1 #ifndef _AW_FREERTOS_LIST_H
2 #define _AW_FREERTOS_LIST_H
3
4 #include <aw_common.h>
5
6 /*
7 * Simple doubly linked list implementation.
8 *
9 * Some of the internal functions ("__xxx") are useful when
10 * manipulating whole lists rather than single entries, as
11 * sometimes we already know the next/prev entries and we can
12 * generate better code by using them directly rather than
13 * using the generic single-entry routines.
14 */
15
16 struct list_head {
17 struct list_head *next, *prev;
18 };
19
20
21 #define LIST_POISON1 ((void *) 0x00100100)
22 #define LIST_POISON2 ((void *) 0x00200)
23
24 #define LIST_HEAD_INIT(name) { &(name), &(name) }
25
26 #define LIST_HEAD(name) \
27 struct list_head name = LIST_HEAD_INIT(name)
28
INIT_LIST_HEAD(struct list_head * list)29 static inline void INIT_LIST_HEAD(struct list_head *list)
30 {
31 list->next = list;
32 list->prev = list;
33 }
34
35 /*
36 * Insert a new entry between two known consecutive entries.
37 *
38 * This is only for internal list manipulation where we know
39 * the prev/next entries already!
40 */
41 #ifndef CONFIG_DEBUG_LIST
__list_add(struct list_head * new,struct list_head * prev,struct list_head * next)42 static inline void __list_add(struct list_head *new,
43 struct list_head *prev,
44 struct list_head *next)
45 {
46 next->prev = new;
47 new->next = next;
48 new->prev = prev;
49 prev->next = new;
50 }
51 #else
52 extern void __list_add(struct list_head *new,
53 struct list_head *prev,
54 struct list_head *next);
55 #endif
56
57 /**
58 * list_add - add a new entry
59 * @new: new entry to be added
60 * @head: list head to add it after
61 *
62 * Insert a new entry after the specified head.
63 * This is good for implementing stacks.
64 */
list_add(struct list_head * new,struct list_head * head)65 static inline void list_add(struct list_head *new, struct list_head *head)
66 {
67 __list_add(new, head, head->next);
68 }
69
70
71 /**
72 * list_add_tail - add a new entry
73 * @new: new entry to be added
74 * @head: list head to add it before
75 *
76 * Insert a new entry before the specified head.
77 * This is useful for implementing queues.
78 */
list_add_tail(struct list_head * new,struct list_head * head)79 static inline void list_add_tail(struct list_head *new, struct list_head *head)
80 {
81 __list_add(new, head->prev, head);
82 }
83
84 /*
85 * Delete a list entry by making the prev/next entries
86 * point to each other.
87 *
88 * This is only for internal list manipulation where we know
89 * the prev/next entries already!
90 */
__list_del(struct list_head * prev,struct list_head * next)91 static inline void __list_del(struct list_head * prev, struct list_head * next)
92 {
93 next->prev = prev;
94 prev->next = next;
95 }
96
97 /**
98 * list_del - deletes entry from list.
99 * @entry: the element to delete from the list.
100 * Note: list_empty() on entry does not return true after this, the entry is
101 * in an undefined state.
102 */
103 #ifndef CONFIG_DEBUG_LIST
__list_del_entry(struct list_head * entry)104 static inline void __list_del_entry(struct list_head *entry)
105 {
106 __list_del(entry->prev, entry->next);
107 }
108
list_del(struct list_head * entry)109 static inline void list_del(struct list_head *entry)
110 {
111 __list_del(entry->prev, entry->next);
112 entry->next = LIST_POISON1;
113 entry->prev = LIST_POISON2;
114 }
115 #else
116 extern void __list_del_entry(struct list_head *entry);
117 extern void list_del(struct list_head *entry);
118 #endif
119
120 /**
121 * list_replace - replace old entry by new one
122 * @old : the element to be replaced
123 * @new : the new element to insert
124 *
125 * If @old was empty, it will be overwritten.
