1 /*
2  * Copyright (c) 2006-2023, RT-Thread Development Team
3  *
4  * SPDX-License-Identifier: Apache-2.0
5  *
6  * Change Logs:
7  * Date           Author            Notes
8  * 2022-03-06     BalanceTWK        first version
9  * 2022-04-16     wolfJane          fix spixfer, add time out check
10  */
11 
12 #include <board.h>
13 #include <rtthread.h>
14 #include <rtdevice.h>
15 
16 #ifdef RT_USING_SPI
17 #ifdef BSP_USING_SPI
18 
19 #if defined(BSP_USING_SPI1) || defined(BSP_USING_SPI2) || defined(BSP_USING_SPI3) || defined(BSP_USING_SPI4) || defined(BSP_USING_SPI5) || defined(BSP_USING_SPI6)
20 
21 #include "drv_spi.h"
22 #define DRV_DEBUG
23 #define LOG_TAG              "drv.spi"
24 #include <drv_log.h>
25 
26 #define SPI_TIME_OUT    (1000)
27 
28 enum
29 {
30 #ifdef BSP_USING_SPI1
31     SPI1_INDEX,
32 #endif
33 #ifdef BSP_USING_SPI2
34     SPI2_INDEX,
35 #endif
36 #ifdef BSP_USING_SPI3
37     SPI3_INDEX,
38 #endif
39 #ifdef BSP_USING_SPI4
40     SPI4_INDEX,
41 #endif
42 #ifdef BSP_USING_SPI5
43     SPI5_INDEX,
44 #endif
45 #ifdef BSP_USING_SPI6
46     SPI6_INDEX,
47 #endif
48 };
49 
50 struct n32_spi_config
51 {
52     SPI_Module *module;
53     char *bus_name;
54 };
55 /* n32 spi dirver class */
56 struct n32_spi
57 {
58     SPI_InitType SPI_InitStructure;
59     struct n32_spi_config *config;
60     struct rt_spi_configuration *cfg;
61 
62     struct rt_spi_bus spi_bus;
63 };
64 
65 static struct n32_spi_config spi_config[] =
66 {
67 #ifdef BSP_USING_SPI1
68     {
69         .module = SPI1,
70         .bus_name = "spi1",
71     },
72 #endif
73 
74 #ifdef BSP_USING_SPI2
75     {
76         .module = SPI2,
77         .bus_name = "spi2",
78     },
79 #endif
80 
81 #ifdef BSP_USING_SPI3
82     {
83         .module = SPI3,
84         .bus_name = "spi3",
85     },
86 #endif
87 
88 };
89 
90 static struct n32_spi spi_bus_obj[sizeof(spi_config) / sizeof(spi_config[0])] = {0};
91 
n32_spi_init(struct n32_spi * spi_drv,struct rt_spi_configuration * cfg)92 static rt_err_t n32_spi_init(struct n32_spi *spi_drv, struct rt_spi_configuration *cfg)
93 {
94     RT_ASSERT(spi_drv != RT_NULL);
95     RT_ASSERT(cfg != RT_NULL);
96 
97     SPI_InitType *SPI_InitStructure = &spi_drv->SPI_InitStructure;
98     SPI_Module *spi_handle = spi_drv->config->module;
99 
100     /* GPIO configuration ------------------------------------------------------*/
101     n32_msp_spi_init(spi_drv->config->module);
102 
103     if (cfg->mode & RT_SPI_SLAVE)
104     {
105         /* SPI_InitStructure->SpiMode = SPI_MODE_SLAVE; */
106         return -RT_ERROR;
107     }
108     else
109     {
110         SPI_InitStructure->SpiMode = SPI_MODE_MASTER;
111     }
112 
113     if (cfg->mode & RT_SPI_3WIRE)
114     {
115         SPI_InitStructure->DataDirection = SPI_DIR_SINGLELINE_TX;
116     }
117     else
118     {
119         SPI_InitStructure->DataDirection = SPI_DIR_DOUBLELINE_FULLDUPLEX;
120     }
121 
122     if (cfg->data_width == 8)
123     {
124         SPI_InitStructure->DataLen = SPI_DATA_SIZE_8BITS;
125     }
126     else if (cfg->data_width == 16)
127     {
128         SPI_InitStructure->DataLen = SPI_DATA_SIZE_16BITS;
129     }
130     else
131     {
132         return -RT_EIO;
133     }
134 
135     if (cfg->mode & RT_SPI_CPHA)
136     {
137         SPI_InitStructure->CLKPHA = SPI_CLKPHA_SECOND_EDGE;
138     }
139     else
140     {
141         SPI_InitStructure->CLKPHA = SPI_CLKPHA_FIRST_EDGE;
142     }
143 
144     if (cfg->mode & RT_SPI_CPOL)
145     {
146         SPI_InitStructure->CLKPOL = SPI_CLKPOL_HIGH;
147     }
148     else
149     {
150         SPI_InitStructure->CLKPOL = SPI_CLKPOL_LOW;
151     }
152 
