1 /**
2 * \file
3 *
4 * \brief SAM Direct Memory Access Controller Driver
5 *
6 * Copyright (C) 2014-2016 Atmel Corporation. All rights reserved.
7 *
8 * \asf_license_start
9 *
10 * \page License
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions are met:
14 *
15 * 1. Redistributions of source code must retain the above copyright notice,
16 * this list of conditions and the following disclaimer.
17 *
18 * 2. Redistributions in binary form must reproduce the above copyright notice,
19 * this list of conditions and the following disclaimer in the documentation
20 * and/or other materials provided with the distribution.
21 *
22 * 3. The name of Atmel may not be used to endorse or promote products derived
23 * from this software without specific prior written permission.
24 *
25 * 4. This software may only be redistributed and used in connection with an
26 * Atmel microcontroller product.
27 *
28 * THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
31 * EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
32 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
36 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
37 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
39 *
40 * \asf_license_stop
41 *
42 */
43 /*
44 * Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
45 */
46 #ifndef DMA_H_INCLUDED
47 #define DMA_H_INCLUDED
48
49 #ifdef __cplusplus
50 extern "C" {
51 #endif
52
53 /**
54 * \defgroup asfdoc_sam0_dma_group SAM Direct Memory Access Controller (DMAC) Driver
55 *
56 * This driver for Atmel® | SMART ARM®-based microcontrollers provides an interface for the configuration
57 * and management of the Direct Memory Access Controller(DMAC) module within
58 * the device. The DMAC can transfer data between memories and peripherals, and
59 * thus off-load these tasks from the CPU. The module supports peripheral to
60 * peripheral, peripheral to memory, memory to peripheral, and memory to memory
61 * transfers.
62 *
63 * The following peripheral is used by the DMAC Driver:
64 * - DMAC (Direct Memory Access Controller)
65 *
66 * The following devices can use this module:
67 * - Atmel | SMART SAM D21
68 * - Atmel | SMART SAM R21
69 * - Atmel | SMART SAM D09/D10/D11
70 * - Atmel | SMART SAM L21/L22
71 * - Atmel | SMART SAM DA1
72 * - Atmel | SMART SAM C20/C21
73 * - Atmel | SMART SAM HA1
74 * - Atmel | SMART SAM R30
75 *
76 * The outline of this documentation is as follows:
77 * - \ref asfdoc_sam0_dma_prerequisites
78 * - \ref asfdoc_sam0_dma_module_overview
79 * - \ref asfdoc_sam0_dma_special_considerations
80 * - \ref asfdoc_sam0_dma_extra_info
81 * - \ref asfdoc_sam0_dma_examples
82 * - \ref asfdoc_sam0_dma_api_overview
83 *
84 *
85 * \section asfdoc_sam0_dma_prerequisites Prerequisites
86 *
87 * There are no prerequisites for this module.
88 *
89 *
90 * \section asfdoc_sam0_dma_module_overview Module Overview
91 *
92 * SAM devices with DMAC enables high data transfer rates with minimum
93 * CPU intervention and frees up CPU time. With access to all peripherals,
94 * the DMAC can handle automatic transfer of data to/from modules.
95 * It supports static and incremental addressing for both source and
96 * destination.
97 *
98 * The DMAC when used with Event System or peripheral triggers, provides a
99 * considerable advantage by reducing the power consumption and performing
100 * data transfer in the background.
101 * For example, if the ADC is configured to generate an event, it can trigger
102 * the DMAC to transfer the data into another peripheral or SRAM.
103 * The CPU can remain in sleep during this time to reduce the power consumption.
104 *
105 * <table>
106 * <tr>
107 * <th>Device</th>
108 * <th>Dma channel number</th>
109 * </tr>
110 * <tr>
111 * <td>SAM D21/R21/C20/C21</td>
112 * <td>12</td>
113 * </tr>
114 * <tr>
115 * <td>SAM D09/D10/D11</td>
116 * <td>6</td>
117 * </tr>
118 * <tr>
119 * <td>SAM L21,SAMR30</td>
120 * <td>16</td>
121 * </tr>
122 * </table>
123 * The DMA channel operation can be suspended at any time by software, by events
124 * from event system, or after selectable descriptor execution. The operation
125 * can be resumed by software or by events from the event system.
