1 //*****************************************************************************
2 //
3 // uart.c - Driver for the UART.
4 //
5 // Copyright (c) 2005-2017 Texas Instruments Incorporated.  All rights reserved.
6 // Software License Agreement
7 //
8 //   Redistribution and use in source and binary forms, with or without
9 //   modification, are permitted provided that the following conditions
10 //   are met:
11 //
12 //   Redistributions of source code must retain the above copyright
13 //   notice, this list of conditions and the following disclaimer.
14 //
15 //   Redistributions in binary form must reproduce the above copyright
16 //   notice, this list of conditions and the following disclaimer in the
17 //   documentation and/or other materials provided with the
18 //   distribution.
19 //
20 //   Neither the name of Texas Instruments Incorporated nor the names of
21 //   its contributors may be used to endorse or promote products derived
22 //   from this software without specific prior written permission.
23 //
24 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
27 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
28 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
29 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
30 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
31 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
32 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
33 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
34 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 //
36 // This is part of revision 2.1.4.178 of the Tiva Peripheral Driver Library.
37 //
38 //*****************************************************************************
39 
40 //*****************************************************************************
41 //
42 //! \addtogroup uart_api
43 //! @{
44 //
45 //*****************************************************************************
46 
47 #include <stdbool.h>
48 #include <stdint.h>
49 #include "hw_ints.h"
50 #include "hw_memmap.h"
51 #include "hw_sysctl.h"
52 #include "hw_types.h"
53 #include "hw_uart.h"
54 #include "debug.h"
55 #include "interrupt.h"
56 #include "uart.h"
57 
58 //*****************************************************************************
59 //
60 // The system clock divider defining the maximum baud rate supported by the
61 // UART.
62 //
63 //*****************************************************************************
64 #define UART_CLK_DIVIDER        8
65 
66 //*****************************************************************************
67 //
68 // A mapping of UART base address to interrupt number.
69 //
70 //*****************************************************************************
71 static const uint32_t g_ppui32UARTIntMap[][2] =
72 {
73     { UART0_BASE, INT_UART0_TM4C123 },
74     { UART1_BASE, INT_UART1_TM4C123 },
75     { UART2_BASE, INT_UART2_TM4C123 },
76     { UART3_BASE, INT_UART3_TM4C123 },
77     { UART4_BASE, INT_UART4_TM4C123 },
78     { UART5_BASE, INT_UART5_TM4C123 },
79     { UART6_BASE, INT_UART6_TM4C123 },
80     { UART7_BASE, INT_UART7_TM4C123 },
81 };
82 static const uint_fast8_t g_ui8UARTIntMapRows =
83     sizeof(g_ppui32UARTIntMap) / sizeof(g_ppui32UARTIntMap[0]);
84 static const uint32_t g_ppui32UARTIntMapSnowflake[][2] =
85 {
86     { UART0_BASE, INT_UART0_TM4C129 },
87     { UART1_BASE, INT_UART1_TM4C129 },
88     { UART2_BASE, INT_UART2_TM4C129 },
89     { UART3_BASE, INT_UART3_TM4C129 },
90     { UART4_BASE, INT_UART4_TM4C129 },
91     { UART5_BASE, INT_UART5_TM4C129 },
92     { UART6_BASE, INT_UART6_TM4C129 },
93     { UART7_BASE, INT_UART7_TM4C129 },
94 };
95 static const uint_fast8_t g_ui8UARTIntMapRowsSnowflake =
96     sizeof(g_ppui32UARTIntMapSnowflake) /
97     sizeof(g_ppui32UARTIntMapSnowflake[0]);
98 
99 //*****************************************************************************
100 //
101 //! \internal
102 //! Checks a UART base address.
103 //!
104 //! \param ui32Base is the base address of the UART port.
105 //!
106 //! This function determines if a UART port base address is valid.
107 //!
108 //! \return Returns \b true if the base address is valid and \b false
109 //! otherwise.
110 //
111 //*****************************************************************************
112 #ifdef DEBUG
113 static bool
_UARTBaseValid(uint32_t ui32Base)114 _UARTBaseValid(uint32_t ui32Base)
115 {
116     return((ui32Base == UART0_BASE) || (ui32Base == UART1_BASE) ||
117            (ui32Base == UART2_BASE) || (ui32Base == UART3_BASE) ||
118            (ui32Base == UART4_BASE) || (ui32Base == UART5_BASE) ||
119            (ui32Base == UART6_BASE) || (ui32Base == UART7_BASE));
120 }
121 #endif
122 
123 //*****************************************************************************
124 //
125 //! \internal
126 //! Gets the UART interrupt number.
127 //!
128 //! \param ui32Base is the base address of the UART port.
129 //!
130 //! Given a UART base address, this function returns the corresponding
131 //! interrupt number.
132 //!
133 //! \return Returns a UART interrupt number, or 0 if \e ui32Base is invalid.
134 //
135 //*****************************************************************************
136 static uint32_t
_UARTIntNumberGet(uint32_t ui32Base)137 _UARTIntNumberGet(uint32_t ui32Base)
138 {
139     uint_fast8_t ui8Idx, ui8Rows;
140     const uint32_t (*ppui32UARTIntMap)[2];
141 
142     //
143     // Default interrupt map.
144     //
145     ppui32UARTIntMap = g_ppui32UARTIntMap;
146     ui8Rows = g_ui8UARTIntMapRows;
147 
148     if(CLASS_IS_TM4C129)
149     {
150         ppui32UARTIntMap = g_ppui32UARTIntMapSnowflake;
151         ui8Rows = g_ui8UARTIntMapRowsSnowflake;
152     }
153 
154     //
155     // Loop through the table that maps UART base addresses to interrupt
156     // numbers.
157     //
158     for(ui8Idx = 0; ui8Idx < ui8Rows; ui8Idx++)
159     {
160         //
161         // See if this base address matches.
162         //
163         if(ppui32UARTIntMap[ui8Idx][0] == ui32Base)
164         {
165             //
166             // Return the corresponding interrupt number.
167             //
168             return(ppui32UARTIntMap[ui8Idx][1]);
169         }
170     }
171 
172     //
173     // The base address could not be found, so return an error.
174     //
175     return(0);
176 }
177 
178 //*****************************************************************************
179 //
180 //! Sets the type of parity.
181 //!
182 //! \param ui32Base is the base address of the UART port.
183 //! \param ui32Parity specifies the type of parity to use.
184 //!
185 //! This function configures the type of parity to use for transmitting and
186 //! expect when receiving.  The \e ui32Parity parameter must be one of
187 //! \b UART_CONFIG_PAR_NONE, \b UART_CONFIG_PAR_EVEN, \b UART_CONFIG_PAR_ODD,
188 //! \b UART_CONFIG_PAR_ONE, or \b UART_CONFIG_PAR_ZERO.  The last two
189 //! parameters allow direct control of the parity bit; it is always either one
190 //! or zero based on the mode.
191 //!
192 //! \return None.
193 //
194 //*****************************************************************************
195 void
UARTParityModeSet(uint32_t ui32Base,uint32_t ui32Parity)196 UARTParityModeSet(uint32_t ui32Base, uint32_t ui32Parity)
197 {
198     //
199     // Check the arguments.
200     //
201     ASSERT(_UARTBaseValid(ui32Base));
202     ASSERT((ui32Parity == UART_CONFIG_PAR_NONE) ||
203            (ui32Parity == UART_CONFIG_PAR_EVEN) ||
204            (ui32Parity == UART_CONFIG_PAR_ODD) ||
205            (ui32Parity == UART_CONFIG_PAR_ONE) ||
206            (ui32Parity == UART_CONFIG_PAR_ZERO));
207 
208     //
209     // Set the parity mode.
210     //
211     HWREG(ui32Base + UART_O_LCRH) = ((HWREG(ui32Base + UART_O_LCRH) &
212                                       ~(UART_LCRH_SPS | UART_LCRH_EPS |
213                                         UART_LCRH_PEN)) | ui32Parity);
214 }
215 
216 //*****************************************************************************
217 //
218 //! Gets the type of parity currently being used.
219 //!
220 //! \param ui32Base is the base address of the UART port.
221 //!
222 //! This function gets the type of parity used for transmitting data and
223 //! expected when receiving data.
224 //!
225 //! \return Returns the current parity settings, specified as one of
226 //! \b UART_CONFIG_PAR_NONE, \b UART_CONFIG_PAR_EVEN, \b UART_CONFIG_PAR_ODD,
227 //! \b UART_CONFIG_PAR_ONE, or \b UART_CONFIG_PAR_ZERO.
228 //
229 //*****************************************************************************
230 uint32_t
UARTParityModeGet(uint32_t ui32Base)231 UARTParityModeGet(uint32_t ui32Base)
232 {
233     //
234     // Check the arguments.
235     //
236     ASSERT(_UARTBaseValid(ui32Base));
237 
238     //
239     // Return the current parity setting.
240     //
241     return(HWREG(ui32Base + UART_O_LCRH) &
242            (UART_LCRH_SPS | UART_LCRH_EPS | UART_LCRH_PEN));
243 }
244 
245 //*****************************************************************************
246 //
247 //! Sets the FIFO level at which interrupts are generated.
248 //!
249 //! \param ui32Base is the base address of the UART port.
250 //! \param ui32TxLevel is the transmit FIFO interrupt level, specified as one
251 //! of \b UART_FIFO_TX1_8, \b UART_FIFO_TX2_8, \b UART_FIFO_TX4_8,
252 //! \b UART_FIFO_TX6_8, or \b UART_FIFO_TX7_8.