153     if (cfg->mode & RT_SPI_NO_CS)
154     {
155         SPI_InitStructure->NSS = SPI_NSS_HARD;
156     }
157     else
158     {
159         SPI_InitStructure->NSS = SPI_NSS_SOFT;
160     }
161 
162     RCC_ClocksType RCC_Clock;
163     RCC_GetClocksFreqValue(&RCC_Clock);
164     rt_uint64_t SPI_APB_CLOCK;
165 
166     if (SPI1 == spi_handle)
167     {
168         SPI_APB_CLOCK = RCC_Clock.Pclk1Freq;
169     }
170     else if (SPI2 == spi_handle ||  SPI3 == spi_handle)
171     {
172         SPI_APB_CLOCK = RCC_Clock.Pclk2Freq;
173     }
174 
175     if (cfg->max_hz >= SPI_APB_CLOCK / 2)
176     {
177         SPI_InitStructure->BaudRatePres = SPI_BR_PRESCALER_2;
178     }
179     else if (cfg->max_hz >= SPI_APB_CLOCK / 4)
180     {
181         SPI_InitStructure->BaudRatePres = SPI_BR_PRESCALER_4;
182     }
183     else if (cfg->max_hz >= SPI_APB_CLOCK / 8)
184     {
185         SPI_InitStructure->BaudRatePres = SPI_BR_PRESCALER_8;
186     }
187     else if (cfg->max_hz >= SPI_APB_CLOCK / 16)
188     {
189         SPI_InitStructure->BaudRatePres = SPI_BR_PRESCALER_16;
190     }
191     else if (cfg->max_hz >= SPI_APB_CLOCK / 32)
192     {
193         SPI_InitStructure->BaudRatePres = SPI_BR_PRESCALER_32;
194     }
195     else if (cfg->max_hz >= SPI_APB_CLOCK / 64)
196     {
197         SPI_InitStructure->BaudRatePres = SPI_BR_PRESCALER_64;
198     }
199     else if (cfg->max_hz >= SPI_APB_CLOCK / 128)
200     {
201         SPI_InitStructure->BaudRatePres = SPI_BR_PRESCALER_128;
202     }
203     else
204     {
205         SPI_InitStructure->BaudRatePres = SPI_BR_PRESCALER_256;
206     }
207 
208     if (cfg->mode & RT_SPI_MSB)
209     {
210         SPI_InitStructure->FirstBit = SPI_FB_MSB;
211     }
212     else
213     {
214         SPI_InitStructure->FirstBit = SPI_FB_LSB;
215     }
216 
217     SPI_InitStructure->CRCPoly       = 7;
218 
219     SPI_Init(spi_handle, SPI_InitStructure);
220     /* Enable SPI_MASTER TXE interrupt */
221     SPI_I2S_EnableInt(spi_handle, SPI_I2S_INT_TE, ENABLE);
222 
223     /* Enable SPI_MASTER */
224     SPI_Enable(spi_handle, ENABLE);
225 
226     return RT_EOK;
227 }
228 
spi_configure(struct rt_spi_device * device,struct rt_spi_configuration * configuration)229 static rt_err_t spi_configure(struct rt_spi_device *device,
230                               struct rt_spi_configuration *configuration)
231 {
232     RT_ASSERT(device != RT_NULL);
233     RT_ASSERT(configuration != RT_NULL);
234 
235     struct n32_spi *spi_drv =  rt_container_of(device->bus, struct n32_spi, spi_bus);
236     spi_drv->cfg = configuration;
237 
238     return n32_spi_init(spi_drv, configuration);
239 }
240 
_spi_recv(SPI_Module * hspi,uint8_t * tx_buff,uint8_t * rx_buff,uint32_t length,uint32_t timeout)241 static rt_ssize_t _spi_recv(SPI_Module *hspi,
242         uint8_t *tx_buff,
243         uint8_t *rx_buff,
244         uint32_t length,
245         uint32_t timeout)
246 {
247     /* Init tickstart for timeout management*/
248     uint32_t tickstart = rt_tick_get();
249     uint8_t dat = 0;
250 
251     if ((tx_buff == RT_NULL) && (rx_buff == RT_NULL) || (length == 0))
252     {
253         return -RT_EIO;
254     }
255 
256     while (length--)
257     {
258         while (SPI_I2S_GetStatus(hspi, SPI_I2S_TE_FLAG) == RESET)
259         {
260             if ((rt_tick_get() - tickstart) > timeout)
261             {
262                 return -RT_ETIMEOUT;
263             }
264         }
265         SPI_I2S_TransmitData(hspi, *tx_buff++);
266 
267         while (SPI_I2S_GetStatus(hspi, SPI_I2S_RNE_FLAG) == RESET)
268         {
269             if ((rt_tick_get() - tickstart) > timeout)
270             {
