1 //*****************************************************************************
2 //
3 // sysctl.c - Driver for the system controller.
4 //
5 // Copyright (c) 2005-2017 Texas Instruments Incorporated. All rights reserved.
6 // Software License Agreement
7 //
8 // Redistribution and use in source and binary forms, with or without
9 // modification, are permitted provided that the following conditions
10 // are met:
11 //
12 // Redistributions of source code must retain the above copyright
13 // notice, this list of conditions and the following disclaimer.
14 //
15 // Redistributions in binary form must reproduce the above copyright
16 // notice, this list of conditions and the following disclaimer in the
17 // documentation and/or other materials provided with the
18 // distribution.
19 //
20 // Neither the name of Texas Instruments Incorporated nor the names of
21 // its contributors may be used to endorse or promote products derived
22 // from this software without specific prior written permission.
23 //
24 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
27 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
28 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
29 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
30 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
31 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
32 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
33 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
34 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 //
36 // This is part of revision 2.1.4.178 of the Tiva Peripheral Driver Library.
37 //
38 //*****************************************************************************
39
40 //*****************************************************************************
41 //
42 //! \addtogroup sysctl_api
43 //! @{
44 //
45 //*****************************************************************************
46
47 #include <stdbool.h>
48 #include <stdint.h>
49 #include "hw_ints.h"
50 #include "hw_nvic.h"
51 #include "hw_sysctl.h"
52 #include "hw_types.h"
53 #include "hw_flash.h"
54 #include "cpu.h"
55 #include "debug.h"
56 #include "interrupt.h"
57 #include "sysctl.h"
58
59 //*****************************************************************************
60 //
61 // The flash shift used in the math to calculate the flash sector size.
62 //
63 //*****************************************************************************
64 #ifndef FLASH_PP_MAINSS_S
65 #define FLASH_PP_MAINSS_S 16
66 #endif
67
68 //*****************************************************************************
69 //
70 // This macro converts the XTAL value provided in the ui32Config parameter to
71 // an index to the g_pui32Xtals array.
72 //
73 //*****************************************************************************
74 #define SysCtlXtalCfgToIndex(a) ((a & 0x7c0) >> 6)
75
76 //*****************************************************************************
77 //
78 // An array that maps the crystal number in RCC to a frequency.
79 //
80 //*****************************************************************************
81 static const uint32_t g_pui32Xtals[] =
82 {
83 1000000,
84 1843200,
85 2000000,
86 2457600,
87 3579545,
88 3686400,
89 4000000,
90 4096000,
91 4915200,
92 5000000,
93 5120000,
94 6000000,
95 6144000,
96 7372800,
97 8000000,
98 8192000,
99 10000000,
100 12000000,
101 12288000,
102 13560000,
103 14318180,
104 16000000,
105 16384000,
106 18000000,
107 20000000,
108 24000000,
109 25000000
110 };
111
112 //*****************************************************************************
113 //
114 // Maximum number of VCO entries in the g_pui32XTALtoVCO and
115 // g_pui32VCOFrequencies structures for a device.
116 //
117 //*****************************************************************************
118 #define MAX_VCO_ENTRIES 2
119 #define MAX_XTAL_ENTRIES 18
120
121 //*****************************************************************************
122 //
123 // These macros are used in the g_pui32XTALtoVCO table to make it more
124 // readable.
125 //
126 //*****************************************************************************
127 #define PLL_M_TO_REG(mi, mf) \
128 ((uint32_t)mi | (uint32_t)(mf << SYSCTL_PLLFREQ0_MFRAC_S))
129 #define PLL_N_TO_REG(n) \
130 ((uint32_t)(n - 1) << SYSCTL_PLLFREQ1_N_S)
131 #define PLL_Q_TO_REG(q) \
132 ((uint32_t)(q - 1) << SYSCTL_PLLFREQ1_Q_S)
133
134 //*****************************************************************************
135 //
136 // Look up of the values that go into the PLLFREQ0 and PLLFREQ1 registers.
