• Home
  • Annotate
  • current directory
Name Date Size #Lines LOC

..21-Aug-2025-

.ci/attachconfig/21-Aug-2025-

applications/21-Aug-2025-

board/21-Aug-2025-

figures/21-Aug-2025-

.config A D21-Aug-202547.1 KiB1,4411,329

.gitignore A D21-Aug-2025365 4342

Kconfig A D21-Aug-2025493 2820

README.md A D21-Aug-20255.9 KiB10282

README_zh.md A D21-Aug-20254.7 KiB11366

SConscript A D21-Aug-2025390 1914

SConstruct A D21-Aug-20252.4 KiB7557

project.ewd A D21-Aug-202599.6 KiB2,8352,834

project.ewp A D21-Aug-202565.3 KiB2,3512,350

project.eww A D21-Aug-2025161 117

project.uvoptx A D21-Aug-20255.8 KiB193185

project.uvprojx A D21-Aug-202543.6 KiB1,2021,201

rtconfig.h A D21-Aug-20258.4 KiB42683

rtconfig.py A D21-Aug-20255 KiB178137

template.ewp A D21-Aug-202571 KiB2,0322,031

template.eww A D21-Aug-2025162 117

template.uvoptx A D21-Aug-20255.8 KiB193185

template.uvprojx A D21-Aug-202514.1 KiB396390

README.md

1# STM32L433-Nucleo BSP Introduction
2
3[中文](README_zh.md)
4
5## MCU: STM32L433RC @80MHz, 256KB FLASH,  64KB RAM
6
7The STM32L433xx devices are the ultra-low-power microcontrollers based on the high-performance Arm® Cortex®-M4 32-bit RISC core operating at a frequency of up to 80 MHz. The Cortex-M4 core features a Floating point unit (FPU) single precision which supports all Arm® single-precision data-processing instructions and data types. It also implements a full set of DSP instructions and a memory protection unit (MPU) which enhances application security.
8
9The STM32L433xx devices embed high-speed memories (Flash memory up to 256 Kbyte, 64 Kbyte of SRAM), a Quad SPI flash memories interface (available on all packages) and an extensive range of enhanced I/Os and peripherals connected to two APB buses, two AHB buses and a 32-bit multi-AHB bus matrix.
10The STM32L433xx devices embed several protection mechanisms for embedded Flash memory and SRAM: readout protection, write protection, proprietary code readout protection and Firewall.
11The devices offer a fast 12-bit ADC (5 Msps), two comparators, one operational amplifier, two DAC channels, an internal voltage reference buffer, a low-power RTC, one general-purpose 32-bit timer, one 16-bit PWM timer dedicated to motor control, four general-purpose 16-bit timers, and two 16-bit low-power timers.
12In addition, up to 21 capacitive sensing channels are available. The devices also embed an integrated LCD driver 8x40 or 4x44, with internal step-up converter.
13They also feature standard and advanced communication interfaces.
14The STM32L433xx operates in the -40 to +85 °C (+105 °C junction), -40 to +105 °C (+125 °C junction) and -40 to +125 °C (+130 °C junction) temperature ranges from a 1.71 to 3.6 V VDD power supply when using internal LDO regulator and a 1.05 to 1.32V VDD12 power supply when using external SMPS supply. A comprehensive set of power-saving modes allows the design of low-power applications.
15Some independent power supplies are supported: analog independent supply input for ADC, DAC, OPAMP and comparators, and 3.3 V dedicated supply input for USB. A VBAT input allows to backup the RTC and backup registers. Dedicated VDD12 power supplies can be used to bypass the internal LDO regulator when connected to an external SMPS.
16The STM32L433xx family offers eight packages from 48 to 100-pin packages.
17
18#### KEY FEATURES
19
20- Ultra-low-power with FlexPowerControl
21  - 1.71 V to 3.6 V power supply
22  - -40 °C to 85/105/125 °C temperature range
23  - 200 nA in VBAT mode: supply for RTC and 32x32-bit backup registers
