1 /* See LICENSE for license details. */
2 #include <gd32vf103.h>
3 #include <stdio.h>
4 #include <stdlib.h>
5 #include <string.h>
6
7 #if defined (__ICCRISCV__)
8 #include "compiler.h"
9 #elif defined ( __GNUC__ )
10 #include <unistd.h>
11 #endif
12
13 #include "riscv_encoding.h"
14 #include "n200_func.h"
15
16 /* Configure PMP to make all the address space accesable and executable */
pmp_open_all_space(void)17 void pmp_open_all_space(void){
18 /* Config entry0 addr to all 1s to make the range cover all space */
19 asm volatile ("li x6, 0xffffffff":::"x6");
20 asm volatile ("csrw pmpaddr0, x6":::);
21 /* Config entry0 cfg to make it NAPOT address mode, and R/W/X okay */
22 asm volatile ("li x6, 0x7f":::"x6");
23 asm volatile ("csrw pmpcfg0, x6":::);
24 }
25
switch_m2u_mode(void)26 void switch_m2u_mode(void){
27 #if defined (__ICCRISCV__)
28 clear_csr (CSR_MSTATUS,MSTATUS_MPP);
29 #elif defined ( __GNUC__ )
30 clear_csr (mstatus,MSTATUS_MPP);
31 #endif
32 /* printf("\nIn the m2u function, the mstatus is 0x%x\n", read_csr(mstatus)); */
33 /* printf("\nIn the m2u function, the mepc is 0x%x\n", read_csr(mepc)); */
34 #if defined ( __GNUC__ )
35 asm volatile ("la x6, 1f ":::"x6");
36 #endif
37 asm volatile ("csrw mepc, x6":::);
38 asm volatile ("mret":::);
39 asm volatile ("1:":::);
40 }
41
mtime_lo(void)42 uint32_t mtime_lo(void)
43 {
44 return *(volatile uint32_t *)(TIMER_CTRL_ADDR + TIMER_MTIME);
45 }
46
47
mtime_hi(void)48 uint32_t mtime_hi(void)
49 {
50 return *(volatile uint32_t *)(TIMER_CTRL_ADDR + TIMER_MTIME + 4);
51 }
52
get_timer_value(void)53 uint64_t get_timer_value(void)
54 {
55 while (1) {
56 uint32_t hi = mtime_hi();
57 uint32_t lo = mtime_lo();
58 if (hi == mtime_hi())
59 return ((uint64_t)hi << 32) | lo;
60 }
61 }
62
get_timer_freq(void)63 uint32_t get_timer_freq(void)
64 {
65 return TIMER_FREQ;
66 }
67
get_instret_value(void)68 uint64_t get_instret_value(void)
69 {
70 while (1) {
71 #if defined (__ICCRISCV__)
72 uint32_t hi = read_csr(CSR_MINSTRETH);
73 uint32_t lo = read_csr(CSR_MINSTRETH);
74 if (hi == read_csr(CSR_MINSTRETH))
75 #elif defined ( __GNUC__ )
76 uint32_t hi = read_csr(minstreth);
77 uint32_t lo = read_csr(minstret);
78 if (hi == read_csr(minstreth))
79 #endif
80
81 return ((uint64_t)hi << 32) | lo;
82 }
83 }
84
get_cycle_value(void)85 uint64_t get_cycle_value(void)
86 {
87 while (1) {
88 #if defined (__ICCRISCV__)
89 uint32_t hi = read_csr(CSR_MCYCLEH);
90 uint32_t lo = read_csr(CSR_MCYCLE);
91 if (hi == read_csr(CSR_MCYCLEH))
92 #elif defined ( __GNUC__ )
93 uint32_t hi = read_csr(mcycleh);
94 uint32_t lo = read_csr(mcycle);
95 if (hi == read_csr(mcycleh))
96 #endif
97
98 return ((uint64_t)hi << 32) | lo;
99 }
100 }
101
measure_cpu_freq(size_t n)102 uint32_t __attribute__((noinline)) measure_cpu_freq(size_t n)
103 {
104 uint32_t start_mtime, delta_mtime;
105 uint32_t mtime_freq = get_timer_freq();
106
107 /* Don't start measuruing until we see an mtime tick */
108 uint32_t tmp = mtime_lo();
109 do {
110 start_mtime = mtime_lo();
111 } while (start_mtime == tmp);
112
113 #if defined (__ICCRISCV__)
114 uint32_t start_mcycle = read_csr(CSR_MCYCLE);
115 #elif defined ( __GNUC__ )
116 uint32_t start_mcycle = read_csr(mcycle);
117 #endif
118
119 do {
120 delta_mtime = mtime_lo() - start_mtime;
121 } while (delta_mtime < n);
122
123 #if defined (__ICCRISCV__)
124 uint32_t delta_mcycle = read_csr(CSR_MCYCLE) - start_mcycle;
125 #elif defined ( __GNUC__ )