137 //
138 //*****************************************************************************
139 static const uint32_t g_pppui32XTALtoVCO[MAX_VCO_ENTRIES][MAX_XTAL_ENTRIES][3] =
140 {
141 {
142 //
143 // VCO 320 MHz
144 //
145 { PLL_M_TO_REG(64, 0), PLL_N_TO_REG(1), PLL_Q_TO_REG(2) }, // 5 MHz
146 { PLL_M_TO_REG(62, 512), PLL_N_TO_REG(1), PLL_Q_TO_REG(2) }, // 5.12 MHz
147 { PLL_M_TO_REG(160, 0), PLL_N_TO_REG(3), PLL_Q_TO_REG(2) }, // 6 MHz
148 { PLL_M_TO_REG(52, 85), PLL_N_TO_REG(1), PLL_Q_TO_REG(2) }, // 6.144 MHz
149 { PLL_M_TO_REG(43, 412), PLL_N_TO_REG(1), PLL_Q_TO_REG(2) }, // 7.3728 MHz
150 { PLL_M_TO_REG(40, 0), PLL_N_TO_REG(1), PLL_Q_TO_REG(2) }, // 8 MHz
151 { PLL_M_TO_REG(39, 64), PLL_N_TO_REG(1), PLL_Q_TO_REG(2) }, // 8.192 MHz
152 { PLL_M_TO_REG(32, 0), PLL_N_TO_REG(1), PLL_Q_TO_REG(2) }, // 10 MHz
153 { PLL_M_TO_REG(80, 0), PLL_N_TO_REG(3), PLL_Q_TO_REG(2) }, // 12 MHz
154 { PLL_M_TO_REG(26, 43), PLL_N_TO_REG(1), PLL_Q_TO_REG(2) }, // 12.288 MHz
155 { PLL_M_TO_REG(23, 613), PLL_N_TO_REG(1), PLL_Q_TO_REG(2) }, // 13.56 MHz
156 { PLL_M_TO_REG(22, 358), PLL_N_TO_REG(1), PLL_Q_TO_REG(2) }, // 14.318180 MHz
157 { PLL_M_TO_REG(20, 0), PLL_N_TO_REG(1), PLL_Q_TO_REG(2) }, // 16 MHz
158 { PLL_M_TO_REG(19, 544), PLL_N_TO_REG(1), PLL_Q_TO_REG(2) }, // 16.384 MHz
159 { PLL_M_TO_REG(160, 0), PLL_N_TO_REG(9), PLL_Q_TO_REG(2) }, // 18 MHz
160 { PLL_M_TO_REG(16, 0), PLL_N_TO_REG(1), PLL_Q_TO_REG(2) }, // 20 MHz
161 { PLL_M_TO_REG(40, 0), PLL_N_TO_REG(3), PLL_Q_TO_REG(2) }, // 24 MHz
162 { PLL_M_TO_REG(64, 0), PLL_N_TO_REG(5), PLL_Q_TO_REG(2) }, // 25 MHz
163 },
164 {
165 //
166 // VCO 480 MHz
167 //
168 { PLL_M_TO_REG(96, 0), PLL_N_TO_REG(1), PLL_Q_TO_REG(2) }, // 5 MHz
169 { PLL_M_TO_REG(93, 768), PLL_N_TO_REG(1), PLL_Q_TO_REG(2) }, // 5.12 MHz
170 { PLL_M_TO_REG(80, 0), PLL_N_TO_REG(1), PLL_Q_TO_REG(2) }, // 6 MHz
171 { PLL_M_TO_REG(78, 128), PLL_N_TO_REG(1), PLL_Q_TO_REG(2) }, // 6.144 MHz
172 { PLL_M_TO_REG(65, 107), PLL_N_TO_REG(1), PLL_Q_TO_REG(2) }, // 7.3728 MHz
173 { PLL_M_TO_REG(60, 0), PLL_N_TO_REG(1), PLL_Q_TO_REG(2) }, // 8 MHz
174 { PLL_M_TO_REG(58, 608), PLL_N_TO_REG(1), PLL_Q_TO_REG(2) }, // 8.192 MHz
175 { PLL_M_TO_REG(48, 0), PLL_N_TO_REG(1), PLL_Q_TO_REG(2) }, // 10 MHz
176 { PLL_M_TO_REG(40, 0), PLL_N_TO_REG(1), PLL_Q_TO_REG(2) }, // 12 MHz