126 * The DMAC driver for SAM supports four types of transfers such as
127 * peripheral to peripheral, peripheral to memory, memory to peripheral, and
128 * memory to memory.
129 *
130 * The basic transfer unit is a beat, which is defined as a single bus access.
131 * There can be multiple beats in a single block transfer and multiple block
132 * transfers in a DMA transaction.
133 * DMA transfer is based on descriptors, which holds transfer properties
134 * such as the source and destination addresses, transfer counter, and other
135 * additional transfer control information.
136 * The descriptors can be static or linked. When static, a single block transfer
137 * is performed. When linked, a number of transfer descriptors can be used to
138 * enable multiple block transfers within a single DMA transaction.
139 *
140 * The implementation of the DMA driver is based on the idea that the DMA channel
141 * is a finite resource of entities with the same abilities. A DMA channel resource
142 * is able to move a defined set of data from a source address to destination
143 * address triggered by a transfer trigger. On the SAM devices there are 12
144 * DMA resources available for allocation. Each of these DMA resources can trigger
145 * interrupt callback routines and peripheral events.
146 * The other main features are:
147 *
148 * - Selectable transfer trigger source
149 * - Software
150 * - Event System
151 * - Peripheral
152 * - Event input and output is supported for the four lower channels
153 * - Four level channel priority
154 * - Optional interrupt generation on transfer complete, channel error, or channel suspend
155 * - Supports multi-buffer or circular buffer mode by linking multiple descriptors
156 * - Beat size configurable as 8-bit, 16-bit, or 32-bit
157 *
158 * A simplified block diagram of the DMA Resource can be seen in
159 * \ref asfdoc_sam0_dma_module_block_diagram "the figure below".
160 *
161 * \anchor asfdoc_sam0_dma_module_block_diagram
162 * \dot
163 * digraph overview {
164 * splines = false;
165 * rankdir=LR;
166 *
167 * mux1 [label="Transfer Trigger", shape=box];
168 *
169 * dma [label="DMA Channel", shape=polygon, sides=6, orientation=60, style=filled, fillcolor=darkolivegreen1, height=1, width=1];
170 * descriptor [label="Transfer Descriptor", shape=box, style=filled, fillcolor=lightblue];
171 *
172 * mux1 -> dma;
173 * descriptor -> dma;
174 *
175 * interrupt [label="Interrupt", shape=box];
176 * events [label="Events", shape=box];
177 *
178 * dma:e -> interrupt:w;
179 * dma:e -> events:w;
180 *
181 * {rank=same; descriptor dma}
182 *
183 * }
184 * \enddot
185 *
186 * \subsection asfdoc_sam0_dma_features Driver Feature Macro Definition
187 * <table>
188 * <tr>
189 * <th>Driver Feature Macro</th>
190 * <th>Supported devices</th>
191 * </tr>
192 * <tr>
193 * <td>FEATURE_DMA_CHANNEL_STANDBY</td>
194 * <td>SAM L21/L22/C20/C21/R30</td>
195 * </tr>
196 * </table>
197 * \note The specific features are only available in the driver when the
198 * selected device supports those features.
199 *
200 * \subsection asfdoc_sam0_dma_module_overview_dma_transf_term Terminology Used in DMAC Transfers
201 *
202 * <table border="0" cellborder="1" cellspacing="0" >
203 * <tr>
204 * <th> Name </th> <th> Description </th>
205 * </tr>
206 * <tr>
207 * <td > Beat </td>
208 * <td > It is a single bus access by the DMAC.
209 * Configurable as 8-bit, 16-bit, or 32-bit.
210 * </td>
211 * </tr>
212 * <tr>
213 * <td > Burst </td>
214 * <td> It is a transfer of n-beats (n=1,4,8,16).
215 * For the DMAC module in SAM, the burst size is one beat.
216 * Arbitration takes place each time a burst transfer is completed.
217 * </td>
218 * </tr>
219 * <tr>
220 * <td > Block transfer </td>
221 * <td> A single block transfer is a configurable number of (1 to 64k)
222 * beat transfers
223 * </td>
224 * </tr>
225 * </table>
226 *
227 * \subsection asfdoc_sam0_dma_module_overview_dma_channels DMA Channels
228 * The DMAC in each device consists of several DMA channels, which
229 * along with the transfer descriptors defines the data transfer properties.