253 //! \param ui32RxLevel is the receive FIFO interrupt level, specified as one of
254 //! \b UART_FIFO_RX1_8, \b UART_FIFO_RX2_8, \b UART_FIFO_RX4_8,
255 //! \b UART_FIFO_RX6_8, or \b UART_FIFO_RX7_8.
256 //!
257 //! This function configures the FIFO level at which transmit and receive
258 //! interrupts are generated.
259 //!
260 //! \return None.
261 //
262 //*****************************************************************************
263 void
UARTFIFOLevelSet(uint32_t ui32Base,uint32_t ui32TxLevel,uint32_t ui32RxLevel)264 UARTFIFOLevelSet(uint32_t ui32Base, uint32_t ui32TxLevel,
265                  uint32_t ui32RxLevel)
266 {
267     //
268     // Check the arguments.
269     //
270     ASSERT(_UARTBaseValid(ui32Base));
271     ASSERT((ui32TxLevel == UART_FIFO_TX1_8) ||
272            (ui32TxLevel == UART_FIFO_TX2_8) ||
273            (ui32TxLevel == UART_FIFO_TX4_8) ||
274            (ui32TxLevel == UART_FIFO_TX6_8) ||
275            (ui32TxLevel == UART_FIFO_TX7_8));
276     ASSERT((ui32RxLevel == UART_FIFO_RX1_8) ||
277            (ui32RxLevel == UART_FIFO_RX2_8) ||
278            (ui32RxLevel == UART_FIFO_RX4_8) ||
279            (ui32RxLevel == UART_FIFO_RX6_8) ||
280            (ui32RxLevel == UART_FIFO_RX7_8));
281 
282     //
283     // Set the FIFO interrupt levels.
284     //
285     HWREG(ui32Base + UART_O_IFLS) = ui32TxLevel | ui32RxLevel;
286 }
287 
288 //*****************************************************************************
289 //
290 //! Gets the FIFO level at which interrupts are generated.
291 //!
292 //! \param ui32Base is the base address of the UART port.
293 //! \param pui32TxLevel is a pointer to storage for the transmit FIFO level,
294 //! returned as one of \b UART_FIFO_TX1_8, \b UART_FIFO_TX2_8,
295 //! \b UART_FIFO_TX4_8, \b UART_FIFO_TX6_8, or \b UART_FIFO_TX7_8.
296 //! \param pui32RxLevel is a pointer to storage for the receive FIFO level,
297 //! returned as one of \b UART_FIFO_RX1_8, \b UART_FIFO_RX2_8,
298 //! \b UART_FIFO_RX4_8, \b UART_FIFO_RX6_8, or \b UART_FIFO_RX7_8.
299 //!
300 //! This function gets the FIFO level at which transmit and receive interrupts
301 //! are generated.
302 //!
303 //! \return None.
304 //
305 //*****************************************************************************
306 void
UARTFIFOLevelGet(uint32_t ui32Base,uint32_t * pui32TxLevel,uint32_t * pui32RxLevel)307 UARTFIFOLevelGet(uint32_t ui32Base, uint32_t *pui32TxLevel,
308                  uint32_t *pui32RxLevel)
309 {
310     uint32_t ui32Temp;
311 
312     //
313     // Check the arguments.
314     //
315     ASSERT(_UARTBaseValid(ui32Base));
316 
317     //
318     // Read the FIFO level register.
319     //
320     ui32Temp = HWREG(ui32Base + UART_O_IFLS);
321 
322     //
323     // Extract the transmit and receive FIFO levels.
324     //
325     *pui32TxLevel = ui32Temp & UART_IFLS_TX_M;
326     *pui32RxLevel = ui32Temp & UART_IFLS_RX_M;
327 }
328 
329 //*****************************************************************************
330 //
331 //! Sets the configuration of a UART.
332 //!
333 //! \param ui32Base is the base address of the UART port.
334 //! \param ui32UARTClk is the rate of the clock supplied to the UART module.
335 //! \param ui32Baud is the desired baud rate.
336 //! \param ui32Config is the data format for the port (number of data bits,
337 //! number of stop bits, and parity).
338 //!
339 //! This function configures the UART for operation in the specified data
340 //! format.  The baud rate is provided in the \e ui32Baud parameter and the
341 //! data format in the \e ui32Config parameter.
342 //!
343 //! The \e ui32Config parameter is the logical OR of three values: the number
344 //! of data bits, the number of stop bits, and the parity.
345 //! \b UART_CONFIG_WLEN_8, \b UART_CONFIG_WLEN_7, \b UART_CONFIG_WLEN_6, and
346 //! \b UART_CONFIG_WLEN_5 select from eight to five data bits per byte
347 //! (respectively).  \b UART_CONFIG_STOP_ONE and \b UART_CONFIG_STOP_TWO select
348 //! one or two stop bits (respectively).  \b UART_CONFIG_PAR_NONE,
349 //! \b UART_CONFIG_PAR_EVEN, \b UART_CONFIG_PAR_ODD, \b UART_CONFIG_PAR_ONE,
350 //! and \b UART_CONFIG_PAR_ZERO select the parity mode (no parity bit, even
351 //! parity bit, odd parity bit, parity bit always one, and parity bit always
352 //! zero, respectively).
353 //!
354 //! The peripheral clock is the same as the processor clock.  The frequency of
355 //! the system clock is the value returned by SysCtlClockGet() for TM4C123x
356 //! devices or the value returned by SysCtlClockFreqSet() for TM4C129x devices,
357 //! or it can be explicitly hard coded if it is constant and known (to save the
358 //! code/execution overhead of a call to SysCtlClockGet() or fetch of the
359 //! variable call holding the return value of SysCtlClockFreqSet()).
360 //!
361 //! The function disables the UART by calling UARTDisable() before changing the
362 //! the parameters and enables the UART by calling UARTEnable().
363 //!
364 //! For Tiva parts that have the ability to specify the UART baud clock
365 //! source (via UARTClockSourceSet()), the peripheral clock can be changed to
366 //! PIOSC.  In this case, the peripheral clock should be specified as
367 //! 16,000,000 (the nominal rate of PIOSC).
368 //!
369 //! \return None.
370 //
371 //*****************************************************************************
372 void
UARTConfigSetExpClk(uint32_t ui32Base,uint32_t ui32UARTClk,uint32_t ui32Baud,uint32_t ui32Config)373 UARTConfigSetExpClk(uint32_t ui32Base, uint32_t ui32UARTClk,
374                     uint32_t ui32Baud, uint32_t ui32Config)
375 {
376     uint32_t ui32Div;
377 
378     //
379     // Check the arguments.
380     //
381     ASSERT(_UARTBaseValid(ui32Base));
382     ASSERT(ui32Baud != 0);
383     ASSERT(ui32UARTClk >= (ui32Baud * UART_CLK_DIVIDER));
384 
385     //
386     // Stop the UART.
387     //
388     UARTDisable(ui32Base);
389 
390     //
391     // Is the required baud rate greater than the maximum rate supported
392     // without the use of high speed mode?
393     //
394     if((ui32Baud * 16) > ui32UARTClk)
395     {
396         //
397         // Enable high speed mode.
398         //
399         HWREG(ui32Base + UART_O_CTL) |= UART_CTL_HSE;
400 
401         //
402         // Half the supplied baud rate to compensate for enabling high speed
403         // mode.  This allows the following code to be common to both cases.
404         //
405         ui32Baud /= 2;
406     }
407     else
408     {
409         //
410         // Disable high speed mode.
411         //
412         HWREG(ui32Base + UART_O_CTL) &= ~(UART_CTL_HSE);
413     }
414 
415     //
416     // Compute the fractional baud rate divider.
417     //
418     ui32Div = (((ui32UARTClk * 8) / ui32Baud) + 1) / 2;
419 
420     //
421     // Set the baud rate.
422     //
423     HWREG(ui32Base + UART_O_IBRD) = ui32Div / 64;
424     HWREG(ui32Base + UART_O_FBRD) = ui32Div % 64;
425 
426     //
427     // Set parity, data length, and number of stop bits.
428     //
429     HWREG(ui32Base + UART_O_LCRH) = ui32Config;
430 
431     //
432     // Clear the flags register.
433     //
434     HWREG(ui32Base + UART_O_FR) = 0;
435 
436     //
437     // Start the UART.
438     //
439     UARTEnable(ui32Base);
440 }
441 
442 //*****************************************************************************
443 //
444 //! Gets the current configuration of a UART.
445 //!
446 //! \param ui32Base is the base address of the UART port.
447 //! \param ui32UARTClk is the rate of the clock supplied to the UART module.
448 //! \param pui32Baud is a pointer to storage for the baud rate.
449 //! \param pui32Config is a pointer to storage for the data format.
450 //!
451 //! This function determines the baud rate and data format for the UART, given
452 //! an explicitly provided peripheral clock (hence the ExpClk suffix).  The
453 //! returned baud rate is the actual baud rate; it may not be the exact baud
454 //! rate requested or an ``official'' baud rate.  The data format returned in
455 //! \e pui32Config is enumerated the same as the \e ui32Config parameter of
456 //! UARTConfigSetExpClk().
457 //!
458 //! The peripheral clock is the same as the processor clock.  The frequency of
459 //! the system clock is the value returned by SysCtlClockGet() for TM4C123x
460 //! devices or the value returned by SysCtlClockFreqSet() for TM4C129x devices,
461 //! or it can be explicitly hard coded if it is constant and known (to save the
462 //! code/execution overhead of a call to SysCtlClockGet() or fetch of the
463 //! variable call holding the return value of SysCtlClockFreqSet()).
464 //!