177 { PLL_M_TO_REG(39, 64), PLL_N_TO_REG(1), PLL_Q_TO_REG(2) }, // 12.288 MHz
178 { PLL_M_TO_REG(35, 408), PLL_N_TO_REG(1), PLL_Q_TO_REG(2) }, // 13.56 MHz
179 { PLL_M_TO_REG(33, 536), PLL_N_TO_REG(1), PLL_Q_TO_REG(2) }, // 14.318180 MHz
180 { PLL_M_TO_REG(30, 0), PLL_N_TO_REG(1), PLL_Q_TO_REG(2) }, // 16 MHz
181 { PLL_M_TO_REG(29, 304), PLL_N_TO_REG(1), PLL_Q_TO_REG(2) }, // 16.384 MHz
182 { PLL_M_TO_REG(80, 0), PLL_N_TO_REG(3), PLL_Q_TO_REG(2) }, // 18 MHz
183 { PLL_M_TO_REG(24, 0), PLL_N_TO_REG(1), PLL_Q_TO_REG(2) }, // 20 MHz
184 { PLL_M_TO_REG(20, 0), PLL_N_TO_REG(1), PLL_Q_TO_REG(2) }, // 24 MHz
185 { PLL_M_TO_REG(96, 0), PLL_N_TO_REG(5), PLL_Q_TO_REG(2) }, // 25 MHz
186 },
187 };
188
189 //*****************************************************************************
190 //
191 // The mapping of system clock frequency to flash memory timing parameters.
192 //
193 //*****************************************************************************
194 static const struct
195 {
196 uint32_t ui32Frequency;
197 uint32_t ui32MemTiming;
198 }
199 g_sXTALtoMEMTIM[] =
200 {
201 { 16000000, (SYSCTL_MEMTIM0_FBCHT_0_5 | SYSCTL_MEMTIM0_FBCE |
202 (0 << SYSCTL_MEMTIM0_FWS_S) |
203 SYSCTL_MEMTIM0_EBCHT_0_5 | SYSCTL_MEMTIM0_EBCE |
204 (0 << SYSCTL_MEMTIM0_EWS_S) |
205 SYSCTL_MEMTIM0_MB1) },
206 { 40000000, (SYSCTL_MEMTIM0_FBCHT_1_5 | (1 << SYSCTL_MEMTIM0_FWS_S) |
207 SYSCTL_MEMTIM0_EBCHT_1_5 | (1 << SYSCTL_MEMTIM0_EWS_S) |
208 SYSCTL_MEMTIM0_MB1) },
209 { 60000000, (SYSCTL_MEMTIM0_FBCHT_2 | (2 << SYSCTL_MEMTIM0_FWS_S) |
210 SYSCTL_MEMTIM0_EBCHT_2 | (2 << SYSCTL_MEMTIM0_EWS_S) |
211 SYSCTL_MEMTIM0_MB1) },
212 { 80000000, (SYSCTL_MEMTIM0_FBCHT_2_5 | (3 << SYSCTL_MEMTIM0_FWS_S) |
213 SYSCTL_MEMTIM0_EBCHT_2_5 | (3 << SYSCTL_MEMTIM0_EWS_S) |
214 SYSCTL_MEMTIM0_MB1) },
215 { 100000000, (SYSCTL_MEMTIM0_FBCHT_3 | (4 << SYSCTL_MEMTIM0_FWS_S) |
216 SYSCTL_MEMTIM0_EBCHT_3 | (4 << SYSCTL_MEMTIM0_EWS_S) |
217 SYSCTL_MEMTIM0_MB1) },
218 { 120000000, (SYSCTL_MEMTIM0_FBCHT_3_5 | (5 << SYSCTL_MEMTIM0_FWS_S) |
219 SYSCTL_MEMTIM0_EBCHT_3_5 | (5 << SYSCTL_MEMTIM0_EWS_S) |
220 SYSCTL_MEMTIM0_MB1) },
221 };
222
223 //*****************************************************************************
224 //
225 // Get the correct memory timings for a given system clock value.