271                 return -RT_ETIMEOUT;
272             }
273         }
274         dat = SPI_I2S_ReceiveData(hspi);
275 
276         if (rx_buff)
277         {
278             *rx_buff++ = dat;
279         }
280     }
281     return RT_EOK;
282 }
283 
spixfer(struct rt_spi_device * device,struct rt_spi_message * message)284 static rt_ssize_t spixfer(struct rt_spi_device *device, struct rt_spi_message *message)
285 {
286     rt_size_t send_length;
287     rt_uint8_t *recv_buf;
288     const rt_uint8_t *send_buf;
289     rt_ssize_t stat = RT_EOK;
290 
291     /* Check Direction parameter */
292     RT_ASSERT(device != RT_NULL);
293     RT_ASSERT(device->bus != RT_NULL);
294     RT_ASSERT(device->bus->parent.user_data != RT_NULL);
295     RT_ASSERT(message != RT_NULL);
296 
297     struct n32_spi *spi_drv =  rt_container_of(device->bus, struct n32_spi, spi_bus);
298     struct n32_hw_spi_cs *cs = device->parent.user_data;
299     SPI_Module *spi_handle = spi_drv->config->module;
300 
301     if (message->cs_take && !(device->config.mode & RT_SPI_NO_CS))
302     {
303         if (device->config.mode & RT_SPI_CS_HIGH)
304         {
305             GPIO_SetBits(cs->module, cs->pin);
306         }
307         else
308         {
309             GPIO_ResetBits(cs->module, cs->pin);
310         }
311     }
312 
313     send_length = message->length;
314     recv_buf = message->recv_buf;
315     send_buf = message->send_buf;
316 
317     /* start once data exchange in DMA mode */
318     if (message->send_buf && message->recv_buf)
319     {
320         LOG_D("%s:%d", __FUNCTION__, __LINE__);
321         stat = -RT_EIO;
322     }
323     else if (message->send_buf)
324     {
325         stat = _spi_recv(spi_handle,
326                          (uint8_t *)send_buf,
327                          RT_NULL,
328                          send_length,
329                          SPI_TIME_OUT);
330     }
331     else
332     {
333         rt_memset(recv_buf, 0xff, send_length);
334         stat = _spi_recv(spi_handle,
335                          (uint8_t *)recv_buf,
336                          (uint8_t *)recv_buf,
337                          send_length,
338                          SPI_TIME_OUT);
339     }
340 
341     if (message->cs_release && !(device->config.mode & RT_SPI_NO_CS))
342     {
343         if (device->config.mode & RT_SPI_CS_HIGH)
344         {
345             GPIO_ResetBits(cs->module, cs->pin);
346         }
347         else
348         {
349             GPIO_SetBits(cs->module, cs->pin);
350         }
351     }
352 
353     if (stat != RT_EOK)
354     {
355         send_length = 0;
356     }
357 
358     return send_length;
359 }
360 
361 static const struct rt_spi_ops n32_spi_ops =
362 {
363     .configure = spi_configure,
364     .xfer = spixfer,
365 };
366 
rt_hw_spi_bus_init(void)367 static int rt_hw_spi_bus_init(void)
368 {
369     rt_err_t result;
370     for (int i = 0; i < sizeof(spi_config) / sizeof(spi_config[0]); i++)
371     {
372         spi_bus_obj[i].config = &spi_config[i];
373         spi_bus_obj[i].spi_bus.parent.user_data = &spi_config[i];
374         result = rt_spi_bus_register(&spi_bus_obj[i].spi_bus, spi_config[i].bus_name, &n32_spi_ops);
375         RT_ASSERT(result == RT_EOK);
376 
377         LOG_D("%s bus init done", spi_config[i].bus_name);
378     }
379 
380     return result;
381 }
rt_hw_spi_init(void)382 int rt_hw_spi_init(void)
383 {
384     /* TODO: n32_get_dma_info(); */
385     return rt_hw_spi_bus_init();
386 }
387 INIT_BOARD_EXPORT(rt_hw_spi_init);
388 
389 
390 /**
391   * Attach the spi device to SPI bus, this function must be used after initialization.