465 //! For Tiva parts that have the ability to specify the UART baud clock
466 //! source (via UARTClockSourceSet()), the peripheral clock can be changed to
467 //! PIOSC.  In this case, the peripheral clock should be specified as
468 //! 16,000,000 (the nominal rate of PIOSC).
469 //!
470 //! \return None.
471 //
472 //*****************************************************************************
473 void
UARTConfigGetExpClk(uint32_t ui32Base,uint32_t ui32UARTClk,uint32_t * pui32Baud,uint32_t * pui32Config)474 UARTConfigGetExpClk(uint32_t ui32Base, uint32_t ui32UARTClk,
475                     uint32_t *pui32Baud, uint32_t *pui32Config)
476 {
477     uint32_t ui32Int, ui32Frac;
478 
479     //
480     // Check the arguments.
481     //
482     ASSERT(_UARTBaseValid(ui32Base));
483 
484     //
485     // Compute the baud rate.
486     //
487     ui32Int = HWREG(ui32Base + UART_O_IBRD);
488     ui32Frac = HWREG(ui32Base + UART_O_FBRD);
489     *pui32Baud = (ui32UARTClk * 4) / ((64 * ui32Int) + ui32Frac);
490 
491     //
492     // See if high speed mode enabled.
493     //
494     if(HWREG(ui32Base + UART_O_CTL) & UART_CTL_HSE)
495     {
496         //
497         // High speed mode is enabled so the actual baud rate is actually
498         // double what was just calculated.
499         //
500         *pui32Baud *= 2;
501     }
502 
503     //
504     // Get the parity, data length, and number of stop bits.
505     //
506     *pui32Config = (HWREG(ui32Base + UART_O_LCRH) &
507                     (UART_LCRH_SPS | UART_LCRH_WLEN_M | UART_LCRH_STP2 |
508                      UART_LCRH_EPS | UART_LCRH_PEN));
509 }
510 
511 //*****************************************************************************
512 //
513 //! Enables transmitting and receiving.
514 //!
515 //! \param ui32Base is the base address of the UART port.
516 //!
517 //! This function enables the UART and its transmit and receive FIFOs.
518 //!
519 //! \return None.
520 //
521 //*****************************************************************************
522 void
UARTEnable(uint32_t ui32Base)523 UARTEnable(uint32_t ui32Base)
524 {
525     //
526     // Check the arguments.
527     //
528     ASSERT(_UARTBaseValid(ui32Base));
529 
530     //
531     // Enable the FIFO.
532     //
533     HWREG(ui32Base + UART_O_LCRH) |= UART_LCRH_FEN;
534 
535     //
536     // Enable RX, TX, and the UART.
537     //
538     HWREG(ui32Base + UART_O_CTL) |= (UART_CTL_UARTEN | UART_CTL_TXE |
539                                      UART_CTL_RXE);
540 }
541 
542 //*****************************************************************************
543 //
544 //! Disables transmitting and receiving.
545 //!
546 //! \param ui32Base is the base address of the UART port.
547 //!
548 //! This function disables the UART, waits for the end of transmission of the
549 //! current character, and flushes the transmit FIFO.
550 //!
551 //! \return None.
552 //
553 //*****************************************************************************
554 void
UARTDisable(uint32_t ui32Base)555 UARTDisable(uint32_t ui32Base)
556 {
557     //
558     // Check the arguments.
559     //
560     ASSERT(_UARTBaseValid(ui32Base));
561 
562     //
563     // Wait for end of TX.
564     //
565     while(HWREG(ui32Base + UART_O_FR) & UART_FR_BUSY)
566     {
567     }
568 
569     //
570     // Disable the FIFO.
571     //
572     HWREG(ui32Base + UART_O_LCRH) &= ~(UART_LCRH_FEN);
573 
574     //
575     // Disable the UART.
576     //
577     HWREG(ui32Base + UART_O_CTL) &= ~(UART_CTL_UARTEN | UART_CTL_TXE |
578                                       UART_CTL_RXE);
579 }
580 
581 //*****************************************************************************
582 //
583 //! Enables the transmit and receive FIFOs.
584 //!
585 //! \param ui32Base is the base address of the UART port.
586 //!
587 //! This functions enables the transmit and receive FIFOs in the UART.
588 //!
589 //! \return None.
590 //
591 //*****************************************************************************
592 void
UARTFIFOEnable(uint32_t ui32Base)593 UARTFIFOEnable(uint32_t ui32Base)
594 {
595     //
596     // Check the arguments.
597     //
598     ASSERT(_UARTBaseValid(ui32Base));
599 
600     //
601     // Enable the FIFO.
602     //
603     HWREG(ui32Base + UART_O_LCRH) |= UART_LCRH_FEN;
604 }
605 
606 //*****************************************************************************
607 //
608 //! Disables the transmit and receive FIFOs.
609 //!
610 //! \param ui32Base is the base address of the UART port.
611 //!
612 //! This function disables the transmit and receive FIFOs in the UART.
613 //!
614 //! \return None.
615 //
616 //*****************************************************************************
617 void
UARTFIFODisable(uint32_t ui32Base)618 UARTFIFODisable(uint32_t ui32Base)
619 {
620     //
621     // Check the arguments.
622     //
623     ASSERT(_UARTBaseValid(ui32Base));
624 
625     //
626     // Disable the FIFO.
627     //
628     HWREG(ui32Base + UART_O_LCRH) &= ~(UART_LCRH_FEN);
629 }
630 
631 //*****************************************************************************
632 //
633 //! Enables SIR (IrDA) mode on the specified UART.
634 //!
635 //! \param ui32Base is the base address of the UART port.
636 //! \param bLowPower indicates if SIR Low Power Mode is to be used.
637 //!
638 //! This function enables SIR (IrDA) mode on the UART.  If the \e bLowPower
639 //! flag is set, then SIR low power mode will be selected as well.  This
640 //! function only has an effect if the UART has not been enabled by a call to
641 //! UARTEnable().  The call UARTEnableSIR() must be made before a call to
642 //! UARTConfigSetExpClk() because the UARTConfigSetExpClk() function calls the
643 //! UARTEnable() function.  Another option is to call UARTDisable() followed by
644 //! UARTEnableSIR() and then enable the UART by calling UARTEnable().
645 //!
646 //! \note The availability of SIR (IrDA) operation varies with the Tiva
647 //! part in use.  Please consult the datasheet for the part you are using to
648 //! determine whether this support is available.
649 //!
650 //! \return None.
651 //
652 //*****************************************************************************
653 void
UARTEnableSIR(uint32_t ui32Base,bool bLowPower)654 UARTEnableSIR(uint32_t ui32Base, bool bLowPower)
655 {
656     //
657     // Check the arguments.
658     //
659     ASSERT(_UARTBaseValid(ui32Base));
660 
661     //
662     // Enable SIR and SIRLP (if appropriate).
663     //
664     if(bLowPower)
665     {
666         HWREG(ui32Base + UART_O_CTL) |= (UART_CTL_SIREN | UART_CTL_SIRLP);
667     }
668     else
669     {
670         HWREG(ui32Base + UART_O_CTL) |= (UART_CTL_SIREN);
671     }
672 }
673 
674 //*****************************************************************************
675 //
676 //! Disables SIR (IrDA) mode on the specified UART.
677 //!
678 //! \param ui32Base is the base address of the UART port.
679 //!
680 //! This function disables SIR(IrDA) mode on the UART.  This function only has
681 //! an effect if the UART has not been enabled by a call to UARTEnable().  The
682 //! call UARTEnableSIR() must be made before a call to UARTConfigSetExpClk()
683 //! because the UARTConfigSetExpClk() function calls the UARTEnable() function.
684 //! Another option is to call UARTDisable() followed by UARTEnableSIR() and
685 //! then enable the UART by calling UARTEnable().
686 //!
687 //! \note The availability of SIR (IrDA) operation varies with the Tiva
688 //! part in use.  Please consult the datasheet for the part you are using to
689 //! determine whether this support is available.
690 //!
691 //! \return None.
692 //
693 //*****************************************************************************
694 void
UARTDisableSIR(uint32_t ui32Base)695 UARTDisableSIR(uint32_t ui32Base)
696 {
697     //
698     // Check the arguments.
699     //
700     ASSERT(_UARTBaseValid(ui32Base));
701 
702     //
703     // Disable SIR and SIRLP (if appropriate).
704     //
705     HWREG(ui32Base + UART_O_CTL) &= ~(UART_CTL_SIREN | UART_CTL_SIRLP);
706 }
707 
708 //*****************************************************************************
709 //
710 //! Enables ISO7816 smart card mode on the specified UART.
711 //!
712 //! \param ui32Base is the base address of the UART port.
713 //!
714 //! This function enables the SMART control bit for the ISO7816 smart card mode
715 //! on the UART.  This call also sets 8-bit word length and even parity as
716 //! required by ISO7816.
717 //!
718 //! \note The availability of ISO7816 smart card mode varies with the Tiva
719 //! part and UART in use.  Please consult the datasheet for the part you are
720 //! using to determine whether this support is available.
721 //!
722 //! \return None.
723 //
724 //*****************************************************************************
725 void
UARTSmartCardEnable(uint32_t ui32Base)726 UARTSmartCardEnable(uint32_t ui32Base)
727 {
728     uint32_t ui32Val;
729 
730     //
731     // Check the arguments.
732     //
733     ASSERT(_UARTBaseValid(ui32Base));
734 
735     //
736     // Set 8-bit word length, even parity, 2 stop bits (note that although the
737     // STP2 bit is ignored when in smartcard mode, this code lets the caller
738     // read back the actual setting in use).