226 //
227 //*****************************************************************************
228 static uint32_t
_SysCtlMemTimingGet(uint32_t ui32SysClock)229 _SysCtlMemTimingGet(uint32_t ui32SysClock)
230 {
231 uint_fast8_t ui8Idx;
232
233 //
234 // Loop through the flash memory timings.
235 //
236 for(ui8Idx = 0;
237 ui8Idx < (sizeof(g_sXTALtoMEMTIM) / sizeof(g_sXTALtoMEMTIM[0]));
238 ui8Idx++)
239 {
240 //
241 // See if the system clock frequency is less than the maximum frequency
242 // for this flash memory timing.
243 //
244 if(ui32SysClock <= g_sXTALtoMEMTIM[ui8Idx].ui32Frequency)
245 {
246 //
247 // This flash memory timing is the best choice for the system clock
248 // frequency, so return it now.
249 //
250 return(g_sXTALtoMEMTIM[ui8Idx].ui32MemTiming);
251 }
252 }
253
254 //
255 // An appropriate flash memory timing could not be found, so the device is
256 // being clocked too fast. Return the default flash memory timing.
257 //
258 return(0);
259 }
260
261 //*****************************************************************************
262 //
263 // Calculate the system frequency from the register settings base on the
264 // oscillator input.
265 //
266 //*****************************************************************************
267 static uint32_t
_SysCtlFrequencyGet(uint32_t ui32Xtal)268 _SysCtlFrequencyGet(uint32_t ui32Xtal)
269 {
270 uint32_t ui32Result;
271 uint_fast16_t ui16F1, ui16F2;
272 uint_fast16_t ui16PInt, ui16PFract;
273 uint_fast8_t ui8Q, ui8N;
274
275 //
276 // Extract all of the values from the hardware registers.
277 //
278 ui16PFract = ((HWREG(SYSCTL_PLLFREQ0) & SYSCTL_PLLFREQ0_MFRAC_M) >>
279 SYSCTL_PLLFREQ0_MFRAC_S);
280 ui16PInt = HWREG(SYSCTL_PLLFREQ0) & SYSCTL_PLLFREQ0_MINT_M;
281 ui8Q = (((HWREG(SYSCTL_PLLFREQ1) & SYSCTL_PLLFREQ1_Q_M) >>
282 SYSCTL_PLLFREQ1_Q_S) + 1);
283 ui8N = (((HWREG(SYSCTL_PLLFREQ1) & SYSCTL_PLLFREQ1_N_M) >>
284 SYSCTL_PLLFREQ1_N_S) + 1);
285
286 //
287 // Divide the crystal value by N.
288 //
289 ui32Xtal /= (uint32_t)ui8N;
290
291 //
292 // Calculate the multiplier for bits 9:5.
293 //
294 ui16F1 = ui16PFract / 32;
295
296 //
297 // Calculate the multiplier for bits 4:0.
298 //
299 ui16F2 = ui16PFract - (ui16F1 * 32);
300
301 //
302 // Get the integer portion.
303 //
304 ui32Result = ui32Xtal * (uint32_t)ui16PInt;
305
306 //
307 // Add first fractional bits portion(9:0).
308 //
309 ui32Result += (ui32Xtal * (uint32_t)ui16F1) / 32;
310
311 //
312 // Add the second fractional bits portion(4:0).