126 */
list_replace(struct list_head * old,struct list_head * new)127 static inline void list_replace(struct list_head *old,
128 struct list_head *new)
129 {
130 new->next = old->next;
131 new->next->prev = new;
132 new->prev = old->prev;
133 new->prev->next = new;
134 }
135
list_replace_init(struct list_head * old,struct list_head * new)136 static inline void list_replace_init(struct list_head *old,
137 struct list_head *new)
138 {
139 list_replace(old, new);
140 INIT_LIST_HEAD(old);
141 }
142
143 /**
144 * list_del_init - deletes entry from list and reinitialize it.
145 * @entry: the element to delete from the list.
146 */
list_del_init(struct list_head * entry)147 static inline void list_del_init(struct list_head *entry)
148 {
149 __list_del_entry(entry);
150 INIT_LIST_HEAD(entry);
151 }
152
153 /**
154 * list_move - delete from one list and add as another's head
155 * @list: the entry to move
156 * @head: the head that will precede our entry
157 */
list_move(struct list_head * list,struct list_head * head)158 static inline void list_move(struct list_head *list, struct list_head *head)
159 {
160 __list_del_entry(list);
161 list_add(list, head);
162 }
163
164 /**
165 * list_move_tail - delete from one list and add as another's tail
166 * @list: the entry to move
167 * @head: the head that will follow our entry
168 */
list_move_tail(struct list_head * list,struct list_head * head)169 static inline void list_move_tail(struct list_head *list,
170 struct list_head *head)
171 {
172 __list_del_entry(list);
173 list_add_tail(list, head);
174 }
175
176 /**
177 * list_is_last - tests whether @list is the last entry in list @head
178 * @list: the entry to test
179 * @head: the head of the list
180 */
list_is_last(const struct list_head * list,const struct list_head * head)181 static inline int list_is_last(const struct list_head *list,
182 const struct list_head *head)
183 {
184 return list->next == head;
185 }
186
187 /**
188 * list_empty - tests whether a list is empty
189 * @head: the list to test.
190 */
list_empty(const struct list_head * head)191 static inline int list_empty(const struct list_head *head)
192 {
193 return head->next == head;
194 }
195
196 /**
197 * list_empty_careful - tests whether a list is empty and not being modified
198 * @head: the list to test
199 *
200 * Description:
201 * tests whether a list is empty _and_ checks that no other CPU might be
202 * in the process of modifying either member (next or prev)
203 *
204 * NOTE: using list_empty_careful() without synchronization
205 * can only be safe if the only activity that can happen
206 * to the list entry is list_del_init(). Eg. it cannot be used
207 * if another CPU could re-list_add() it.
208 */
list_empty_careful(const struct list_head * head)209 static inline int list_empty_careful(const struct list_head *head)
210 {
211 struct list_head *next = head->next;
212 return (next == head) && (next == head->prev);
213 }
214
215 /**
216 * list_rotate_left - rotate the list to the left
217 * @head: the head of the list
218 */
list_rotate_left(struct list_head * head)219 static inline void list_rotate_left(struct list_head *head)
220 {
221 struct list_head *first;
222
223 if (!list_empty(head)) {
224 first = head->next;
225 list_move_tail(first, head);
226 }
227 }
228
229 /**
230 * list_is_singular - tests whether a list has just one entry.
231 * @head: the list to test.
232 */
list_is_singular(const struct list_head * head)233 static inline int list_is_singular(const struct list_head *head)
234 {
235 return !list_empty(head) && (head->next == head->prev);
236 }
237
__list_cut_position(struct list_head * list,struct list_head * head,struct list_head * entry)238 static inline void __list_cut_position(struct list_head *list,
239 struct list_head *head, struct list_head *entry)
240 {
241 struct list_head *new_first = entry->next;
242 list->next = head->next;
243 list->next->prev = list;
244 list->prev = entry;
245 entry->next = list;
246 head->next = new_first;
247 new_first->prev = head;
248 }
249
250 /**
251 * list_cut_position - cut a list into two
252 * @list: a new list to add all removed entries
253 * @head: a list with entries
254 * @entry: an entry within head, could be the head itself
255 * and if so we won't cut the list
256 *
257 * This helper moves the initial part of @head, up to and
258 * including @entry, from @head to @list. You should
259 * pass on @entry an element you know is on @head. @list
260 * should be an empty list or a list you do not care about
261 * losing its data.