126 uint32_t delta_mcycle = read_csr(mcycle) - start_mcycle;
127 #endif
128
129 return (delta_mcycle / delta_mtime) * mtime_freq
130 + ((delta_mcycle % delta_mtime) * mtime_freq) / delta_mtime;
131 }
132
get_cpu_freq(void)133 uint32_t get_cpu_freq(void)
134 {
135 uint32_t cpu_freq;
136
137 /* warm up */
138 measure_cpu_freq(1);
139 /* measure for real */
140 cpu_freq = measure_cpu_freq(100);
141
142 return cpu_freq;
143 }
144
145 /* Note that there are no assertions or bounds checking on these */
146 /* parameter values. */
eclic_init(uint32_t num_irq)147 void eclic_init ( uint32_t num_irq )
148 {
149
150 typedef volatile uint32_t vuint32_t;
151
152 /* clear cfg register */
153 *(volatile uint8_t*)(ECLIC_ADDR_BASE+ECLIC_CFG_OFFSET)=0;
154
155 /* clear minthresh register */
156 *(volatile uint8_t*)(ECLIC_ADDR_BASE+ECLIC_MTH_OFFSET)=0;
157
158 /* clear all IP/IE/ATTR/CTRL bits for all interrupt sources */
159 vuint32_t * ptr;
160
161 vuint32_t * base = (vuint32_t*)(ECLIC_ADDR_BASE + ECLIC_INT_IP_OFFSET);
162 vuint32_t * upper = (vuint32_t*)(base + num_irq*4);
163
164 for (ptr = base; ptr < upper; ptr=ptr+4){
165 *ptr = 0;
166 }
167 }
168
eclic_enable_interrupt(uint32_t source)169 void eclic_enable_interrupt (uint32_t source) {
170 *(volatile uint8_t*)(ECLIC_ADDR_BASE+ECLIC_INT_IE_OFFSET+source*4) = 1;
171 }
172
eclic_disable_interrupt(uint32_t source)173 void eclic_disable_interrupt (uint32_t source){
174 *(volatile uint8_t*)(ECLIC_ADDR_BASE+ECLIC_INT_IE_OFFSET+source*4) = 0;
175 }
176
eclic_set_pending(uint32_t source)177 void eclic_set_pending(uint32_t source){
178 *(volatile uint8_t*)(ECLIC_ADDR_BASE+ECLIC_INT_IP_OFFSET+source*4) = 1;
179 }
180
eclic_clear_pending(uint32_t source)181 void eclic_clear_pending(uint32_t source){
182 *(volatile uint8_t*)(ECLIC_ADDR_BASE+ECLIC_INT_IP_OFFSET+source*4) = 0;
183 }
184
eclic_set_intctrl(uint32_t source,uint8_t intctrl)185 void eclic_set_intctrl (uint32_t source, uint8_t intctrl){
186 *(volatile uint8_t*)(ECLIC_ADDR_BASE+ECLIC_INT_CTRL_OFFSET+source*4) = intctrl;
187 }
188
eclic_get_intctrl(uint32_t source)189 uint8_t eclic_get_intctrl (uint32_t source){
190 return *(volatile uint8_t*)(ECLIC_ADDR_BASE+ECLIC_INT_CTRL_OFFSET+source*4);
191 }
192
eclic_set_intattr(uint32_t source,uint8_t intattr)193 void eclic_set_intattr (uint32_t source, uint8_t intattr){
194 *(volatile uint8_t*)(ECLIC_ADDR_BASE+ECLIC_INT_ATTR_OFFSET+source*4) = intattr;
195 }
196
eclic_get_intattr(uint32_t source)197 uint8_t eclic_get_intattr (uint32_t source){
198 return *(volatile uint8_t*)(ECLIC_ADDR_BASE+ECLIC_INT_ATTR_OFFSET+source*4);
199 }
200
eclic_set_cliccfg(uint8_t cliccfg)201 void eclic_set_cliccfg (uint8_t cliccfg){
202 *(volatile uint8_t*)(ECLIC_ADDR_BASE+ECLIC_CFG_OFFSET) = cliccfg;
203 }
204
eclic_get_cliccfg(void)205 uint8_t eclic_get_cliccfg (void){
206 return *(volatile uint8_t*)(ECLIC_ADDR_BASE+ECLIC_CFG_OFFSET);
207 }
208
eclic_set_mth(uint8_t mth)209 void eclic_set_mth (uint8_t mth){
210 *(volatile uint8_t*)(ECLIC_ADDR_BASE+ECLIC_MTH_OFFSET) = mth;
211 }
212
eclic_get_mth(void)213 uint8_t eclic_get_mth (void){
214 return *(volatile uint8_t*)(ECLIC_ADDR_BASE+ECLIC_MTH_OFFSET);
215 }
216
217 /* sets nlbits */
eclic_set_nlbits(uint8_t nlbits)218 void eclic_set_nlbits(uint8_t nlbits) {
219 /* shift nlbits to correct position */
220 uint8_t nlbits_shifted = nlbits << ECLIC_CFG_NLBITS_LSB;
221
222 /* read the current cliccfg */
223 uint8_t old_cliccfg = eclic_get_cliccfg();