313 //
314 ui32Result += (ui32Xtal * (uint32_t)ui16F2) / 1024;
315
316 //
317 // Divide the result by Q.
318 //
319 ui32Result = ui32Result / (uint32_t)ui8Q;
320
321 //
322 // Return the resulting PLL frequency.
323 //
324 return(ui32Result);
325 }
326
327 //*****************************************************************************
328 //
329 // Look up of the possible VCO frequencies.
330 //
331 //*****************************************************************************
332 static const uint32_t g_pui32VCOFrequencies[MAX_VCO_ENTRIES] =
333 {
334 160000000, // VCO 320
335 240000000, // VCO 480
336 };
337
338 //*****************************************************************************
339 //
340 // The base addresses of the various peripheral control registers.
341 //
342 //*****************************************************************************
343 #define SYSCTL_PPBASE 0x400fe300
344 #define SYSCTL_SRBASE 0x400fe500
345 #define SYSCTL_RCGCBASE 0x400fe600
346 #define SYSCTL_SCGCBASE 0x400fe700
347 #define SYSCTL_DCGCBASE 0x400fe800
348 #define SYSCTL_PCBASE 0x400fe900
349 #define SYSCTL_PRBASE 0x400fea00
350
351 //*****************************************************************************
352 //
353 //! \internal
354 //! Checks a peripheral identifier.
355 //!
356 //! \param ui32Peripheral is the peripheral identifier.
357 //!
358 //! This function determines if a peripheral identifier is valid.
359 //!
360 //! \return Returns \b true if the peripheral identifier is valid and \b false
361 //! otherwise.
362 //
363 //*****************************************************************************
364 #ifdef DEBUG
365 static bool
_SysCtlPeripheralValid(uint32_t ui32Peripheral)366 _SysCtlPeripheralValid(uint32_t ui32Peripheral)
367 {
368 return((ui32Peripheral == SYSCTL_PERIPH_ADC0) ||
369 (ui32Peripheral == SYSCTL_PERIPH_ADC1) ||
370 (ui32Peripheral == SYSCTL_PERIPH_CAN0) ||
371 (ui32Peripheral == SYSCTL_PERIPH_CAN1) ||
372 (ui32Peripheral == SYSCTL_PERIPH_COMP0) ||
373 (ui32Peripheral == SYSCTL_PERIPH_CCM0) ||
374 (ui32Peripheral == SYSCTL_PERIPH_EEPROM0) ||
375 (ui32Peripheral == SYSCTL_PERIPH_EPHY0) ||
376 (ui32Peripheral == SYSCTL_PERIPH_EMAC0) ||
377 (ui32Peripheral == SYSCTL_PERIPH_EPI0) ||
378 (ui32Peripheral == SYSCTL_PERIPH_FAN0) ||
379 (ui32Peripheral == SYSCTL_PERIPH_GPIOA) ||
380 (ui32Peripheral == SYSCTL_PERIPH_GPIOB) ||
381 (ui32Peripheral == SYSCTL_PERIPH_GPIOC) ||
382 (ui32Peripheral == SYSCTL_PERIPH_GPIOD) ||
383 (ui32Peripheral == SYSCTL_PERIPH_GPIOE) ||
384 (ui32Peripheral == SYSCTL_PERIPH_GPIOF) ||
385 (ui32Peripheral == SYSCTL_PERIPH_GPIOG) ||
386 (ui32Peripheral == SYSCTL_PERIPH_GPIOH) ||
387 (ui32Peripheral == SYSCTL_PERIPH_GPIOJ) ||