392   */
rt_hw_spi_device_attach(const char * bus_name,const char * device_name,GPIO_Module * cs_gpiox,uint32_t cs_gpio_pin)393 rt_err_t rt_hw_spi_device_attach(const char *bus_name, const char *device_name, GPIO_Module *cs_gpiox, uint32_t cs_gpio_pin)
394 {
395     rt_err_t result;
396     struct rt_spi_device *spi_device;
397     struct n32_hw_spi_cs *cs_pin;
398     GPIO_InitType GPIO_InitStructure;
399 
400     RT_ASSERT(bus_name != RT_NULL);
401     RT_ASSERT(device_name != RT_NULL);
402 
403 
404     /* Enable the GPIO Clock */
405     if (cs_gpiox == GPIOA)
406     {
407         RCC_EnableAPB2PeriphClk(RCC_APB2_PERIPH_GPIOA, ENABLE);
408     }
409     else if (cs_gpiox == GPIOB)
410     {
411         RCC_EnableAPB2PeriphClk(RCC_APB2_PERIPH_GPIOB, ENABLE);
412     }
413     else if (cs_gpiox == GPIOC)
414     {
415         RCC_EnableAPB2PeriphClk(RCC_APB2_PERIPH_GPIOC, ENABLE);
416     }
417     else if (cs_gpiox == GPIOD)
418     {
419         RCC_EnableAPB2PeriphClk(RCC_APB2_PERIPH_GPIOD, ENABLE);
420     }
421     else if (cs_gpiox == GPIOE)
422     {
423         RCC_EnableAPB2PeriphClk(RCC_APB2_PERIPH_GPIOE, ENABLE);
424     }
425     else if (cs_gpiox == GPIOF)
426     {
427         RCC_EnableAPB2PeriphClk(RCC_APB2_PERIPH_GPIOF, ENABLE);
428     }
429     else if (cs_gpiox == GPIOG)
430     {
431         RCC_EnableAPB2PeriphClk(RCC_APB2_PERIPH_GPIOG, ENABLE);
432     }
433 
434     /* Configure the GPIO pin */
435     if (cs_gpio_pin <= GPIO_PIN_ALL)
436     {
437         GPIO_InitStructure.Pin        = cs_gpio_pin;
438         GPIO_InitStructure.GPIO_Mode  = GPIO_Mode_Out_PP;
439         GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
440         GPIO_InitPeripheral(cs_gpiox, &GPIO_InitStructure);
441     }
442 
443     /* attach the device to spi bus*/
444     spi_device = (struct rt_spi_device *)rt_malloc(sizeof(struct rt_spi_device));
445     RT_ASSERT(spi_device != RT_NULL);
446     cs_pin = (struct n32_hw_spi_cs *)rt_malloc(sizeof(struct n32_hw_spi_cs));
447     RT_ASSERT(cs_pin != RT_NULL);
448     cs_pin->module = cs_gpiox;
449     cs_pin->pin = cs_gpio_pin;
450 
451     result = rt_spi_bus_attach_device(spi_device, device_name, bus_name, (void *)cs_pin);
452 
453     if (result != RT_EOK)
454     {
455         LOG_E("%s attach to %s faild, %d\n", device_name, bus_name, result);
456     }
457 
458     RT_ASSERT(result == RT_EOK);
459 
460     LOG_D("%s attach to %s done", device_name, bus_name);
461 
462     return result;
463 }
464 
465 #endif /* BSP_USING_SPIx */
466 
467 #endif /* BSP_USING_SPI */
468 #endif /* RT_USING_SPI */
469 
470