224 uint8_t new_cliccfg = (old_cliccfg & (~ECLIC_CFG_NLBITS_MASK)) | (ECLIC_CFG_NLBITS_MASK & nlbits_shifted);
225
226 eclic_set_cliccfg(new_cliccfg);
227 }
228
229 /* get nlbits */
eclic_get_nlbits(void)230 uint8_t eclic_get_nlbits(void) {
231 /* extract nlbits */
232 uint8_t nlbits = eclic_get_cliccfg();
233 nlbits = (nlbits & ECLIC_CFG_NLBITS_MASK) >> ECLIC_CFG_NLBITS_LSB;
234 return nlbits;
235 }
236
237 /* sets an interrupt level based encoding of nlbits and ECLICINTCTLBITS */
eclic_set_irq_lvl(uint32_t source,uint8_t lvl)238 void eclic_set_irq_lvl(uint32_t source, uint8_t lvl) {
239 /* extract nlbits */
240 uint8_t nlbits = eclic_get_nlbits();
241 if (nlbits > ECLICINTCTLBITS) {
242 nlbits = ECLICINTCTLBITS;
243 }
244
245 /* shift lvl right to mask off unused bits */
246 lvl = lvl >> (8-nlbits);
247 /* shift lvl into correct bit position */
248 lvl = lvl << (8-nlbits);
249
250 /* write to clicintctrl */
251 uint8_t current_intctrl = eclic_get_intctrl(source);
252 /* shift intctrl left to mask off unused bits */
253 current_intctrl = current_intctrl << nlbits;
254 /* shift intctrl into correct bit position */
255 current_intctrl = current_intctrl >> nlbits;
256
257 eclic_set_intctrl(source, (current_intctrl | lvl));
258 }
259
260 /* gets an interrupt level based encoding of nlbits */
eclic_get_irq_lvl(uint32_t source)261 uint8_t eclic_get_irq_lvl(uint32_t source) {
262 /* extract nlbits */
263 uint8_t nlbits = eclic_get_nlbits();
264 if (nlbits > ECLICINTCTLBITS) {
265 nlbits = ECLICINTCTLBITS;
266 }
267
268 uint8_t intctrl = eclic_get_intctrl(source);
269
270 /* shift intctrl */
271 intctrl = intctrl >> (8-nlbits);
272 /* shift intctrl */
273 uint8_t lvl = intctrl << (8-nlbits);
274
275 return lvl;
276 }
277
eclic_set_irq_lvl_abs(uint32_t source,uint8_t lvl_abs)278 void eclic_set_irq_lvl_abs(uint32_t source, uint8_t lvl_abs) {
279 /* extract nlbits */
280 uint8_t nlbits = eclic_get_nlbits();
281 if (nlbits > ECLICINTCTLBITS) {
282 nlbits = ECLICINTCTLBITS;
283 }
284
285 /* shift lvl_abs into correct bit position */
286 uint8_t lvl = lvl_abs << (8-nlbits);
287
288 /* write to clicintctrl */
289 uint8_t current_intctrl = eclic_get_intctrl(source);
290 /* shift intctrl left to mask off unused bits */
291 current_intctrl = current_intctrl << nlbits;
292 /* shift intctrl into correct bit position */
293 current_intctrl = current_intctrl >> nlbits;
294
295 eclic_set_intctrl(source, (current_intctrl | lvl));
296 }
297
eclic_get_irq_lvl_abs(uint32_t source)298 uint8_t eclic_get_irq_lvl_abs(uint32_t source) {
299 /* extract nlbits */
300 uint8_t nlbits = eclic_get_nlbits();
301 if (nlbits > ECLICINTCTLBITS) {
302 nlbits = ECLICINTCTLBITS;
303 }
304
305 uint8_t intctrl = eclic_get_intctrl(source);
306
307 /* shift intctrl */
308 intctrl = intctrl >> (8-nlbits);
309 /* shift intctrl */
310 uint8_t lvl_abs = intctrl;
311
312 return lvl_abs;
313 }
314
315 /* sets an interrupt priority based encoding of nlbits and ECLICINTCTLBITS */
eclic_set_irq_priority(uint32_t source,uint8_t priority)316 uint8_t eclic_set_irq_priority(uint32_t source, uint8_t priority) {
317 /* extract nlbits */
318 uint8_t nlbits = eclic_get_nlbits();
319 if (nlbits >= ECLICINTCTLBITS) {
320 nlbits = ECLICINTCTLBITS;
321 return 0;
322 }
323
324 /* shift priority into correct bit position */
325 priority = priority << (8 - ECLICINTCTLBITS);
326
327 /* write to eclicintctrl */
328 uint8_t current_intctrl = eclic_get_intctrl(source);