24  - 8 nA Shutdown mode (5 wakeup pins)
25  - 28 nA Standby mode (5 wakeup pins)
26  - 280 nA Standby mode with RTC
27  - 1.0 μA Stop 2 mode, 1.28 μA with RTC
28  - 84 μA/MHz run mode (LDO Mode)
29  - 36 μA/MHz run mode (@3.3 V SMPS Mode)
30  - Batch acquisition mode (BAM)
31  - 4 μs wakeup from Stop mode
32  - Brown out reset (BOR)
33  - Interconnect matrix
34- Core: Arm® 32-bit Cortex®-M4 CPU with FPU, Adaptive real-time accelerator (ART Accelerator™) allowing 0-wait-state execution from Flash memory, frequency up to 80 MHz, MPU, 100DMIPS and DSP instructions
35- Performance benchmark
36  - 1.25 DMIPS/MHz (Drystone 2.1)
37  - 273.55 CoreMark® (3.42 CoreMark/MHz @ 80 MHz)
38- Energy benchmark
39  - 253 ULPBench® score
40- Clock Sources
41  - 4 to 48 MHz crystal oscillator
42  - 32 kHz crystal oscillator for RTC (LSE)
43  - Internal 16 MHz factory-trimmed RC (±1%)
44  - Internal low-power 32 kHz RC (±5%)
45  - Internal multispeed 100 kHz to 48 MHz oscillator, auto-trimmed by LSE (better than ±0.25 % accuracy)
46  - Internal 48 MHz with clock recovery
47  - 2 PLLs for system clock, USB, audio, ADC
48- Up to 83 fast I/Os, most 5 V-tolerant
49- RTC with HW calendar, alarms and calibration
50- LCD 8× 40 or 4× 44 with step-up converter
51- Up to 21 capacitive sensing channels: support touchkey, linear and rotary touch sensors
52
53- 11x timers: 1x 16-bit advanced motor-control, 1x 32-bit and 2x 16-bit general purpose, 2x 16-bit basic, 2x low-power 16-bit timers (available in Stop mode), 2x watchdogs, SysTick timer
54- Memories
55  - Up to 256 KB single bank Flash, proprietary code readout protection
56  - 64 KB of SRAM including 16 KB with hardware parity check
57  - Quad SPI memory interface
58- Rich analog peripherals (independent supply)
59  - 1x 12-bit ADC 5 Msps, up to 16-bit with hardware oversampling, 200 μA/Msps
60  - 2x 12-bit DAC output channels, low-power sample and hold
61  - 1x operational amplifier with built-in PGA
62  - 2x ultra-low-power comparators
63- 17x communication interfaces
64  - USB 2.0 full-speed crystal less solution with LPM and BCD
65  - 1x SAI (serial audio interface)
66  - 3x I2C FM+(1 Mbit/s), SMBus/PMBus
67  - 4x USARTs (ISO 7816, LIN, IrDA, modem)
68  - 1x LPUART (Stop 2 wake-up)
69  - 3x SPIs (and 1x Quad SPI)
70  - CAN (2.0B Active) and SDMMC interface
71  - SWPMI single wire protocol master I/F
72  - IRTIM (Infrared interface)
73- 14-channel DMA controller
74- True random number generator
75- CRC calculation unit, 96-bit unique ID
76- Development support: serial wire debug (SWD), JTAG, Embedded Trace Macrocell™
77- All packages are ECOPACK2® compliant
78
79
80
81## Read more
82
83|                          Documents                           |                         Description                          |
84| :----------------------------------------------------------: | :----------------------------------------------------------: |
85| [STM32_Nucleo-64_BSP_Introduction](../docs/STM32_Nucleo-64_BSP_Introduction.md) | How to run RT-Thread on STM32 Nucleo-64 boards (**Must-Read**) |
86| [STM32L433RC ST Official Website](https://www.st.com/en/microcontrollers-microprocessors/stm32l433rc.html#documentation) |          STM32L433RC datasheet and other resources           |
87
88
89
90## Maintained By
91
92[Sunwancn](https://github.com/Sunwancn), <bwsheng2000@163.com>
93
94
95
96## Translated By
97
98Meco Man @ RT-Thread Community
99
100> jiantingman@foxmail.com
101>
102> https://github.com/mysterywolf