388 (ui32Peripheral == SYSCTL_PERIPH_GPIOK) ||
389 (ui32Peripheral == SYSCTL_PERIPH_GPIOL) ||
390 (ui32Peripheral == SYSCTL_PERIPH_GPIOM) ||
391 (ui32Peripheral == SYSCTL_PERIPH_GPION) ||
392 (ui32Peripheral == SYSCTL_PERIPH_GPIOP) ||
393 (ui32Peripheral == SYSCTL_PERIPH_GPIOQ) ||
394 (ui32Peripheral == SYSCTL_PERIPH_GPIOR) ||
395 (ui32Peripheral == SYSCTL_PERIPH_GPIOS) ||
396 (ui32Peripheral == SYSCTL_PERIPH_GPIOT) ||
397 (ui32Peripheral == SYSCTL_PERIPH_HIBERNATE) ||
398 (ui32Peripheral == SYSCTL_PERIPH_I2C0) ||
399 (ui32Peripheral == SYSCTL_PERIPH_I2C1) ||
400 (ui32Peripheral == SYSCTL_PERIPH_I2C2) ||
401 (ui32Peripheral == SYSCTL_PERIPH_I2C3) ||
402 (ui32Peripheral == SYSCTL_PERIPH_I2C4) ||
403 (ui32Peripheral == SYSCTL_PERIPH_I2C5) ||
404 (ui32Peripheral == SYSCTL_PERIPH_I2C6) ||
405 (ui32Peripheral == SYSCTL_PERIPH_I2C7) ||
406 (ui32Peripheral == SYSCTL_PERIPH_I2C8) ||
407 (ui32Peripheral == SYSCTL_PERIPH_I2C9) ||
408 (ui32Peripheral == SYSCTL_PERIPH_LCD0) ||
409 (ui32Peripheral == SYSCTL_PERIPH_PWM0) ||
410 (ui32Peripheral == SYSCTL_PERIPH_PWM1) ||
411 (ui32Peripheral == SYSCTL_PERIPH_QEI0) ||
412 (ui32Peripheral == SYSCTL_PERIPH_QEI1) ||
413 (ui32Peripheral == SYSCTL_PERIPH_SSI0) ||
414 (ui32Peripheral == SYSCTL_PERIPH_SSI1) ||
415 (ui32Peripheral == SYSCTL_PERIPH_SSI2) ||
416 (ui32Peripheral == SYSCTL_PERIPH_SSI3) ||
417 (ui32Peripheral == SYSCTL_PERIPH_TIMER0) ||
418 (ui32Peripheral == SYSCTL_PERIPH_TIMER1) ||
419 (ui32Peripheral == SYSCTL_PERIPH_TIMER2) ||
420 (ui32Peripheral == SYSCTL_PERIPH_TIMER3) ||
421 (ui32Peripheral == SYSCTL_PERIPH_TIMER4) ||
422 (ui32Peripheral == SYSCTL_PERIPH_TIMER5) ||
423 (ui32Peripheral == SYSCTL_PERIPH_TIMER6) ||
424 (ui32Peripheral == SYSCTL_PERIPH_TIMER7) ||
425 (ui32Peripheral == SYSCTL_PERIPH_UART0) ||
426 (ui32Peripheral == SYSCTL_PERIPH_UART1) ||
427 (ui32Peripheral == SYSCTL_PERIPH_UART2) ||
428 (ui32Peripheral == SYSCTL_PERIPH_UART3) ||
429 (ui32Peripheral == SYSCTL_PERIPH_UART4) ||
430 (ui32Peripheral == SYSCTL_PERIPH_UART5) ||
431 (ui32Peripheral == SYSCTL_PERIPH_UART6) ||
432 (ui32Peripheral == SYSCTL_PERIPH_UART7) ||
433 (ui32Peripheral == SYSCTL_PERIPH_UDMA) ||
434 (ui32Peripheral == SYSCTL_PERIPH_USB0) ||
435 (ui32Peripheral == SYSCTL_PERIPH_WDOG0) ||
436 (ui32Peripheral == SYSCTL_PERIPH_WDOG1) ||
437 (ui32Peripheral == SYSCTL_PERIPH_WTIMER0) ||
438 (ui32Peripheral == SYSCTL_PERIPH_WTIMER1) ||
439 (ui32Peripheral == SYSCTL_PERIPH_WTIMER2) ||
440 (ui32Peripheral == SYSCTL_PERIPH_WTIMER3) ||
441 (ui32Peripheral == SYSCTL_PERIPH_WTIMER4) ||
442 (ui32Peripheral == SYSCTL_PERIPH_WTIMER5));
443 }
444 #endif
445
446 //*****************************************************************************
447 //
448 //! Gets the size of the SRAM.