230 * - The transfer control descriptor defines the source and destination
231 * addresses, source and destination address increment settings, the
232 * block transfer count, and event output condition selection
233 * - Dedicated channel registers control the peripheral trigger source,
234 * trigger mode settings, event input actions, and channel priority level
235 * settings
236 *
237 * With a successful DMA resource allocation, a dedicated
238 * DMA channel will be assigned. The channel will be occupied until the
239 * DMA resource is freed. A DMA resource handle is used to identify the specific
240 * DMA resource.
241 * When there are multiple channels with active requests, the arbiter prioritizes
242 * the channels requesting access to the bus.
243 *
244 * \subsection asfdoc_sam0_dma_module_overview_dma_trigger DMA Triggers
245 * DMA transfer can be started only when a DMA transfer request is acknowledged/granted by the arbiter. A
246 * transfer request can be triggered from software, peripheral, or an event. There
247 * are dedicated source trigger selections for each DMA channel usage.
248
249 *
250 * \subsection asfdoc_sam0_dma_module_overview_dma_transfer_descriptor DMA Transfer Descriptor
251 * The transfer descriptor resides in the SRAM and
252 * defines these channel properties.
253 * <table border="0" cellborder="1" cellspacing="0" >
254 * <tr>
255 * <th> Field name </th> <th> Field width </th>
256 * </tr>
257 * <tr>
258 * <td > Descriptor Next Address </td> <td > 32 bits </td>
259 * </tr>
260 * <tr>
261 * <td > Destination Address </td> <td> 32 bits </td>
262 * </tr>
263 * <tr>
264 * <td > Source Address </td> <td> 32 bits </td>
265 * </tr>
266 * <tr>
267 * <td > Block Transfer Counter </td> <td> 16 bits </td>
268 * </tr>
269 * <tr>
270 * <td > Block Transfer Control </td> <td> 16 bits </td>
271 * </tr>
272 * </table>
273 *
274 * Before starting a transfer, at least one descriptor should be configured.
275 * After a successful allocation of a DMA channel, the transfer descriptor can
276 * be added with a call to \ref dma_add_descriptor(). If there is a transfer
277 * descriptor already allocated to the DMA resource, the descriptor will
278 * be linked to the next descriptor address.
279 *
280 * \subsection asfdoc_sam0_dma_module_overview_dma_output DMA Interrupts/Events
281 * Both an interrupt callback and an peripheral event can be triggered by the
282 * DMA transfer. Three types of callbacks are supported by the DMA driver:
283 * transfer complete, channel suspend, and transfer error. Each of these callback
284 * types can be registered and enabled for each channel independently through
285 * the DMA driver API.
286 *
287 * The DMAC module can also generate events on transfer complete. Event
288 * generation is enabled through the DMA channel, event channel configuration,
289 * and event user multiplexing is done through the events driver.
290 *
291 * The DMAC can generate events in the below cases:
292 *
293 * - When a block transfer is complete
294 *
295 * - When each beat transfer within a block transfer is complete
296 *
297 * \section asfdoc_sam0_dma_special_considerations Special Considerations
298 *
299 * There are no special considerations for this module.
300 *
301 *
302 * \section asfdoc_sam0_dma_extra_info Extra Information
303 *
304 * For extra information, see \ref asfdoc_sam0_dma_extra. This includes:
305 * - \ref asfdoc_sam0_dma_extra_acronyms
306 * - \ref asfdoc_sam0_dma_extra_dependencies
307 * - \ref asfdoc_sam0_dma_extra_errata
308 * - \ref asfdoc_sam0_dma_extra_history
309 *
310 *
311 * \section asfdoc_sam0_dma_examples Examples
312 *
313 * For a list of examples related to this driver, see
314 * \ref asfdoc_sam0_dma_exqsg.