739     //
740     ui32Val = HWREG(ui32Base + UART_O_LCRH);
741     ui32Val &= ~(UART_LCRH_SPS | UART_LCRH_EPS | UART_LCRH_PEN |
742                  UART_LCRH_WLEN_M);
743     ui32Val |= UART_LCRH_WLEN_8 | UART_LCRH_PEN | UART_LCRH_EPS |
744                UART_LCRH_STP2;
745     HWREG(ui32Base + UART_O_LCRH) = ui32Val;
746 
747     //
748     // Enable SMART mode.
749     //
750     HWREG(ui32Base + UART_O_CTL) |= UART_CTL_SMART;
751 }
752 
753 //*****************************************************************************
754 //
755 //! Disables ISO7816 smart card mode on the specified UART.
756 //!
757 //! \param ui32Base is the base address of the UART port.
758 //!
759 //! This function clears the SMART (ISO7816 smart card) bit in the UART
760 //! control register.
761 //!
762 //! \note The availability of ISO7816 smart card mode varies with the Tiva
763 //! part and UART in use.  Please consult the datasheet for the part you are
764 //! using to determine whether this support is available.
765 //!
766 //! \return None.
767 //
768 //*****************************************************************************
769 void
UARTSmartCardDisable(uint32_t ui32Base)770 UARTSmartCardDisable(uint32_t ui32Base)
771 {
772     //
773     // Check the arguments.
774     //
775     ASSERT(_UARTBaseValid(ui32Base));
776 
777     //
778     // Disable the SMART bit.
779     //
780     HWREG(ui32Base + UART_O_CTL) &= ~UART_CTL_SMART;
781 }
782 
783 //*****************************************************************************
784 //
785 //! Sets the states of the DTR and/or RTS modem control signals.
786 //!
787 //! \param ui32Base is the base address of the UART port.
788 //! \param ui32Control is a bit-mapped flag indicating which modem control bits
789 //! should be set.
790 //!
791 //! This function configures the states of the DTR or RTS modem handshake
792 //! outputs from the UART.
793 //!
794 //! The \e ui32Control parameter is the logical OR of any of the following:
795 //!
796 //! - \b UART_OUTPUT_DTR - The modem control DTR signal
797 //! - \b UART_OUTPUT_RTS - The modem control RTS signal
798 //!
799 //! \note The availability of hardware modem handshake signals varies with the
800 //! Tiva part and UART in use.  Please consult the datasheet for the part
801 //! you are using to determine whether this support is available.
802 //!
803 //! \return None.
804 //
805 //*****************************************************************************
806 void
UARTModemControlSet(uint32_t ui32Base,uint32_t ui32Control)807 UARTModemControlSet(uint32_t ui32Base, uint32_t ui32Control)
808 {
809     uint32_t ui32Temp;
810 
811     //
812     // Check the arguments.
813     //
814     ASSERT(ui32Base == UART1_BASE);
815     ASSERT((ui32Control & ~(UART_OUTPUT_RTS | UART_OUTPUT_DTR)) == 0);
816 
817     //
818     // Set the appropriate modem control output bits.
819     //
820     ui32Temp = HWREG(ui32Base + UART_O_CTL);
821     ui32Temp |= (ui32Control & (UART_OUTPUT_RTS | UART_OUTPUT_DTR));
822     HWREG(ui32Base + UART_O_CTL) = ui32Temp;
823 }
824 
825 //*****************************************************************************
826 //
827 //! Clears the states of the DTR and/or RTS modem control signals.
828 //!
829 //! \param ui32Base is the base address of the UART port.
830 //! \param ui32Control is a bit-mapped flag indicating which modem control bits
831 //! should be set.
832 //!
833 //! This function clears the states of the DTR or RTS modem handshake outputs
834 //! from the UART.
835 //!
836 //! The \e ui32Control parameter is the logical OR of any of the following:
837 //!
838 //! - \b UART_OUTPUT_DTR - The modem control DTR signal
839 //! - \b UART_OUTPUT_RTS - The modem control RTS signal
840 //!
841 //! \note The availability of hardware modem handshake signals varies with the
842 //! Tiva part and UART in use.  Please consult the datasheet for the part
843 //! you are using to determine whether this support is available.
844 //!
845 //! \return None.
846 //
847 //*****************************************************************************
848 void
UARTModemControlClear(uint32_t ui32Base,uint32_t ui32Control)849 UARTModemControlClear(uint32_t ui32Base, uint32_t ui32Control)
850 {
851     uint32_t ui32Temp;
852 
853     //
854     // Check the arguments.
855     //
856     ASSERT(ui32Base == UART1_BASE);
857     ASSERT((ui32Control & ~(UART_OUTPUT_RTS | UART_OUTPUT_DTR)) == 0);
858 
859     //
860     // Set the appropriate modem control output bits.
861     //
862     ui32Temp = HWREG(ui32Base + UART_O_CTL);
863     ui32Temp &= ~(ui32Control & (UART_OUTPUT_RTS | UART_OUTPUT_DTR));
864     HWREG(ui32Base + UART_O_CTL) = ui32Temp;
865 }
866 
867 //*****************************************************************************
868 //
869 //! Gets the states of the DTR and RTS modem control signals.
870 //!
871 //! \param ui32Base is the base address of the UART port.
872 //!
873 //! This function returns the current states of each of the two UART modem
874 //! control signals, DTR and RTS.
875 //!
876 //! \note The availability of hardware modem handshake signals varies with the
877 //! Tiva part and UART in use.  Please consult the datasheet for the part
878 //! you are using to determine whether this support is available.
879 //!
880 //! \return Returns the states of the handshake output signals.  This value is
881 //! a logical OR combination of values \b UART_OUTPUT_RTS and
882 //! \b UART_OUTPUT_DTR where the presence of each flag indicates that the
883 //! associated signal is asserted.
884 //
885 //*****************************************************************************
886 uint32_t
UARTModemControlGet(uint32_t ui32Base)887 UARTModemControlGet(uint32_t ui32Base)
888 {
889     //
890     // Check the arguments.
891     //
892     ASSERT(ui32Base == UART1_BASE);
893 
894     return(HWREG(ui32Base + UART_O_CTL) & (UART_OUTPUT_RTS | UART_OUTPUT_DTR));
895 }
896 
897 //*****************************************************************************
898 //
899 //! Gets the states of the RI, DCD, DSR and CTS modem status signals.
900 //!
901 //! \param ui32Base is the base address of the UART port.
902 //!
903 //! This function returns the current states of each of the four UART modem
904 //! status signals, RI, DCD, DSR and CTS.
905 //!
906 //! \note The availability of hardware modem handshake signals varies with the
907 //! Tiva part and UART in use.  Please consult the datasheet for the part
908 //! you are using to determine whether this support is available.
909 //!
910 //! \return Returns the states of the handshake output signals.  This value
911 //! is a logical OR combination of values \b UART_INPUT_RI,
912 //! \b UART_INPUT_DCD, \b UART_INPUT_CTS and \b UART_INPUT_DSR where the
913 //! presence of each flag indicates that the associated signal is asserted.
914 //
915 //*****************************************************************************
916 uint32_t
UARTModemStatusGet(uint32_t ui32Base)917 UARTModemStatusGet(uint32_t ui32Base)
918 {
919     //
920     // Check the arguments.
921     //
922     ASSERT(ui32Base == UART1_BASE);
923 
924     return(HWREG(ui32Base + UART_O_FR) & (UART_INPUT_RI | UART_INPUT_DCD |
925                                           UART_INPUT_CTS | UART_INPUT_DSR));
926 }
927 
928 //*****************************************************************************
929 //
930 //! Sets the UART hardware flow control mode to be used.
931 //!
932 //! \param ui32Base is the base address of the UART port.
933 //! \param ui32Mode indicates the flow control modes to be used.  This
934 //! parameter is a logical OR combination of values \b UART_FLOWCONTROL_TX and
935 //! \b UART_FLOWCONTROL_RX to enable hardware transmit (CTS) and receive (RTS)
936 //! flow control or \b UART_FLOWCONTROL_NONE to disable hardware flow control.
937 //!
938 //! This function configures the required hardware flow control modes.  If
939 //! \e ui32Mode contains flag \b UART_FLOWCONTROL_TX, data is only transmitted
940 //! if the incoming CTS signal is asserted.  If \e ui32Mode contains flag
941 //! \b UART_FLOWCONTROL_RX, the RTS output is controlled by the hardware and is
942 //! asserted only when there is space available in the receive FIFO.  If no
943 //! hardware flow control is required, \b UART_FLOWCONTROL_NONE should be
944 //! passed.
945 //!
946 //! \note The availability of hardware flow control varies with the Tiva
947 //! part and UART in use.  Please consult the datasheet for the part you are
948 //! using to determine whether this support is available.
949 //!
950 //! \return None.
951 //
952 //*****************************************************************************
953 void
UARTFlowControlSet(uint32_t ui32Base,uint32_t ui32Mode)954 UARTFlowControlSet(uint32_t ui32Base, uint32_t ui32Mode)
955 {
956     //
957     // Check the arguments.
958     //
959     ASSERT(_UARTBaseValid(ui32Base));
960     ASSERT((ui32Mode & ~(UART_FLOWCONTROL_TX | UART_FLOWCONTROL_RX)) == 0);
961 
962     //
963     // Set the flow control mode as requested.
964     //
965     HWREG(ui32Base + UART_O_CTL) = ((HWREG(ui32Base + UART_O_CTL) &
966                                      ~(UART_FLOWCONTROL_TX |
967                                        UART_FLOWCONTROL_RX)) | ui32Mode);
968 }
969 
970 //*****************************************************************************
971 //
972 //! Returns the UART hardware flow control mode currently in use.
973 //!
974 //! \param ui32Base is the base address of the UART port.