449 //!
450 //! This function determines the size of the SRAM on the Tiva device.
451 //!
452 //! \return The total number of bytes of SRAM.
453 //
454 //*****************************************************************************
455 uint32_t
SysCtlSRAMSizeGet(void)456 SysCtlSRAMSizeGet(void)
457 {
458 return((HWREG(FLASH_SSIZE) + 1) * 256);
459 }
460
461 //*****************************************************************************
462 //
463 //! Gets the size of the flash.
464 //!
465 //! This function determines the size of the flash on the Tiva device.
466 //!
467 //! \return The total number of bytes of flash.
468 //
469 //*****************************************************************************
470 uint32_t
SysCtlFlashSizeGet(void)471 SysCtlFlashSizeGet(void)
472 {
473
474 //
475 // TM4C123 devices report the flash size in DC0.
476 //
477 if(CLASS_IS_TM4C123)
478 {
479 //
480 // Compute the size of the flash.
481 //
482 return(((HWREG(SYSCTL_DC0) & SYSCTL_DC0_FLASHSZ_M) << 11) + 0x800);
483 }
484 else
485 {
486 //
487 // Get the flash size from the FLASH_PP register.
488 //
489 return(2048 * ((HWREG(FLASH_PP) & FLASH_PP_SIZE_M) + 1));
490 }
491 }
492
493 //*****************************************************************************
494 //
495 //! Gets the size of a single eraseable sector of flash.
496 //!
497 //! This function determines the flash sector size on the Tiva device.
498 //! This size determines the erase granularity of the device flash.
499 //!
500 //! \return The number of bytes in a single flash sector.
501 //
502 //*****************************************************************************
503 uint32_t
SysCtlFlashSectorSizeGet(void)504 SysCtlFlashSectorSizeGet(void)
505 {
506 //
507 // TM4C129 devices store the value in a different register.
508 //
509 if(CLASS_IS_TM4C129)
510 {
511 //
512 // Get the flash sector size from the FLASH_PP register.
513 //
514 return(1 << (10 +
515 ((HWREG(FLASH_PP) &
516 FLASH_PP_MAINSS_M) >> FLASH_PP_MAINSS_S)));
517 }
518 else
519 {
520 //
521 // The sector size is fixed at 1KB.
522 //
523 return(1024);
524 }
525 }
526
527 //*****************************************************************************
528 //
529 //! Determines if a peripheral is present.
530 //!
531 //! \param ui32Peripheral is the peripheral in question.
532 //!
533 //! This function determines if a particular peripheral is present in the
534 //! device. Each member of the Tiva family has a different peripheral
535 //! set; this function determines which peripherals are present on this device.
536 //!