262 *
263 */
list_cut_position(struct list_head * list,struct list_head * head,struct list_head * entry)264 static inline void list_cut_position(struct list_head *list,
265 struct list_head *head, struct list_head *entry)
266 {
267 if (list_empty(head))
268 return;
269 if (list_is_singular(head) &&
270 (head->next != entry && head != entry))
271 return;
272 if (entry == head)
273 INIT_LIST_HEAD(list);
274 else
275 __list_cut_position(list, head, entry);
276 }
277
__list_splice(const struct list_head * list,struct list_head * prev,struct list_head * next)278 static inline void __list_splice(const struct list_head *list,
279 struct list_head *prev,
280 struct list_head *next)
281 {
282 struct list_head *first = list->next;
283 struct list_head *last = list->prev;
284
285 first->prev = prev;
286 prev->next = first;
287
288 last->next = next;
289 next->prev = last;
290 }
291
292 /**
293 * list_splice - join two lists, this is designed for stacks
294 * @list: the new list to add.
295 * @head: the place to add it in the first list.
296 */
list_splice(const struct list_head * list,struct list_head * head)297 static inline void list_splice(const struct list_head *list,
298 struct list_head *head)
299 {
300 if (!list_empty(list))
301 __list_splice(list, head, head->next);
302 }
303
304 /**
305 * list_splice_tail - join two lists, each list being a queue
306 * @list: the new list to add.
307 * @head: the place to add it in the first list.
308 */
list_splice_tail(struct list_head * list,struct list_head * head)309 static inline void list_splice_tail(struct list_head *list,
310 struct list_head *head)
311 {
312 if (!list_empty(list))
313 __list_splice(list, head->prev, head);
314 }
315
316 /**
317 * list_splice_init - join two lists and reinitialise the emptied list.
318 * @list: the new list to add.
319 * @head: the place to add it in the first list.
320 *
321 * The list at @list is reinitialised
322 */
list_splice_init(struct list_head * list,struct list_head * head)323 static inline void list_splice_init(struct list_head *list,
324 struct list_head *head)
325 {
326 if (!list_empty(list)) {
327 __list_splice(list, head, head->next);
328 INIT_LIST_HEAD(list);
329 }
330 }
331
332 /**
333 * list_splice_tail_init - join two lists and reinitialise the emptied list
334 * @list: the new list to add.
335 * @head: the place to add it in the first list.
336 *
337 * Each of the lists is a queue.
338 * The list at @list is reinitialised
339 */
list_splice_tail_init(struct list_head * list,struct list_head * head)340 static inline void list_splice_tail_init(struct list_head *list,
341 struct list_head *head)
342 {
343 if (!list_empty(list)) {
344 __list_splice(list, head->prev, head);
345 INIT_LIST_HEAD(list);
346 }
347 }
348
349 /**
350 * list_entry - get the struct for this entry
351 * @ptr: the &struct list_head pointer.
352 * @type: the type of the struct this is embedded in.
353 * @member: the name of the list_struct within the struct.
354 */
355 #define list_entry(ptr, type, member) \
356 container_of(ptr, type, member)
357
358 /**
359 * list_first_entry - get the first element from a list
360 * @ptr: the list head to take the element from.
361 * @type: the type of the struct this is embedded in.
362 * @member: the name of the list_struct within the struct.
363 *
364 * Note, that list is expected to be not empty.
365 */
366 #define list_first_entry(ptr, type, member) \
367 list_entry((ptr)->next, type, member)
368
369 /**
370 * list_for_each - iterate over a list
371 * @pos: the &struct list_head to use as a loop cursor.