315 *
316 *
317 * \section asfdoc_sam0_dma_api_overview API Overview
318 * @{
319 */
320
321 #include <compiler.h>
322 #include "conf_dma.h"
323
324 #if (SAML21) || (SAML22) || (SAMC20) || (SAMC21) || (SAMR30) || defined(__DOXYGEN__)
325 #define FEATURE_DMA_CHANNEL_STANDBY
326 #endif
327
328 /** DMA invalid channel number. */
329 #define DMA_INVALID_CHANNEL 0xff
330
331 /** ExInitial description section. */
332 extern DmacDescriptor descriptor_section[CONF_MAX_USED_CHANNEL_NUM];
333
334 /* DMA channel interrup flag. */
335 extern uint8_t g_chan_interrupt_flag[CONF_MAX_USED_CHANNEL_NUM];
336
337 /** DMA priority level. */
338 enum dma_priority_level {
339 /** Priority level 0. */
340 DMA_PRIORITY_LEVEL_0,
341 /** Priority level 1. */
342 DMA_PRIORITY_LEVEL_1,
343 /** Priority level 2. */
344 DMA_PRIORITY_LEVEL_2,
345 /** Priority level 3. */
346 DMA_PRIORITY_LEVEL_3,
347 };
348
349 /** DMA input actions. */
350 enum dma_event_input_action {
351 /** No action. */
352 DMA_EVENT_INPUT_NOACT,
353 /** Normal transfer and periodic transfer trigger. */
354 DMA_EVENT_INPUT_TRIG,
355 /** Conditional transfer trigger. */
356 DMA_EVENT_INPUT_CTRIG,
357 /** Conditional block transfer. */
358 DMA_EVENT_INPUT_CBLOCK,
359 /** Channel suspend operation. */
360 DMA_EVENT_INPUT_SUSPEND,
361 /** Channel resume operation. */
362 DMA_EVENT_INPUT_RESUME,
363 /** Skip next block suspend action. */
364 DMA_EVENT_INPUT_SSKIP,
365 };
366
367 /**
368 * Address increment step size. These bits select the address increment step
369 * size. The setting apply to source or destination address, depending on
370 * STEPSEL setting.
371 */
372 enum dma_address_increment_stepsize {
373 /** The address is incremented by (beat size * 1). */
374 DMA_ADDRESS_INCREMENT_STEP_SIZE_1 = 0,
375 /** The address is incremented by (beat size * 2). */
376 DMA_ADDRESS_INCREMENT_STEP_SIZE_2,
377 /** The address is incremented by (beat size * 4). */
378 DMA_ADDRESS_INCREMENT_STEP_SIZE_4,
379 /** The address is incremented by (beat size * 8). */
380 DMA_ADDRESS_INCREMENT_STEP_SIZE_8,
381 /** The address is incremented by (beat size * 16). */
382 DMA_ADDRESS_INCREMENT_STEP_SIZE_16,
383 /** The address is incremented by (beat size * 32). */
384 DMA_ADDRESS_INCREMENT_STEP_SIZE_32,
385 /** The address is incremented by (beat size * 64). */
386 DMA_ADDRESS_INCREMENT_STEP_SIZE_64,
387 /** The address is incremented by (beat size * 128). */
388 DMA_ADDRESS_INCREMENT_STEP_SIZE_128,
389 };
390
391 /**
392 * DMA step selection. This bit determines whether the step size setting
393 * is applied to source or destination address.
394 */
395 enum dma_step_selection {
396 /** Step size settings apply to the destination address. */
397 DMA_STEPSEL_DST = 0,
398 /** Step size settings apply to the source address. */
399 DMA_STEPSEL_SRC,
400 };
401
402 /** The basic transfer unit in DMAC is a beat, which is defined as a
403 * single bus access. Its size is configurable and applies to both read
404 * and write. */
405 enum dma_beat_size {
406 /** 8-bit access. */
407 DMA_BEAT_SIZE_BYTE = 0,
408 /** 16-bit access. */
409 DMA_BEAT_SIZE_HWORD,
410 /** 32-bit access. */
411 DMA_BEAT_SIZE_WORD,
412 };
413
414 /**
415 * Block action definitions.