README_zh.md

1# NUCLEO-L433RC 开发板 BSP 说明
2
3## 简介
4
5本文档为ST官方 NUCLEO-L433RC 开发板的 BSP (板级支持包) 说明。
6
7主要内容如下:
8
9- 开发板资源介绍
10- BSP 快速上手
11- 进阶使用方法
12
13通过阅读快速上手章节开发者可以快速地上手该 BSP,将 RT-Thread 运行在开发板上。在进阶使用指南章节,将会介绍更多高级功能,帮助开发者利用 RT-Thread 驱动更多板载资源。
14
15## 开发板介绍
16
17对于 NUCLEO-L433RC,内核是 Cortex-M4,绿色的 Nucleo 标志显示了这款芯片是低功耗系列,板载 ST-LINK/V2-1 调试器/编程器,迷你尺寸,mirco USB 接口,可数的外设,Arduino™ nano 兼容的接口。
18
19开发板外观如下图所示:
20
21![board](figures/board.jpg)
22
23该开发板常用 **板载资源** 如下:
24
25- MCU:STM32L433RC,主频 80MHz,256KB FLASH ,64KB RAM。
26- 常用外设
27  - LED:4个,USB communication(LD1 双色),USB overcurrent(LD2 红色),power LED(LD3 绿色),user LED(LD4 绿色)
28  - 按键:2 个,USER and RESET 。
29- 常用接口:USB 转串口、Arduino Uno 和 ST morpho 两类扩展接口
30- 调试接口:板载 ST-LINK/V2-1 调试器。
31
32快速入门:[STM32 Nucleo板软件开发工具入门](https://www.st.com/resource/zh/user_manual/dm00105928-getting-started-with-stm32-nucleo-board-software-development-tools-stmicroelectronics.pdf)
33
34原理图下载:[NUCLEO-L433RC-P schematic](https://www.st.com/resource/en/schematic_pack/nucleo-l433rc-p_sch.zip)
35
36开发板更多详细信息请参考【STMicroelectronics】 [NUCLEO-L433RC-P](https://www.st.com/content/st_com/zh/products/evaluation-tools/product-evaluation-tools/mcu-mpu-eval-tools/stm32-mcu-mpu-eval-tools/stm32-nucleo-boards/nucleo-l433rc-p.html)37
38## 外设支持
39
40本 BSP 目前对外设的支持情况如下:
41
42| **片上外设**      | **支持情况** | **备注**                              |
43| :----------------- | :----------: | :------------------------------------ |
44| GPIO              |     支持     | PA0, PA1... PH1 ---> PIN: 0, 1...63    |
45| UART              |     支持     | UART1, UART2                           |
46| SPI               |     支持     | SPI1                                   |
47| RTC               |     支持     | 支持外部晶振和内部低速时钟             |
48
49
50## 使用说明
51
52使用说明分为如下两个章节:
53
54- 快速上手
55
56    本章节是为刚接触 RT-Thread 的新手准备的使用说明,遵循简单的步骤即可将 RT-Thread 操作系统运行在该开发板上,看到实验效果 。
57
58- 进阶使用
59
60    本章节是为需要在 RT-Thread 操作系统上使用更多开发板资源的开发者准备的。通过使用 ENV 工具对 BSP 进行配置,可以开启更多板载资源,实现更多高级功能。
61
62
63### 快速上手
64
65本 BSP 为开发者提供 MDK5 和 IAR 工程,并且支持 GCC 开发环境。下面以 MDK5 开发环境为例,介绍如何将系统运行起来。
66
67#### 硬件连接
68
69使用数据线连接开发板到 PC,打开电源开关。
70
71#### 编译下载
72
73双击 project.uvprojx 文件,打开 MDK5 工程,编译并下载程序到开发板。
74
75> 工程默认配置使用 ST-LINK 仿真器下载程序,在通过 microUSB 连接开发板的基础上,点击下载按钮即可下载程序到开发板
76
77#### 运行结果
78
79下载程序成功之后,系统会自动运行,观察开发板上 LED 的运行效果,红色 LD1 和 绿色 LD3 常亮、绿色 LD4 会周期性闪烁。
80
81USB 虚拟 COM 端口默认连接串口 2,在终端工具里打开相应的串口(115200-8-1-N),复位设备后,可以看到 RT-Thread 的输出信息:
82
83```bash
84 \ | /
85- RT -     Thread Operating System
86 / | \     4.0.0 build Jan  9 2019
87 2006 - 2018 Copyright by rt-thread team
88msh >
89```
90### 进阶使用
91
92此 BSP 默认只开启了 GPIO 和 串口2 的功能,如果需使用更多高级功能,需要利用 ENV 工具对 BSP 进行配置,步骤如下:
93
941. 在 bsp 下打开 env 工具。
95
962. 输入`menuconfig`命令配置工程,配置好之后保存退出。
97
983. 输入`pkgs --update`命令更新软件包。
99
1004. 输入`scons --target=mdk4/mdk5/iar` 命令重新生成工程。
101
102本章节更多详细的介绍请参考 [STM32 系列 BSP 外设驱动使用教程](../docs/STM32系列BSP外设驱动使用教程.md)。
103
104## 注意事项
105
106- 开机时如果不能打印 RT-Thread 版本信息,请将BSP中串口 GPIO 速率调低
107- 开机时如果不能打印 RT-Thread 版本信息,请重新选择 PC 端串口调试软件的串口号
108
109## 联系人信息
110
111维护人:
112
113-  [Sunwancn](https://github.com/Sunwancn), 邮箱:<bwsheng2000@163.com>