372 * @head: the head for your list.
373 */
374 #define list_for_each(pos, head) \
375 for (pos = (head)->next; pos != (head); pos = pos->next)
376
377 /**
378 * __list_for_each - iterate over a list
379 * @pos: the &struct list_head to use as a loop cursor.
380 * @head: the head for your list.
381 *
382 * This variant doesn't differ from list_for_each() any more.
383 * We don't do prefetching in either case.
384 */
385 #define __list_for_each(pos, head) \
386 for (pos = (head)->next; pos != (head); pos = pos->next)
387
388 /**
389 * list_for_each_prev - iterate over a list backwards
390 * @pos: the &struct list_head to use as a loop cursor.
391 * @head: the head for your list.
392 */
393 #define list_for_each_prev(pos, head) \
394 for (pos = (head)->prev; pos != (head); pos = pos->prev)
395
396 /**
397 * list_for_each_safe - iterate over a list safe against removal of list entry
398 * @pos: the &struct list_head to use as a loop cursor.
399 * @n: another &struct list_head to use as temporary storage
400 * @head: the head for your list.
401 */
402 #define list_for_each_safe(pos, n, head) \
403 for (pos = (head)->next, n = pos->next; pos != (head); \
404 pos = n, n = pos->next)
405
406 /**
407 * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
408 * @pos: the &struct list_head to use as a loop cursor.
409 * @n: another &struct list_head to use as temporary storage
410 * @head: the head for your list.
411 */
412 #define list_for_each_prev_safe(pos, n, head) \
413 for (pos = (head)->prev, n = pos->prev; \
414 pos != (head); \
415 pos = n, n = pos->prev)
416
417 /**
418 * list_for_each_entry - iterate over list of given type
419 * @pos: the type * to use as a loop cursor.
420 * @head: the head for your list.
421 * @member: the name of the list_struct within the struct.
422 */
423 #define list_for_each_entry(pos, head, member) \
424 for (pos = list_entry((head)->next, typeof(*pos), member); \
425 &pos->member != (head); \
426 pos = list_entry(pos->member.next, typeof(*pos), member))
427
428 /**
429 * list_for_each_entry_reverse - iterate backwards over list of given type.
430 * @pos: the type * to use as a loop cursor.
431 * @head: the head for your list.
432 * @member: the name of the list_struct within the struct.
433 */
434 #define list_for_each_entry_reverse(pos, head, member) \
435 for (pos = list_entry((head)->prev, typeof(*pos), member); \
436 &pos->member != (head); \
437 pos = list_entry(pos->member.prev, typeof(*pos), member))
438
439 /**
440 * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
441 * @pos: the type * to use as a start point
442 * @head: the head of the list
443 * @member: the name of the list_struct within the struct.
444 *
445 * Prepares a pos entry for use as a start point in list_for_each_entry_continue().
446 */
447 #define list_prepare_entry(pos, head, member) \
448 ((pos) ? : list_entry(head, typeof(*pos), member))
449
450 /**
451 * list_for_each_entry_continue - continue iteration over list of given type
452 * @pos: the type * to use as a loop cursor.
453 * @head: the head for your list.
454 * @member: the name of the list_struct within the struct.
455 *
456 * Continue to iterate over list of given type, continuing after
457 * the current position.
458 */
459 #define list_for_each_entry_continue(pos, head, member) \
460 for (pos = list_entry(pos->member.next, typeof(*pos), member); \
461 &pos->member != (head); \
462 pos = list_entry(pos->member.next, typeof(*pos), member))
463
464 /**
465 * list_for_each_entry_continue_reverse - iterate backwards from the given point
466 * @pos: the type * to use as a loop cursor.
467 * @head: the head for your list.
468 * @member: the name of the list_struct within the struct.
469 *
470 * Start to iterate over list of given type backwards, continuing after
471 * the current position.
