 {
409 const vg_lite_float_t x = c->X0 - 3.0 * c->X1 + 3.0 * c->X2 - c->X3;
410 const vg_lite_float_t y = c->Y0 - 3.0 * c->Y1 + 3.0 * c->Y2 - c->Y3;
411 const vg_lite_float_t err = x * x + y * y;
412 vg_lite_float_t result;
413
414 result = FPOWF(err / (432.0 * tolerance * tolerance), 1.0 / 6.0);
415 result = CEILF(result);
416
417 return result > 1.0 ? (int)result : 1;
418 }
419
420 vg_lite_error_t
_flatten_cubic_bezier(vg_lite_stroke_conversion_t * stroke_conversion,vg_lite_float_t X0,vg_lite_float_t Y0,vg_lite_float_t X1,vg_lite_float_t Y1,vg_lite_float_t X2,vg_lite_float_t Y2,vg_lite_float_t X3,vg_lite_float_t Y3)421 _flatten_cubic_bezier(
422 vg_lite_stroke_conversion_t * stroke_conversion,
423 vg_lite_float_t X0,
424 vg_lite_float_t Y0,
425 vg_lite_float_t X1,
426 vg_lite_float_t Y1,
427 vg_lite_float_t X2,
428 vg_lite_float_t Y2,
429 vg_lite_float_t X3,
430 vg_lite_float_t Y3
431 )
432 {
433 vg_lite_error_t error = VG_LITE_SUCCESS;
434 vg_lite_path_point_ptr point0, point1;
435 const cubic_bezier_t c = {
436 .X0 = X0,
437 .Y0 = Y0,
438 .X1 = X1,
439 .Y1 = Y1,
440 .X2 = X2,
441 .Y2 = Y2,
442 .X3 = X3,
443 .Y3 = Y3
444 };
445 const vg_lite_float_t tolerance = VG_CURVE_FLATTENING_TOLERANCE;
446 int num_curves = cubic_bezier_get_flatten_count(&c, tolerance);
447 vg_lite_float_t fnum_curves = (vg_lite_float_t)num_curves;
448 vg_lite_float_t fi, t0, t1, p1x, p1y, p2x, p2y, x, y;
449 cubic_bezier_t subsegment;
450 quad_bezier_t current_curve;
451 quad_bezier_flatten_params_t params;
452
453 if(!stroke_conversion)
454 return VG_LITE_INVALID_ARGUMENT;
455
456 /* Add extra P0 for incoming tangent. */
457 point0 = stroke_conversion->path_last_point;
458 /* First add P1/P2/P3 to calculate incoming tangent, which is saved in P0. */
459 if (X0 != X1 || Y0 != Y1)
460 {
461 VG_LITE_ERROR_HANDLER(_add_point_to_point_list(stroke_conversion, X1, Y1, vgcFLATTEN_START));
462 }
463 else if (X0 != X2 || Y0 != Y2)
464 {
465 VG_LITE_ERROR_HANDLER(_add_point_to_point_list(stroke_conversion, X2, Y2, vgcFLATTEN_START));
466 }
467 else
468 {
469 VG_LITE_ERROR_HANDLER(_add_point_to_point_list(stroke_conversion, X3, Y3, vgcFLATTEN_START));
470 }
471 point1 = stroke_conversion->path_last_point;
472 /* Change the point1's coordinates back to P0. */
473 point1->x = X0;
474 point1->y = Y0;
475 point0->length = 0.0f;
476
477 for (int i = 0; i < num_curves; ++i) {
478 fi = (vg_lite_float_t)i;
479 t0 = fi / fnum_curves;
480 t1 = (fi + 1.0) / fnum_curves;
481 subsegment = cubic_bezier_split_at(&c, t0, t1);
482 p1x = 3.0 * subsegment.X1 - subsegment.X0;
483 p1y = 3.0 * subsegment.Y1 - subsegment.Y0;
484 p2x = 3.0 * subsegment.X2 - subsegment.X3;
485 p2y = 3.0 * subsegment.Y2 - subsegment.Y3;
486 current_curve = (quad_bezier_t) {
487 .X0 = subsegment.X0,
488 .Y0 = subsegment.Y0,
489 .X1 = (p1x + p2x) / 4.0,
490 .Y1 = (p1y + p2y) / 4.0,
491 .X2 = subsegment.X3,
492 .Y2 = subsegment.Y3
493 };
494 params = quad_bezier_flatten_params_init(¤t_curve, tolerance);
495 for (int j = 0; j < params.num_points; ++j) {
496 quad_bezier_flatten_at(¤t_curve, ¶ms, j, &x, &y);
497 _add_point_to_point_list(stroke_conversion, x, y, vgcFLATTEN_MIDDLE);
498 }
499 }
500
501 /* Add point 3 separately to avoid cumulative errors. */
502 VG_LITE_ERROR_HANDLER(_add_point_to_point_list(stroke_conversion, X3, Y3, vgcFLATTEN_END));
503
504 /* Add extra P3 for outgoing tangent. */
505 /* First change P3(point0)'s coordinates to P0/P1/P2. */
506 point0 = stroke_conversion->path_last_point;
507 if (X3 != X2 || Y3 != Y2)
508 {
509 point0->x = X2;
510 point0->y = Y2;
511 }
512 else if (X3 != X1 || Y3 != Y1)
513 {
514 point0->x = X1;
515 point0->y = Y1;
516 }
517 else
518 {
519 point0->x = X0;
520 point0->y = Y0;
521 }
522
523 /* Add P3 to calculate outgoing tangent. */
524 VG_LITE_ERROR_HANDLER(_add_point_to_point_list(stroke_conversion, X3, Y3, vgcFLATTEN_NO));
525
526 point1 = stroke_conversion->path_last_point;
527
528 /* Change point0's coordinates back to P3. */
529 point0->x = X3;
530 point0->y = Y3;
531 point0->length = 0.0f;
532
533 ErrorHandler:
534 return error;
535 }
536