416 */
417 enum dma_block_action {
418 /** No action. */
419 DMA_BLOCK_ACTION_NOACT = 0,
420 /** Channel in normal operation and sets transfer complete interrupt flag
421 * after block transfer. */
422 DMA_BLOCK_ACTION_INT,
423 /** Trigger channel suspend after block transfer and sets channel
424 * suspend interrupt flag once the channel is suspended. */
425 DMA_BLOCK_ACTION_SUSPEND,
426 /** Sets transfer complete interrupt flag after a block transfer and
427 * trigger channel suspend. The channel suspend interrupt flag will be set
428 * once the channel is suspended. */
429 DMA_BLOCK_ACTION_BOTH,
430 };
431
432 /** Event output selection. */
433 enum dma_event_output_selection {
434 /** Event generation disable. */
435 DMA_EVENT_OUTPUT_DISABLE = 0,
436 /** Event strobe when block transfer complete. */
437 DMA_EVENT_OUTPUT_BLOCK,
438 /** Event output reserved. */
439 DMA_EVENT_OUTPUT_RESERVED,
440 /** Event strobe when beat transfer complete. */
441 DMA_EVENT_OUTPUT_BEAT,
442 };
443
444 /** DMA trigger action type. */
445 enum dma_transfer_trigger_action{
446 /** Perform a block transfer when triggered. */
447 DMA_TRIGGER_ACTION_BLOCK = DMAC_CHCTRLB_TRIGACT_BLOCK_Val,
448 /** Perform a beat transfer when triggered. */
449 DMA_TRIGGER_ACTION_BEAT = DMAC_CHCTRLB_TRIGACT_BEAT_Val,
450 /** Perform a transaction when triggered. */
451 DMA_TRIGGER_ACTION_TRANSACTION = DMAC_CHCTRLB_TRIGACT_TRANSACTION_Val,
452 };
453
454 /**
455 * Callback types for DMA callback driver.
456 */
457 enum dma_callback_type {
458 /** Callback for any of transfer errors. A transfer error is flagged
459 * if a bus error is detected during an AHB access or when the DMAC
460 * fetches an invalid descriptor. */
461 DMA_CALLBACK_TRANSFER_ERROR,
462 /** Callback for transfer complete. */
463 DMA_CALLBACK_TRANSFER_DONE,
464 /** Callback for channel suspend. */
465 DMA_CALLBACK_CHANNEL_SUSPEND,
466 /** Number of available callbacks. */
467 DMA_CALLBACK_N,
468 };
469
470 /**
471 * DMA transfer descriptor configuration. When the source or destination address
472 * increment is enabled, the addresses stored into the configuration structure
473 * must correspond to the end of the transfer.
474 *
475 */
476 struct dma_descriptor_config {
477 /** Descriptor valid flag used to identify whether a descriptor is
478 valid or not */
479 bool descriptor_valid;
480 /** This is used to generate an event on specific transfer action in
481 a channel. Supported only in four lower channels. */
482 enum dma_event_output_selection event_output_selection;
483 /** Action taken when a block transfer is completed */
484 enum dma_block_action block_action;
485 /** Beat size is configurable as 8-bit, 16-bit, or 32-bit */
486 enum dma_beat_size beat_size;
487 /** Used for enabling the source address increment */
488 bool src_increment_enable;
489 /** Used for enabling the destination address increment */
490 bool dst_increment_enable;
491 /** This bit selects whether the source or destination address is
492 using the step size settings */
493 enum dma_step_selection step_selection;
494 /** The step size for source/destination address increment.
495 The next address is calculated
496 as next_addr = addr + (2^step_size * beat size). */
497 enum dma_address_increment_stepsize step_size;
498 /** It is the number of beats in a block. This count value is
499 * decremented by one after each beat data transfer. */
500 uint16_t block_transfer_count;
501 /** Transfer source address */
502 uint32_t source_address;
503 /** Transfer destination address */
504 uint32_t destination_address;
505 /** Set to zero for static descriptors. This must have a valid memory
506 address for linked descriptors. */
507 uint32_t next_descriptor_address;
508 };
509
510 /** Configurations for DMA events. */
511 struct dma_events_config {
512 /** Event input actions */
513 enum dma_event_input_action input_action;
514 /** Enable DMA event output */
515 bool event_output_enable;
516 };
517
518 /** DMA configurations for transfer. */
519 struct dma_resource_config {
520 /** DMA transfer priority */
521 enum dma_priority_level priority;
522 /**DMA peripheral trigger index */
523 uint8_t peripheral_trigger;
524 /** DMA trigger action */
525 enum dma_transfer_trigger_action trigger_action;
526 #ifdef FEATURE_DMA_CHANNEL_STANDBY
527 /** Keep DMA channel enabled in standby sleep mode if true */
528 bool run_in_standby;
529 #endif
530 /** DMA events configurations */
531 struct dma_events_config event_config;
532 };
533
534 /** Forward definition of the DMA resource. */
535 struct dma_resource;
536 /** Type definition for a DMA resource callback function. */
537 typedef void (*dma_callback_t)(struct dma_resource *const resource);
538
539 /** Structure for DMA transfer resource. */
540 struct dma_resource {
541 /** Allocated DMA channel ID */
542 uint8_t channel_id;
543 /** Array of callback functions for DMA transfer job */
544 dma_callback_t callback[DMA_CALLBACK_N];
545 /** Bit mask for enabled callbacks */
546 uint8_t callback_enable;
547 /** Status of the last job */
548 volatile enum status_code job_status;
549 /** Transferred data size */
550 uint32_t transfered_size;
551 /** DMA transfer descriptor */
552 DmacDescriptor* descriptor;
553 };
554
555 /**
556 * \brief Get DMA resource status.