472 */
473 #define list_for_each_entry_continue_reverse(pos, head, member) \
474 for (pos = list_entry(pos->member.prev, typeof(*pos), member); \
475 &pos->member != (head); \
476 pos = list_entry(pos->member.prev, typeof(*pos), member))
477
478 /**
479 * list_for_each_entry_from - iterate over list of given type from the current point
480 * @pos: the type * to use as a loop cursor.
481 * @head: the head for your list.
482 * @member: the name of the list_struct within the struct.
483 *
484 * Iterate over list of given type, continuing from current position.
485 */
486 #define list_for_each_entry_from(pos, head, member) \
487 for (; &pos->member != (head); \
488 pos = list_entry(pos->member.next, typeof(*pos), member))
489
490 /**
491 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
492 * @pos: the type * to use as a loop cursor.
493 * @n: another type * to use as temporary storage
494 * @head: the head for your list.
495 * @member: the name of the list_struct within the struct.
496 */
497 #define list_for_each_entry_safe(pos, n, head, member) \
498 for (pos = list_entry((head)->next, typeof(*pos), member), \
499 n = list_entry(pos->member.next, typeof(*pos), member); \
500 &pos->member != (head); \
501 pos = n, n = list_entry(n->member.next, typeof(*n), member))
502
503 /**
504 * list_for_each_entry_safe_continue - continue list iteration safe against removal
505 * @pos: the type * to use as a loop cursor.
506 * @n: another type * to use as temporary storage
507 * @head: the head for your list.
508 * @member: the name of the list_struct within the struct.
509 *
510 * Iterate over list of given type, continuing after current point,
511 * safe against removal of list entry.
512 */
513 #define list_for_each_entry_safe_continue(pos, n, head, member) \
514 for (pos = list_entry(pos->member.next, typeof(*pos), member), \
515 n = list_entry(pos->member.next, typeof(*pos), member); \
516 &pos->member != (head); \
517 pos = n, n = list_entry(n->member.next, typeof(*n), member))
518
519 /**
520 * list_for_each_entry_safe_from - iterate over list from current point safe against removal
521 * @pos: the type * to use as a loop cursor.
522 * @n: another type * to use as temporary storage
523 * @head: the head for your list.
524 * @member: the name of the list_struct within the struct.
525 *
526 * Iterate over list of given type from current point, safe against
527 * removal of list entry.
528 */
529 #define list_for_each_entry_safe_from(pos, n, head, member) \
530 for (n = list_entry(pos->member.next, typeof(*pos), member); \
531 &pos->member != (head); \
532 pos = n, n = list_entry(n->member.next, typeof(*n), member))
533
534 /**
535 * list_for_each_entry_safe_reverse - iterate backwards over list safe against removal
536 * @pos: the type * to use as a loop cursor.
537 * @n: another type * to use as temporary storage
538 * @head: the head for your list.
539 * @member: the name of the list_struct within the struct.
540 *
541 * Iterate backwards over list of given type, safe against removal
542 * of list entry.
543 */
544 #define list_for_each_entry_safe_reverse(pos, n, head, member) \
545 for (pos = list_entry((head)->prev, typeof(*pos), member), \
546 n = list_entry(pos->member.prev, typeof(*pos), member); \
547 &pos->member != (head); \
548 pos = n, n = list_entry(n->member.prev, typeof(*n), member))
549
550 /**
551 * list_safe_reset_next - reset a stale list_for_each_entry_safe loop
552 * @pos: the loop cursor used in the list_for_each_entry_safe loop
553 * @n: temporary storage used in list_for_each_entry_safe
554 * @member: the name of the list_struct within the struct.
555 *
556 * list_safe_reset_next is not safe to use in general if the list may be
557 * modified concurrently (eg. the lock is dropped in the loop body). An
558 * exception to this is if the cursor element (pos) is pinned in the list,
559 * and list_safe_reset_next is called after re-taking the lock and before
560 * completing the current iteration of the loop body.
561 */
562 #define list_safe_reset_next(pos, n, member) \
563 n = list_entry(pos->member.next, typeof(*pos), member)
564
565
566
567 #endif
568