975 //!
976 //! This function returns the current hardware flow control mode.
977 //!
978 //! \note The availability of hardware flow control varies with the Tiva
979 //! part and UART in use.  Please consult the datasheet for the part you are
980 //! using to determine whether this support is available.
981 //!
982 //! \return Returns the current flow control mode in use.  This value is a
983 //! logical OR combination of values \b UART_FLOWCONTROL_TX if transmit
984 //! (CTS) flow control is enabled and \b UART_FLOWCONTROL_RX if receive (RTS)
985 //! flow control is in use.  If hardware flow control is disabled,
986 //! \b UART_FLOWCONTROL_NONE is returned.
987 //
988 //*****************************************************************************
989 uint32_t
UARTFlowControlGet(uint32_t ui32Base)990 UARTFlowControlGet(uint32_t ui32Base)
991 {
992     //
993     // Check the arguments.
994     //
995     ASSERT(_UARTBaseValid(ui32Base));
996 
997     return(HWREG(ui32Base + UART_O_CTL) & (UART_FLOWCONTROL_TX |
998                                            UART_FLOWCONTROL_RX));
999 }
1000 
1001 //*****************************************************************************
1002 //
1003 //! Sets the operating mode for the UART transmit interrupt.
1004 //!
1005 //! \param ui32Base is the base address of the UART port.
1006 //! \param ui32Mode is the operating mode for the transmit interrupt.  It may
1007 //! be \b UART_TXINT_MODE_EOT to trigger interrupts when the transmitter is
1008 //! idle or \b UART_TXINT_MODE_FIFO to trigger based on the current transmit
1009 //! FIFO level.
1010 //!
1011 //! This function allows the mode of the UART transmit interrupt to be set.  By
1012 //! default, the transmit interrupt is asserted when the FIFO level falls past
1013 //! a threshold set via a call to UARTFIFOLevelSet().  Alternatively, if this
1014 //! function is called with \e ui32Mode set to \b UART_TXINT_MODE_EOT, the
1015 //! transmit interrupt is asserted once the transmitter is completely idle -
1016 //! the transmit FIFO is empty and all bits, including any stop bits, have
1017 //! cleared the transmitter.
1018 //!
1019 //! \note The availability of end-of-transmission mode varies with the
1020 //! Tiva part in use.  Please consult the datasheet for the part you are
1021 //! using to determine whether this support is available.
1022 //!
1023 //! \return None.
1024 //
1025 //*****************************************************************************
1026 void
UARTTxIntModeSet(uint32_t ui32Base,uint32_t ui32Mode)1027 UARTTxIntModeSet(uint32_t ui32Base, uint32_t ui32Mode)
1028 {
1029     //
1030     // Check the arguments.
1031     //
1032     ASSERT(_UARTBaseValid(ui32Base));
1033     ASSERT((ui32Mode == UART_TXINT_MODE_EOT) ||
1034            (ui32Mode == UART_TXINT_MODE_FIFO));
1035 
1036     //
1037     // Set or clear the EOT bit of the UART control register as appropriate.
1038     //
1039     HWREG(ui32Base + UART_O_CTL) = ((HWREG(ui32Base + UART_O_CTL) &
1040                                      ~(UART_TXINT_MODE_EOT |
1041                                        UART_TXINT_MODE_FIFO)) | ui32Mode);
1042 }
1043 
1044 //*****************************************************************************
1045 //
1046 //! Returns the current operating mode for the UART transmit interrupt.
1047 //!
1048 //! \param ui32Base is the base address of the UART port.
1049 //!
1050 //! This function returns the current operating mode for the UART transmit
1051 //! interrupt.  The return value is \b UART_TXINT_MODE_EOT if the transmit
1052 //! interrupt is currently configured to be asserted once the transmitter is
1053 //! completely idle - the transmit FIFO is empty and all bits, including any
1054 //! stop bits, have cleared the transmitter.  The return value is
1055 //! \b UART_TXINT_MODE_FIFO if the interrupt is configured to be asserted based
1056 //! on the level of the transmit FIFO.
1057 //!
1058 //! \note The availability of end-of-transmission mode varies with the
1059 //! Tiva part in use.  Please consult the datasheet for the part you are
1060 //! using to determine whether this support is available.
1061 //!
1062 //! \return Returns \b UART_TXINT_MODE_FIFO or \b UART_TXINT_MODE_EOT.
1063 //
1064 //*****************************************************************************
1065 uint32_t
UARTTxIntModeGet(uint32_t ui32Base)1066 UARTTxIntModeGet(uint32_t ui32Base)
1067 {
1068     //
1069     // Check the arguments.
1070     //
1071     ASSERT(_UARTBaseValid(ui32Base));
1072 
1073     //
1074     // Return the current transmit interrupt mode.
1075     //
1076     return(HWREG(ui32Base + UART_O_CTL) & (UART_TXINT_MODE_EOT |
1077                                            UART_TXINT_MODE_FIFO));
1078 }
1079 
1080 //*****************************************************************************
1081 //
1082 //! Determines if there are any characters in the receive FIFO.
1083 //!
1084 //! \param ui32Base is the base address of the UART port.
1085 //!
1086 //! This function returns a flag indicating whether or not there is data
1087 //! available in the receive FIFO.
1088 //!
1089 //! \return Returns \b true if there is data in the receive FIFO or \b false
1090 //! if there is no data in the receive FIFO.
1091 //
1092 //*****************************************************************************
1093 bool
UARTCharsAvail(uint32_t ui32Base)1094 UARTCharsAvail(uint32_t ui32Base)
1095 {
1096     //
1097     // Check the arguments.
1098     //
1099     ASSERT(_UARTBaseValid(ui32Base));
1100 
1101     //
1102     // Return the availability of characters.
1103     //
1104     return((HWREG(ui32Base + UART_O_FR) & UART_FR_RXFE) ? false : true);
1105 }
1106 
1107 //*****************************************************************************
1108 //
1109 //! Determines if there is any space in the transmit FIFO.
1110 //!
1111 //! \param ui32Base is the base address of the UART port.
1112 //!
1113 //! This function returns a flag indicating whether or not there is space
1114 //! available in the transmit FIFO.
1115 //!
1116 //! \return Returns \b true if there is space available in the transmit FIFO
1117 //! or \b false if there is no space available in the transmit FIFO.
1118 //
1119 //*****************************************************************************
1120 bool
UARTSpaceAvail(uint32_t ui32Base)1121 UARTSpaceAvail(uint32_t ui32Base)
1122 {
1123     //
1124     // Check the arguments.
1125     //
1126     ASSERT(_UARTBaseValid(ui32Base));
1127 
1128     //
1129     // Return the availability of space.
1130     //
1131     return((HWREG(ui32Base + UART_O_FR) & UART_FR_TXFF) ? false : true);
1132 }
1133 
1134 //*****************************************************************************
1135 //
1136 //! Receives a character from the specified port.
1137 //!
1138 //! \param ui32Base is the base address of the UART port.
1139 //!
1140 //! This function gets a character from the receive FIFO for the specified
1141 //! port.
1142 //!
1143 //! \return Returns the character read from the specified port, cast as a
1144 //! \e int32_t.  A \b -1 is returned if there are no characters present in the
1145 //! receive FIFO.  The UARTCharsAvail() function should be called before
1146 //! attempting to call this function.
1147 //
1148 //*****************************************************************************
1149 int32_t
UARTCharGetNonBlocking(uint32_t ui32Base)1150 UARTCharGetNonBlocking(uint32_t ui32Base)
1151 {
1152     //
1153     // Check the arguments.
1154     //
1155     ASSERT(_UARTBaseValid(ui32Base));
1156 
1157     //
1158     // See if there are any characters in the receive FIFO.
1159     //
1160     if(!(HWREG(ui32Base + UART_O_FR) & UART_FR_RXFE))
1161     {
1162         //
1163         // Read and return the next character.
1164         //
1165         return(HWREG(ui32Base + UART_O_DR));
1166     }
1167     else
1168     {
1169         //
1170         // There are no characters, so return a failure.
1171         //
1172         return(-1);
1173     }
1174 }
1175 
1176 //*****************************************************************************
1177 //
1178 //! Waits for a character from the specified port.
1179 //!
1180 //! \param ui32Base is the base address of the UART port.
1181 //!
1182 //! This function gets a character from the receive FIFO for the specified
1183 //! port.  If there are no characters available, this function waits until a
1184 //! character is received before returning.
1185 //!
1186 //! \return Returns the character read from the specified port, cast as a
1187 //! \e int32_t.
1188 //
1189 //*****************************************************************************
1190 int32_t
UARTCharGet(uint32_t ui32Base)1191 UARTCharGet(uint32_t ui32Base)
1192 {
1193     //
1194     // Check the arguments.
1195     //
1196     ASSERT(_UARTBaseValid(ui32Base));
1197 
1198     //
1199     // Wait until a char is available.
1200     //
1201     while(HWREG(ui32Base + UART_O_FR) & UART_FR_RXFE)
1202     {
1203     }
1204 
1205     //
1206     // Now get the char.
1207     //
1208     return(HWREG(ui32Base + UART_O_DR));
1209 }
1210 
1211 //*****************************************************************************
1212 //
1213 //! Sends a character to the specified port.
1214 //!
1215 //! \param ui32Base is the base address of the UART port.
1216 //! \param ucData is the character to be transmitted.
1217 //!
1218 //! This function writes the character \e ucData to the transmit FIFO for the
1219 //! specified port.  This function does not block, so if there is no space
1220 //! available, then a \b false is returned and the application must retry the
1221 //! function later.
1222 //!