329 /* shift intctrl right to mask off unused bits */
330 current_intctrl = current_intctrl >> (8-nlbits);
331 /* shift intctrl into correct bit position */
332 current_intctrl = current_intctrl << (8-nlbits);
333
334 eclic_set_intctrl(source, (current_intctrl | priority));
335
336 return priority;
337 }
338
339 /* gets an interrupt priority based encoding of nlbits */
eclic_get_irq_priority(uint32_t source)340 uint8_t eclic_get_irq_priority(uint32_t source) {
341 /* extract nlbits */
342 uint8_t nlbits = eclic_get_nlbits();
343 if (nlbits > ECLICINTCTLBITS) {
344 nlbits = ECLICINTCTLBITS;
345 }
346
347 uint8_t intctrl = eclic_get_intctrl(source);
348
349 /* shift intctrl */
350 intctrl = intctrl << nlbits;
351 /* shift intctrl */
352 uint8_t priority = intctrl >> (nlbits+(8 - ECLICINTCTLBITS));
353
354 return priority;
355 }
356
eclic_mode_enable()357 void eclic_mode_enable() {
358 #if defined (__ICCRISCV__)
359 uint32_t mtvec_value = read_csr(CSR_MTVEC);
360 mtvec_value = mtvec_value & 0xFFFFFFC0;
361 mtvec_value = mtvec_value | 0x00000003;
362 write_csr(CSR_MTVEC,mtvec_value);
363 #elif defined ( __GNUC__ )
364 uint32_t mtvec_value = read_csr(mtvec);
365 mtvec_value = mtvec_value & 0xFFFFFFC0;
366 mtvec_value = mtvec_value | 0x00000003;
367 write_csr(mtvec,mtvec_value);
368 #endif
369
370 }
371
372 /* sets vector-mode or non-vector mode */
eclic_set_vmode(uint32_t source)373 void eclic_set_vmode(uint32_t source) {
374 /* read the current attr */
375 uint8_t old_intattr = eclic_get_intattr(source);
376 /* Keep other bits unchanged and only set the LSB bit */
377 uint8_t new_intattr = (old_intattr | 0x1);
378
379 eclic_set_intattr(source,new_intattr);
380 }
381
eclic_set_nonvmode(uint32_t source)382 void eclic_set_nonvmode(uint32_t source) {
383 /* read the current attr */
384 uint8_t old_intattr = eclic_get_intattr(source);
385 /* Keep other bits unchanged and only clear the LSB bit*/
386 uint8_t new_intattr = (old_intattr & (~0x1));
387
388 eclic_set_intattr(source,new_intattr);
389 }
390
391 /* sets interrupt as level sensitive
392 Bit 1, trig[0], is defined as "edge-triggered" (0: level-triggered, 1: edge-triggered);
393 Bit 2, trig[1], is defined as "negative-edge" (0: positive-edge, 1: negative-edge).*/
394
eclic_set_level_trig(uint32_t source)395 void eclic_set_level_trig(uint32_t source) {
396 /* read the current attr */
397 uint8_t old_intattr = eclic_get_intattr(source);
398 /* Keep other bits unchanged and only clear the bit 1 */
399 uint8_t new_intattr = (old_intattr & (~0x2));
400
401 eclic_set_intattr(source,new_intattr);
402 }
403
eclic_set_posedge_trig(uint32_t source)404 void eclic_set_posedge_trig(uint32_t source) {
405 /* read the current attr */
406 uint8_t old_intattr = eclic_get_intattr(source);
407 /* Keep other bits unchanged and only set the bit 1 */
408 uint8_t new_intattr = (old_intattr | 0x2);
409 /* Keep other bits unchanged and only clear the bit 2 */
410 new_intattr = (old_intattr & (~0x4));
411
412 eclic_set_intattr(source,new_intattr);
413 }
414
eclic_set_negedge_trig(uint32_t source)415 void eclic_set_negedge_trig(uint32_t source) {
416 /*read the current attr */
417 uint8_t old_intattr = eclic_get_intattr(source);
418 /* Keep other bits unchanged and only set the bit 1*/
419 uint8_t new_intattr = (old_intattr | 0x2);
420 /* Keep other bits unchanged and only set the bit 2*/
421 new_intattr = (old_intattr | 0x4);
422
423 eclic_set_intattr(source,new_intattr);
424 }
425