557 *
558 * \param[in] resource Pointer to the DMA resource
559 *
560 * \return Status of the DMA resource.
561 */
dma_get_job_status(struct dma_resource * resource)562 static inline enum status_code dma_get_job_status(struct dma_resource *resource)
563 {
564 Assert(resource);
565
566 return resource->job_status;
567 }
568
569 /**
570 * \brief Check if the given DMA resource is busy.
571 *
572 * \param[in] resource Pointer to the DMA resource
573 *
574 * \return Status which indicates whether the DMA resource is busy.
575 *
576 * \retval true The DMA resource has an on-going transfer
577 * \retval false The DMA resource is not busy
578 */
dma_is_busy(struct dma_resource * resource)579 static inline bool dma_is_busy(struct dma_resource *resource)
580 {
581 Assert(resource);
582
583 return (resource->job_status == STATUS_BUSY);
584 }
585
586 /**
587 * \brief Enable a callback function for a dedicated DMA resource.
588 *
589 * \param[in] resource Pointer to the DMA resource
590 * \param[in] type Callback function type
591 *
592 */
dma_enable_callback(struct dma_resource * resource,enum dma_callback_type type)593 static inline void dma_enable_callback(struct dma_resource *resource,
594 enum dma_callback_type type)
595 {
596 Assert(resource);
597
598 resource->callback_enable |= 1 << type;
599 g_chan_interrupt_flag[resource->channel_id] |= (1UL << type);
600 }
601
602 /**
603 * \brief Disable a callback function for a dedicated DMA resource.
604 *
605 * \param[in] resource Pointer to the DMA resource
606 * \param[in] type Callback function type
607 *
608 */
dma_disable_callback(struct dma_resource * resource,enum dma_callback_type type)609 static inline void dma_disable_callback(struct dma_resource *resource,
610 enum dma_callback_type type)
611 {
612 Assert(resource);
613
614 resource->callback_enable &= ~(1 << type);
615 g_chan_interrupt_flag[resource->channel_id] &= (~(1UL << type) & DMAC_CHINTENSET_MASK);
616 DMAC->CHINTENCLR.reg = (1UL << type);
617 }
618
619 /**
620 * \brief Register a callback function for a dedicated DMA resource.
621 *
622 * There are three types of callback functions, which can be registered:
623 * - Callback for transfer complete
624 * - Callback for transfer error
625 * - Callback for channel suspend
626 *
627 * \param[in] resource Pointer to the DMA resource
628 * \param[in] callback Pointer to the callback function
629 * \param[in] type Callback function type
630 *
631 */
dma_register_callback(struct dma_resource * resource,dma_callback_t callback,enum dma_callback_type type)632 static inline void dma_register_callback(struct dma_resource *resource,
633 dma_callback_t callback, enum dma_callback_type type)
634 {
635 Assert(resource);
636
637 resource->callback[type] = callback;
638 }
639
640 /**
641 * \brief Unregister a callback function for a dedicated DMA resource.
642 *
643 * There are three types of callback functions:
644 * - Callback for transfer complete
645 * - Callback for transfer error
646 * - Callback for channel suspend
647 *
648 * The application can unregister any of the callback functions which
649 * are already registered and are no longer needed.