1223 //! \return Returns \b true if the character was successfully placed in the
1224 //! transmit FIFO or \b false if there was no space available in the transmit
1225 //! FIFO.
1226 //
1227 //*****************************************************************************
1228 bool
UARTCharPutNonBlocking(uint32_t ui32Base,unsigned char ucData)1229 UARTCharPutNonBlocking(uint32_t ui32Base, unsigned char ucData)
1230 {
1231     //
1232     // Check the arguments.
1233     //
1234     ASSERT(_UARTBaseValid(ui32Base));
1235 
1236     //
1237     // See if there is space in the transmit FIFO.
1238     //
1239     if(!(HWREG(ui32Base + UART_O_FR) & UART_FR_TXFF))
1240     {
1241         //
1242         // Write this character to the transmit FIFO.
1243         //
1244         HWREG(ui32Base + UART_O_DR) = ucData;
1245 
1246         //
1247         // Success.
1248         //
1249         return(true);
1250     }
1251     else
1252     {
1253         //
1254         // There is no space in the transmit FIFO, so return a failure.
1255         //
1256         return(false);
1257     }
1258 }
1259 
1260 //*****************************************************************************
1261 //
1262 //! Waits to send a character from the specified port.
1263 //!
1264 //! \param ui32Base is the base address of the UART port.
1265 //! \param ucData is the character to be transmitted.
1266 //!
1267 //! This function sends the character \e ucData to the transmit FIFO for the
1268 //! specified port.  If there is no space available in the transmit FIFO, this
1269 //! function waits until there is space available before returning.
1270 //!
1271 //! \return None.
1272 //
1273 //*****************************************************************************
1274 void
UARTCharPut(uint32_t ui32Base,unsigned char ucData)1275 UARTCharPut(uint32_t ui32Base, unsigned char ucData)
1276 {
1277     //
1278     // Check the arguments.
1279     //
1280     ASSERT(_UARTBaseValid(ui32Base));
1281 
1282     //
1283     // Wait until space is available.
1284     //
1285     while(HWREG(ui32Base + UART_O_FR) & UART_FR_TXFF)
1286     {
1287     }
1288     //
1289     // Send the char.
1290     //
1291     HWREG(ui32Base + UART_O_DR) = ucData;
1292 }
1293 
1294 //*****************************************************************************
1295 //
1296 //! Causes a BREAK to be sent.
1297 //!
1298 //! \param ui32Base is the base address of the UART port.
1299 //! \param bBreakState controls the output level.
1300 //!
1301 //! Calling this function with \e bBreakState set to \b true asserts a break
1302 //! condition on the UART.  Calling this function with \e bBreakState set to
1303 //! \b false removes the break condition.  For proper transmission of a break
1304 //! command, the break must be asserted for at least two complete frames.
1305 //!
1306 //! \return None.
1307 //
1308 //*****************************************************************************
1309 void
UARTBreakCtl(uint32_t ui32Base,bool bBreakState)1310 UARTBreakCtl(uint32_t ui32Base, bool bBreakState)
1311 {
1312     //
1313     // Check the arguments.
1314     //
1315     ASSERT(_UARTBaseValid(ui32Base));
1316 
1317     //
1318     // Set the break condition as requested.
1319     //
1320     HWREG(ui32Base + UART_O_LCRH) =
1321         (bBreakState ?
1322          (HWREG(ui32Base + UART_O_LCRH) | UART_LCRH_BRK) :
1323          (HWREG(ui32Base + UART_O_LCRH) & ~(UART_LCRH_BRK)));
1324 }
1325 
1326 //*****************************************************************************
1327 //
1328 //! Determines whether the UART transmitter is busy or not.
1329 //!
1330 //! \param ui32Base is the base address of the UART port.
1331 //!
1332 //! This function allows the caller to determine whether all transmitted bytes
1333 //! have cleared the transmitter hardware.  If \b false is returned, the
1334 //! transmit FIFO is empty and all bits of the last transmitted character,
1335 //! including all stop bits, have left the hardware shift register.
1336 //!
1337 //! \return Returns \b true if the UART is transmitting or \b false if all
1338 //! transmissions are complete.
1339 //
1340 //*****************************************************************************
1341 bool
UARTBusy(uint32_t ui32Base)1342 UARTBusy(uint32_t ui32Base)
1343 {
1344     //
1345     // Check the argument.
1346     //
1347     ASSERT(_UARTBaseValid(ui32Base));
1348 
1349     //
1350     // Determine if the UART is busy.
1351     //
1352     return((HWREG(ui32Base + UART_O_FR) & UART_FR_BUSY) ? true : false);
1353 }
1354 
1355 //*****************************************************************************
1356 //
1357 //! Registers an interrupt handler for a UART interrupt.
1358 //!
1359 //! \param ui32Base is the base address of the UART port.
1360 //! \param pfnHandler is a pointer to the function to be called when the
1361 //! UART interrupt occurs.
1362 //!
1363 //! This function does the actual registering of the interrupt handler.  This
1364 //! function enables the global interrupt in the interrupt controller; specific
1365 //! UART interrupts must be enabled via UARTIntEnable().  It is the interrupt
1366 //! handler's responsibility to clear the interrupt source.
1367 //!
1368 //! \sa IntRegister() for important information about registering interrupt
1369 //! handlers.
1370 //!
1371 //! \return None.
1372 //
1373 //*****************************************************************************
1374 void
UARTIntRegister(uint32_t ui32Base,void (* pfnHandler)(void))1375 UARTIntRegister(uint32_t ui32Base, void (*pfnHandler)(void))
1376 {
1377     uint32_t ui32Int;
1378 
1379     //
1380     // Check the arguments.
1381     //
1382     ASSERT(_UARTBaseValid(ui32Base));
1383 
1384     //
1385     // Determine the interrupt number based on the UART port.
1386     //
1387     ui32Int = _UARTIntNumberGet(ui32Base);
1388 
1389     ASSERT(ui32Int != 0);
1390 
1391     //
1392     // Register the interrupt handler.
1393     //
1394     IntRegister(ui32Int, pfnHandler);
1395 
1396     //
1397     // Enable the UART interrupt.
1398     //
1399     IntEnable(ui32Int);
1400 }
1401 
1402 //*****************************************************************************
1403 //
1404 //! Unregisters an interrupt handler for a UART interrupt.
1405 //!
1406 //! \param ui32Base is the base address of the UART port.
1407 //!
1408 //! This function does the actual unregistering of the interrupt handler.  It
1409 //! clears the handler to be called when a UART interrupt occurs.  This
1410 //! function also masks off the interrupt in the interrupt controller so that
1411 //! the interrupt handler no longer is called.
1412 //!
1413 //! \sa IntRegister() for important information about registering interrupt
1414 //! handlers.
1415 //!
1416 //! \return None.
1417 //
1418 //*****************************************************************************
1419 void
UARTIntUnregister(uint32_t ui32Base)1420 UARTIntUnregister(uint32_t ui32Base)
1421 {
1422     uint32_t ui32Int;
1423 
1424     //
1425     // Check the arguments.
1426     //
1427     ASSERT(_UARTBaseValid(ui32Base));
1428 
1429     //
1430     // Determine the interrupt number based on the UART port.
1431     //
1432     ui32Int = _UARTIntNumberGet(ui32Base);
1433 
1434     ASSERT(ui32Int != 0);
1435 
1436     //
1437     // Disable the interrupt.
1438     //
1439     IntDisable(ui32Int);
1440 
1441     //
1442     // Unregister the interrupt handler.
1443     //
1444     IntUnregister(ui32Int);
1445 }
1446 
1447 //*****************************************************************************
1448 //
1449 //! Enables individual UART interrupt sources.
1450 //!
1451 //! \param ui32Base is the base address of the UART port.
1452 //! \param ui32IntFlags is the bit mask of the interrupt sources to be enabled.
1453 //!
1454 //! This function enables the indicated UART interrupt sources.  Only the
1455 //! sources that are enabled can be reflected to the processor interrupt;
1456 //! disabled sources have no effect on the processor.
1457 //!
1458 //! The \e ui32IntFlags parameter is the logical OR of any of the following:
1459 //!
1460 //! - \b UART_INT_9BIT - 9-bit Address Match interrupt
1461 //! - \b UART_INT_OE - Overrun Error interrupt
1462 //! - \b UART_INT_BE - Break Error interrupt
1463 //! - \b UART_INT_PE - Parity Error interrupt
1464 //! - \b UART_INT_FE - Framing Error interrupt
1465 //! - \b UART_INT_RT - Receive Timeout interrupt
1466 //! - \b UART_INT_TX - Transmit interrupt
1467 //! - \b UART_INT_RX - Receive interrupt
1468 //! - \b UART_INT_DSR - DSR interrupt
1469 //! - \b UART_INT_DCD - DCD interrupt
1470 //! - \b UART_INT_CTS - CTS interrupt
1471 //! - \b UART_INT_RI - RI interrupt
1472 //!
1473 //! \return None.
1474 //
1475 //*****************************************************************************
1476 void
UARTIntEnable(uint32_t ui32Base,uint32_t ui32IntFlags)1477 UARTIntEnable(uint32_t ui32Base, uint32_t ui32IntFlags)
1478 {
1479     //
1480     // Check the arguments.
1481     //
1482     ASSERT(_UARTBaseValid(ui32Base));
1483 
1484     //
1485     // Enable the specified interrupts.
1486     //
1487     HWREG(ui32Base + UART_O_IM) |= ui32IntFlags;
1488 }
1489 
1490 //*****************************************************************************
1491 //
1492 //! Disables individual UART interrupt sources.
1493 //!
1494 //! \param ui32Base is the base address of the UART port.
1495 //! \param ui32IntFlags is the bit mask of the interrupt sources to be
1496 //! disabled.
1497 //!
1498 //! This function disables the indicated UART interrupt sources.  Only the
1499 //! sources that are enabled can be reflected to the processor interrupt;
1500 //! disabled sources have no effect on the processor.
1501 //!
1502 //! The \e ui32IntFlags parameter has the same definition as the
1503 //! \e ui32IntFlags parameter to UARTIntEnable().
1504 //!
1505 //! \return None.
1506 //
1507 //*****************************************************************************
1508 void
UARTIntDisable(uint32_t ui32Base,uint32_t ui32IntFlags)1509 UARTIntDisable(uint32_t ui32Base, uint32_t ui32IntFlags)
1510 {
1511     //
1512     // Check the arguments.
1513     //
1514     ASSERT(_UARTBaseValid(ui32Base));
1515 
1516     //
1517     // Disable the specified interrupts.
1518     //
1519     HWREG(ui32Base + UART_O_IM) &= ~(ui32IntFlags);
1520 }
1521 
1522 //*****************************************************************************
1523 //
1524 //! Gets the current interrupt status.
1525 //!
1526 //! \param ui32Base is the base address of the UART port.
1527 //! \param bMasked is \b false if the raw interrupt status is required and
1528 //! \b true if the masked interrupt status is required.
1529 //!
1530 //! This function returns the interrupt status for the specified UART.  Either
1531 //! the raw interrupt status or the status of interrupts that are allowed to
1532 //! reflect to the processor can be returned.
1533 //!
1534 //! \return Returns the current interrupt status, enumerated as a bit field of
1535 //! values described in UARTIntEnable().
1536 //
1537 //*****************************************************************************
1538 uint32_t
UARTIntStatus(uint32_t ui32Base,bool bMasked)1539 UARTIntStatus(uint32_t ui32Base, bool bMasked)
1540 {
1541     //
1542     // Check the arguments.
1543     //
1544     ASSERT(_UARTBaseValid(ui32Base));
1545 
1546     //
1547     // Return either the interrupt status or the raw interrupt status as
1548     // requested.
1549     //
1550     if(bMasked)
1551     {
1552         return(HWREG(ui32Base + UART_O_MIS));
1553     }
1554     else
1555     {
1556         return(HWREG(ui32Base + UART_O_RIS));
1557     }
1558 }
1559 
1560 //*****************************************************************************
1561 //
1562 //! Clears UART interrupt sources.
1563 //!
1564 //! \param ui32Base is the base address of the UART port.
1565 //! \param ui32IntFlags is a bit mask of the interrupt sources to be cleared.
1566 //!
1567 //! The specified UART interrupt sources are cleared, so that they no longer
1568 //! assert.  This function must be called in the interrupt handler to keep the
1569 //! interrupt from being triggered again immediately upon exit.
1570 //!
1571 //! The \e ui32IntFlags parameter has the same definition as the
1572 //! \e ui32IntFlags parameter to UARTIntEnable().
1573 //!
1574 //! \note Because there is a write buffer in the Cortex-M processor, it may
1575 //! take several clock cycles before the interrupt source is actually cleared.
1576 //! Therefore, it is recommended that the interrupt source be cleared early in
1577 //! the interrupt handler (as opposed to the very last action) to avoid
1578 //! returning from the interrupt handler before the interrupt source is
1579 //! actually cleared.  Failure to do so may result in the interrupt handler
1580 //! being immediately reentered (because the interrupt controller still sees
1581 //! the interrupt source asserted).
1582 //!
1583 //! \return None.
1584 //
1585 //*****************************************************************************
1586 void
UARTIntClear(uint32_t ui32Base,uint32_t ui32IntFlags)1587 UARTIntClear(uint32_t ui32Base, uint32_t ui32IntFlags)
1588 {
1589     //
1590     // Check the arguments.
1591     //
1592     ASSERT(_UARTBaseValid(ui32Base));
1593 
1594     //
1595     // Clear the requested interrupt sources.
1596     //
1597     HWREG(ui32Base + UART_O_ICR) = ui32IntFlags;
1598 }
1599 
1600 //*****************************************************************************
1601 //
1602 //! Enable UART uDMA operation.
1603 //!
1604 //! \param ui32Base is the base address of the UART port.
1605 //! \param ui32DMAFlags is a bit mask of the uDMA features to enable.
1606 //!
1607 //! The specified UART uDMA features are enabled.  The UART can be
1608 //! configured to use uDMA for transmit or receive and to disable
1609 //! receive if an error occurs.  The \e ui32DMAFlags parameter is the
1610 //! logical OR of any of the following values:
1611 //!
1612 //! - \b UART_DMA_RX - enable uDMA for receive
1613 //! - \b UART_DMA_TX - enable uDMA for transmit
1614 //! - \b UART_DMA_ERR_RXSTOP - disable uDMA receive on UART error
1615 //!
1616 //! \note The uDMA controller must also be set up before DMA can be used
1617 //! with the UART.
1618 //!
1619 //! \return None.
1620 //
1621 //*****************************************************************************
1622 void
UARTDMAEnable(uint32_t ui32Base,uint32_t ui32DMAFlags)1623 UARTDMAEnable(uint32_t ui32Base, uint32_t ui32DMAFlags)
1624 {
1625     //
1626     // Check the arguments.
1627     //
1628     ASSERT(_UARTBaseValid(ui32Base));
1629 
1630     //
1631     // Set the requested bits in the UART uDMA control register.
1632     //
1633     HWREG(ui32Base + UART_O_DMACTL) |= ui32DMAFlags;
1634 }
1635 
1636 //*****************************************************************************
1637 //
1638 //! Disable UART uDMA operation.
1639 //!
1640 //! \param ui32Base is the base address of the UART port.
1641 //! \param ui32DMAFlags is a bit mask of the uDMA features to disable.
1642 //!
1643 //! This function is used to disable UART uDMA features that were enabled
1644 //! by UARTDMAEnable().  The specified UART uDMA features are disabled.  The
1645 //! \e ui32DMAFlags parameter is the logical OR of any of the following values:
1646 //!
1647 //! - \b UART_DMA_RX - disable uDMA for receive
1648 //! - \b UART_DMA_TX - disable uDMA for transmit
1649 //! - \b UART_DMA_ERR_RXSTOP - do not disable uDMA receive on UART error
1650 //!
1651 //! \return None.
1652 //
1653 //*****************************************************************************
1654 void
UARTDMADisable(uint32_t ui32Base,uint32_t ui32DMAFlags)1655 UARTDMADisable(uint32_t ui32Base, uint32_t ui32DMAFlags)
1656 {
1657     //
1658     // Check the arguments.
1659     //
1660     ASSERT(_UARTBaseValid(ui32Base));
1661 
1662     //
1663     // Clear the requested bits in the UART uDMA control register.
1664     //
1665     HWREG(ui32Base + UART_O_DMACTL) &= ~ui32DMAFlags;
1666 }
1667 
1668 //*****************************************************************************
1669 //
1670 //! Gets current receiver errors.
1671 //!
1672 //! \param ui32Base is the base address of the UART port.
1673 //!
1674 //! This function returns the current state of each of the 4 receiver error
1675 //! sources.  The returned errors are equivalent to the four error bits
1676 //! returned via the previous call to UARTCharGet() or UARTCharGetNonBlocking()
1677 //! with the exception that the overrun error is set immediately when the
1678 //! overrun occurs rather than when a character is next read.
1679 //!
1680 //! \return Returns a logical OR combination of the receiver error flags,
1681 //! \b UART_RXERROR_FRAMING, \b UART_RXERROR_PARITY, \b UART_RXERROR_BREAK
1682 //! and \b UART_RXERROR_OVERRUN.
1683 //
1684 //*****************************************************************************
1685 uint32_t
UARTRxErrorGet(uint32_t ui32Base)1686 UARTRxErrorGet(uint32_t ui32Base)
1687 {
1688     //
1689     // Check the arguments.
1690     //
1691     ASSERT(_UARTBaseValid(ui32Base));
1692 
1693     //
1694     // Return the current value of the receive status register.
1695     //
1696     return(HWREG(ui32Base + UART_O_RSR) & 0x0000000F);
1697 }
1698 
1699 //*****************************************************************************
1700 //
1701 //! Clears all reported receiver errors.
1702 //!
1703 //! \param ui32Base is the base address of the UART port.
1704 //!
1705 //! This function is used to clear all receiver error conditions reported via
1706 //! UARTRxErrorGet().  If using the overrun, framing error, parity error or
1707 //! break interrupts, this function must be called after clearing the interrupt
1708 //! to ensure that later errors of the same type trigger another interrupt.
1709 //!
1710 //! \return None.
1711 //
1712 //*****************************************************************************
1713 void
UARTRxErrorClear(uint32_t ui32Base)1714 UARTRxErrorClear(uint32_t ui32Base)
1715 {
1716     //
1717     // Check the arguments.
1718     //
1719     ASSERT(_UARTBaseValid(ui32Base));
1720 
1721     //
1722     // Any write to the Error Clear Register clears all bits which are
1723     // currently set.
1724     //
1725     HWREG(ui32Base + UART_O_ECR) = 0;
1726 }
1727 
1728 //*****************************************************************************
1729 //
1730 //! Sets the baud clock source for the specified UART.
1731 //!
1732 //! \param ui32Base is the base address of the UART port.
1733 //! \param ui32Source is the baud clock source for the UART.
1734 //!
1735 //! This function allows the baud clock source for the UART to be selected.
1736 //! The possible clock source are the system clock (\b UART_CLOCK_SYSTEM) or
1737 //! the precision internal oscillator (\b UART_CLOCK_PIOSC).