650 *
651 * \param[in] resource Pointer to the DMA resource
652 * \param[in] type Callback function type
653 *
654 */
dma_unregister_callback(struct dma_resource * resource,enum dma_callback_type type)655 static inline void dma_unregister_callback(struct dma_resource *resource,
656 enum dma_callback_type type)
657 {
658 Assert(resource);
659
660 resource->callback[type] = NULL;
661 }
662
663 /**
664 * \brief Will set a software trigger for resource.
665 *
666 * This function is used to set a software trigger on the DMA channel
667 * associated with resource. If a trigger is already pending no new trigger
668 * will be generated for the channel.
669 *
670 * \param[in] resource Pointer to the DMA resource
671 */
dma_trigger_transfer(struct dma_resource * resource)672 static inline void dma_trigger_transfer(struct dma_resource *resource) {
673 Assert(resource);
674
675 DMAC->SWTRIGCTRL.reg |= (1 << resource->channel_id);
676 }
677
678 /**
679 * \brief Initializes DMA transfer configuration with predefined default values.
680 *
681 * This function will initialize a given DMA descriptor configuration structure to
682 * a set of known default values. This function should be called on
683 * any new instance of the configuration structure before being
684 * modified by the user application.
685 *
686 * The default configuration is as follows:
687 * \li Set the descriptor as valid
688 * \li Disable event output
689 * \li No block action
690 * \li Set beat size as byte
691 * \li Enable source increment
692 * \li Enable destination increment
693 * \li Step size is applied to the destination address
694 * \li Address increment is beat size multiplied by 1
695 * \li Default transfer size is set to 0
696 * \li Default source address is set to NULL
697 * \li Default destination address is set to NULL
698 * \li Default next descriptor not available
699 * \param[out] config Pointer to the configuration
700 *
701 */
dma_descriptor_get_config_defaults(struct dma_descriptor_config * config)702 static inline void dma_descriptor_get_config_defaults(struct dma_descriptor_config *config)
703 {
704 Assert(config);
705
706 /* Set descriptor as valid */
707 config->descriptor_valid = true;
708 /* Disable event output */
709 config->event_output_selection = DMA_EVENT_OUTPUT_DISABLE;
710 /* No block action */
711 config->block_action = DMA_BLOCK_ACTION_NOACT;
712 /* Set beat size to one byte */
713 config->beat_size = DMA_BEAT_SIZE_BYTE;
714 /* Enable source increment */
715 config->src_increment_enable = true;
716 /* Enable destination increment */
717 config->dst_increment_enable = true;
718 /* Step size is applied to the destination address */
719 config->step_selection = DMA_STEPSEL_DST;
720 /* Address increment is beat size multiplied by 1*/
721 config->step_size = DMA_ADDRESS_INCREMENT_STEP_SIZE_1;
722 /* Default transfer size is set to 0 */
723 config->block_transfer_count = 0;
724 /* Default source address is set to NULL */
725 config->source_address = (uint32_t)NULL;
726 /* Default destination address is set to NULL */
727 config->destination_address = (uint32_t)NULL;
728 /** Next descriptor address set to 0 */
729 config->next_descriptor_address = 0;
730 }
731
732 /**
733 * \brief Update DMA descriptor.
734 *
735 * This function can update the descriptor of an allocated DMA resource.
736 *
737 */
dma_update_descriptor(struct dma_resource * resource,DmacDescriptor * descriptor)738 static inline void dma_update_descriptor(struct dma_resource *resource,
739 DmacDescriptor* descriptor)
740 {
741 Assert(resource);
742
743 resource->descriptor = descriptor;
744 }
745
746 /**
747 * \brief Reset DMA descriptor.
748 *
749 * This function will clear the DESCADDR register of an allocated DMA resource.