1738 //!
1739 //! Changing the baud clock source changes the baud rate generated by the
1740 //! UART.  Therefore, the baud rate should be reconfigured after any change to
1741 //! the baud clock source.
1742 //!
1743 //! \note The ability to specify the UART baud clock source varies with the
1744 //! Tiva part in use.  Please consult the datasheet for the part you are
1745 //! using to determine whether this support is available.
1746 //!
1747 //! \return None.
1748 //
1749 //*****************************************************************************
1750 void
UARTClockSourceSet(uint32_t ui32Base,uint32_t ui32Source)1751 UARTClockSourceSet(uint32_t ui32Base, uint32_t ui32Source)
1752 {
1753     //
1754     // Check the arguments.
1755     //
1756     ASSERT(_UARTBaseValid(ui32Base));
1757     ASSERT((ui32Source == UART_CLOCK_SYSTEM) ||
1758            (ui32Source == UART_CLOCK_PIOSC));
1759 
1760     //
1761     // Set the UART clock source.
1762     //
1763     HWREG(ui32Base + UART_O_CC) = ui32Source;
1764 }
1765 
1766 //*****************************************************************************
1767 //
1768 //! Gets the baud clock source for the specified UART.
1769 //!
1770 //! \param ui32Base is the base address of the UART port.
1771 //!
1772 //! This function returns the baud clock source for the specified UART.  The
1773 //! possible baud clock source are the system clock (\b UART_CLOCK_SYSTEM) or
1774 //! the precision internal oscillator (\b UART_CLOCK_PIOSC).
1775 //!
1776 //! \note The ability to specify the UART baud clock source varies with the
1777 //! Tiva part in use.  Please consult the datasheet for the part you are
1778 //! using to determine whether this support is available.
1779 //!
1780 //! \return None.
1781 //
1782 //*****************************************************************************
1783 uint32_t
UARTClockSourceGet(uint32_t ui32Base)1784 UARTClockSourceGet(uint32_t ui32Base)
1785 {
1786     //
1787     // Check the arguments.
1788     //
1789     ASSERT(_UARTBaseValid(ui32Base));
1790 
1791     //
1792     // Return the UART clock source.
1793     //
1794     return(HWREG(ui32Base + UART_O_CC));
1795 }
1796 
1797 //*****************************************************************************
1798 //
1799 //! Enables 9-bit mode on the specified UART.
1800 //!
1801 //! \param ui32Base is the base address of the UART port.
1802 //!
1803 //! This function enables the 9-bit operational mode of the UART.
1804 //!
1805 //! \note The availability of 9-bit mode varies with the Tiva part in use.
1806 //! Please consult the datasheet for the part you are using to determine
1807 //! whether this support is available.
1808 //!
1809 //! \return None.
1810 //
1811 //*****************************************************************************
1812 void
UART9BitEnable(uint32_t ui32Base)1813 UART9BitEnable(uint32_t ui32Base)
1814 {
1815     //
1816     // Check the arguments.
1817     //
1818     ASSERT(_UARTBaseValid(ui32Base));
1819 
1820     //
1821     // Enable 9-bit mode.
1822     //
1823     HWREG(ui32Base + UART_O_9BITADDR) |= UART_9BITADDR_9BITEN;
1824 }
1825 
1826 //*****************************************************************************
1827 //
1828 //! Disables 9-bit mode on the specified UART.
1829 //!
1830 //! \param ui32Base is the base address of the UART port.
1831 //!
1832 //! This function disables the 9-bit operational mode of the UART.
1833 //!
1834 //! \note The availability of 9-bit mode varies with the Tiva part in use.
1835 //! Please consult the datasheet for the part you are using to determine
1836 //! whether this support is available.
1837 //!
1838 //! \return None.
1839 //
1840 //*****************************************************************************
1841 void
UART9BitDisable(uint32_t ui32Base)1842 UART9BitDisable(uint32_t ui32Base)
1843 {
1844     //
1845     // Check the arguments.
1846     //
1847     ASSERT(_UARTBaseValid(ui32Base));
1848 
1849     //
1850     // Disable 9-bit mode.
1851     //
1852     HWREG(ui32Base + UART_O_9BITADDR) &= ~UART_9BITADDR_9BITEN;
1853 }
1854 
1855 //*****************************************************************************
1856 //
1857 //! Sets the device address(es) for 9-bit mode.
1858 //!
1859 //! \param ui32Base is the base address of the UART port.
1860 //! \param ui8Addr is the device address.
1861 //! \param ui8Mask is the device address mask.
1862 //!
1863 //! This function configures the device address or range of device addresses
1864 //! that respond to requests on the 9-bit UART port.  The received address is
1865 //! masked with the mask and then compared against the given address, allowing
1866 //! either a single address (if \b ui8Mask is 0xff) or a set of addresses to be
1867 //! matched.
1868 //!
1869 //! \note The availability of 9-bit mode varies with the Tiva part in use.
1870 //! Please consult the datasheet for the part you are using to determine
1871 //! whether this support is available.
1872 //!
1873 //! \return None.
1874 //
1875 //*****************************************************************************
1876 void
UART9BitAddrSet(uint32_t ui32Base,uint8_t ui8Addr,uint8_t ui8Mask)1877 UART9BitAddrSet(uint32_t ui32Base, uint8_t ui8Addr,
1878                 uint8_t ui8Mask)
1879 {
1880     //
1881     // Check the arguments.
1882     //
1883     ASSERT(_UARTBaseValid(ui32Base));
1884 
1885     //
1886     // Set the address and mask.
1887     //
1888     HWREG(ui32Base + UART_O_9BITADDR) = ui8Addr << UART_9BITADDR_ADDR_S;
1889     HWREG(ui32Base + UART_O_9BITAMASK) = ui8Mask << UART_9BITAMASK_MASK_S;
1890 }
1891 
1892 //*****************************************************************************
1893 //
1894 //! Sends an address character from the specified port when operating in 9-bit
1895 //! mode.
1896 //!
1897 //! \param ui32Base is the base address of the UART port.
1898 //! \param ui8Addr is the address to be transmitted.
1899 //!
1900 //! This function waits until all data has been sent from the specified port
1901 //! and then sends the given address as an address byte.  It then waits until
1902 //! the address byte has been transmitted before returning.
1903 //!
1904 //! The normal data functions (UARTCharPut(), UARTCharPutNonBlocking(),
1905 //! UARTCharGet(), and UARTCharGetNonBlocking()) are used to send and receive
1906 //! data characters in 9-bit mode.
1907 //!
1908 //! \note The availability of 9-bit mode varies with the Tiva part in use.
1909 //! Please consult the datasheet for the part you are using to determine
1910 //! whether this support is available.
1911 //!
1912 //! \return None.
1913 //
1914 //*****************************************************************************
1915 void
UART9BitAddrSend(uint32_t ui32Base,uint8_t ui8Addr)1916 UART9BitAddrSend(uint32_t ui32Base, uint8_t ui8Addr)
1917 {
1918     uint32_t ui32LCRH;
1919 
1920     //
1921     // Check the arguments.
1922     //
1923     ASSERT(_UARTBaseValid(ui32Base));
1924 
1925     //
1926     // Wait until the FIFO is empty and the UART is not busy.
1927     //
1928     while((HWREG(ui32Base + UART_O_FR) & (UART_FR_TXFE | UART_FR_BUSY)) !=
1929           UART_FR_TXFE)
1930     {
1931     }
1932 
1933     //
1934     // Force the address/data bit to 1 to indicate this is an address byte.
1935     //
1936     ui32LCRH = HWREG(ui32Base + UART_O_LCRH);
1937     HWREG(ui32Base + UART_O_LCRH) = ((ui32LCRH & ~UART_LCRH_EPS) |
1938                                      UART_LCRH_SPS | UART_LCRH_PEN);
1939 
1940     //
1941     // Send the address.
1942     //
1943     HWREG(ui32Base + UART_O_DR) = ui8Addr;
1944 
1945     //
1946     // Wait until the address has been sent.
1947     //
1948     while((HWREG(ui32Base + UART_O_FR) & (UART_FR_TXFE | UART_FR_BUSY)) !=
1949           UART_FR_TXFE)
1950     {
1951     }
1952 
1953     //
1954     // Restore the address/data setting.
1955     //
1956     HWREG(ui32Base + UART_O_LCRH) = ui32LCRH;
1957 }
1958 
1959 //*****************************************************************************
1960 //
1961 //! Enables internal loopback mode for a UART port
1962 //!
1963 //! \param ui32Base is the base address of the UART port.
1964 //!
1965 //! This function configures a UART port in internal loopback mode to help with
1966 //! diagnostics and debug.  In this mode, the transmit and receive terminals of
1967 //! the same UART port are internally connected.  Hence, the data transmitted
1968 //! on the UnTx output is received on the UxRx input, without having to go
1969 //! through I/O's.  UARTCharPut(), UARTCharGet() functions can be used along
1970 //! with this function.
1971 //!
1972 //! \return None.
1973 //
1974 //*****************************************************************************
UARTLoopbackEnable(uint32_t ui32Base)1975 void UARTLoopbackEnable(uint32_t ui32Base)
1976 {
1977     //
1978     // Check the arguments.
1979     //
1980     ASSERT(_UARTBaseValid(ui32Base));
1981 
1982     //
1983     // Write the Loopback Enable bit to register.
1984     //
1985     HWREG(ui32Base + UART_O_CTL) |= UART_CTL_LBE;
1986 }
1987 
1988 //*****************************************************************************
1989 //
1990 // Close the Doxygen group.
1991 //! @}
1992 //
1993 //*****************************************************************************
1994