750 *
751 */
dma_reset_descriptor(struct dma_resource * resource)752 static inline void dma_reset_descriptor(struct dma_resource *resource)
753 {
754 Assert(resource);
755
756 resource->descriptor = NULL;
757 }
758
759 void dma_get_config_defaults(struct dma_resource_config *config);
760 enum status_code dma_allocate(struct dma_resource *resource,
761 struct dma_resource_config *config);
762 enum status_code dma_free(struct dma_resource *resource);
763 enum status_code dma_start_transfer_job(struct dma_resource *resource);
764 void dma_abort_job(struct dma_resource *resource);
765 void dma_suspend_job(struct dma_resource *resource);
766 void dma_resume_job(struct dma_resource *resource);
767 void dma_descriptor_create(DmacDescriptor* descriptor,
768 struct dma_descriptor_config *config);
769 enum status_code dma_add_descriptor(struct dma_resource *resource,
770 DmacDescriptor* descriptor);
771
772 /** @} */
773
774 /**
775 * \page asfdoc_sam0_dma_extra Extra Information for DMAC Driver
776 *
777 * \section asfdoc_sam0_dma_extra_acronyms Acronyms
778 * Below is a table listing the acronyms used in this module, along with their
779 * intended meanings.
780 *
781 * <table>
782 * <tr>
783 * <th>Acronym</th>
784 * <th>Description</th>
785 * </tr>
786 * <tr>
787 * <td>DMA</td>
788 * <td>Direct Memory Access</td>
789 * </tr>
790 * <tr>
791 * <td>DMAC</td>
792 * <td>Direct Memory Access Controller </td>
793 * </tr>
794 * <tr>
795 * <td>CPU</td>
796 * <td>Central Processing Unit</td>
797 * </tr>
798 * </table>
799 *
800 *
801 * \section asfdoc_sam0_dma_extra_dependencies Dependencies
802 * This driver has the following dependencies:
803 *
804 * - \ref asfdoc_sam0_system_clock_group "System Clock Driver"
805 *
806 *
807 * \section asfdoc_sam0_dma_extra_errata Errata
808 * There are no errata related to this driver.
809 *
810 *
811 * \section asfdoc_sam0_dma_extra_history Module History
812 * An overview of the module history is presented in the table below, with
813 * details on the enhancements and fixes made to the module since its first
814 * release. The current version of this corresponds to the newest version in
815 * the table.
816 *
817 * <table>
818 * <tr>
819 * <th>Changelog</th>
820 * </tr>
821 * <tr>
822 * <td>Add SAM C21 support</td>
823 * </tr>
824 * <tr>
825 * <td>Add SAM L21 support</td>
826 * </tr>
827 * <tr>
828 * <td>Add SAM R30 support</td>
829 * </tr>
830 * <tr>
831 * <td>Initial Release</td>
832 * </tr>
833 * </table>
834 */
835
836 /**
837 * \page asfdoc_sam0_dma_exqsg Examples for DMAC Driver
838 *
839 * This is a list of the available Quick Start Guides (QSGs) and example
840 * applications for \ref asfdoc_sam0_dma_group. QSGs are simple examples with
841 * step-by-step instructions to configure and use this driver in a selection of
842 * use cases. Note that a QSG can be compiled as a standalone application or be
843 * added to the user application.
844 *
845 * - \subpage asfdoc_sam0_dma_basic_use_case
846 *
847 * \note More DMA usage examples are available in peripheral QSGs.
848 * A quick start guide for TC/TCC
849 * shows the usage of DMA event trigger; SERCOM SPI/USART/I<SUP>2</SUP>C has example for
850 * DMA transfer from peripheral to memory or from memory to peripheral;
851 * ADC/DAC shows peripheral to peripheral transfer.
852 *
853 * \page asfdoc_sam0_dma_document_revision_history Document Revision History
854 *
855 * <table>
856 * <tr>
857 * <th>Doc. Rev.</th>
858 * <th>Date</th>
859 * <th>Comments</th>
860 * </tr>
861 * <tr>
862 * <td>42257C</td>
863 * <td>12/2015</td>
864 * <td>Added suppport for SAM L21/L22, SAM C21, SAM D09, SAMR30 and SAM DA1</td>
865 * </tr>
866 * <tr>
867 * <td>42257B</td>
868 * <td>12/2014</td>
869 * <td>Added support for SAM R21 and SAM D10/D11</td>
870 * </tr>
871 * <tr>
872 * <td>42257A</td>
873 * <td>02/2014</td>
874 * <td>Initial release</td>
875 * </tr>
876 * </table>
877 */
878
879 #ifdef __cplusplus
880 }
881 #endif
882
883 #endif /* DMA_H_INCLUDED */
884