537 //! The \e ui32Peripheral parameter must be only one of the following values:
538 //! \b SYSCTL_PERIPH_ADC0, \b SYSCTL_PERIPH_ADC1, \b SYSCTL_PERIPH_CAN0,
539 //! \b SYSCTL_PERIPH_CAN1, \b SYSCTL_PERIPH_CCM0,\b SYSCTL_PERIPH_COMP0,
540 //! \b SYSCTL_PERIPH_EEPROM0, \b SYSCTL_PERIPH_EMAC, \b SYSCTL_PERIPH_EPHY,
541 //! \b SYSCTL_PERIPH_EPI0,
542 //! \b SYSCTL_PERIPH_GPIOA, \b SYSCTL_PERIPH_GPIOB, \b SYSCTL_PERIPH_GPIOC,
543 //! \b SYSCTL_PERIPH_GPIOD, \b SYSCTL_PERIPH_GPIOE, \b SYSCTL_PERIPH_GPIOF,
544 //! \b SYSCTL_PERIPH_GPIOG, \b SYSCTL_PERIPH_GPIOH, \b SYSCTL_PERIPH_GPIOJ,
545 //! \b SYSCTL_PERIPH_GPIOK, \b SYSCTL_PERIPH_GPIOL, \b SYSCTL_PERIPH_GPIOM,
546 //! \b SYSCTL_PERIPH_GPION, \b SYSCTL_PERIPH_GPIOP, \b SYSCTL_PERIPH_GPIOQ,
547 //! \b SYSCTL_PERIPH_GPIOR, \b SYSCTL_PERIPH_GPIOS, \b SYSCTL_PERIPH_GPIOT,
548 //! \b SYSCTL_PERIPH_HIBERNATE,
549 //! \b SYSCTL_PERIPH_I2C0, \b SYSCTL_PERIPH_I2C1, \b SYSCTL_PERIPH_I2C2,
550 //! \b SYSCTL_PERIPH_I2C3, \b SYSCTL_PERIPH_I2C4, \b SYSCTL_PERIPH_I2C5,
551 //! \b SYSCTL_PERIPH_I2C6, \b SYSCTL_PERIPH_I2C7, \b SYSCTL_PERIPH_I2C8,
552 //! \b SYSCTL_PERIPH_I2C9, \b SYSCTL_PERIPH_LCD0,
553 //! \b SYSCTL_PERIPH_ONEWIRE0,
554 //! \b SYSCTL_PERIPH_PWM0, \b SYSCTL_PERIPH_PWM1, \b SYSCTL_PERIPH_QEI0,
555 //! \b SYSCTL_PERIPH_QEI1, \b SYSCTL_PERIPH_SSI0, \b SYSCTL_PERIPH_SSI1,
556 //! \b SYSCTL_PERIPH_SSI2, \b SYSCTL_PERIPH_SSI3, \b SYSCTL_PERIPH_TIMER0,
557 //! \b SYSCTL_PERIPH_TIMER1, \b SYSCTL_PERIPH_TIMER2, \b SYSCTL_PERIPH_TIMER3,
558 //! \b SYSCTL_PERIPH_TIMER4, \b SYSCTL_PERIPH_TIMER5, \b SYSCTL_PERIPH_TIMER6,
559 //! \b SYSCTL_PERIPH_TIMER7, \b SYSCTL_PERIPH_UART0, \b SYSCTL_PERIPH_UART1,
560 //! \b SYSCTL_PERIPH_UART2, \b SYSCTL_PERIPH_UART3, \b SYSCTL_PERIPH_UART4,
561 //! \b SYSCTL_PERIPH_UART5, \b SYSCTL_PERIPH_UART6, \b SYSCTL_PERIPH_UART7,
562 //! \b SYSCTL_PERIPH_UDMA, \b SYSCTL_PERIPH_USB0, \b SYSCTL_PERIPH_WDOG0,
563 //! \b SYSCTL_PERIPH_WDOG1, \b SYSCTL_PERIPH_WTIMER0, \b SYSCTL_PERIPH_WTIMER1,
564 //! \b SYSCTL_PERIPH_WTIMER2, \b SYSCTL_PERIPH_WTIMER3,
565 //! \b SYSCTL_PERIPH_WTIMER4, or \b SYSCTL_PERIPH_WTIMER5
566 //!
567 //! \return Returns \b true if the specified peripheral is present and \b false
568 //! if it is not.
569 //
570 //*****************************************************************************
571 bool
SysCtlPeripheralPresent(uint32_t ui32Peripheral)572 SysCtlPeripheralPresent(uint32_t ui32Peripheral)
573 {
574 //
575 // Check the arguments.
576 //
577 ASSERT(_SysCtlPeripheralValid(ui32Peripheral));
578
579 //
580 // See if this peripheral is present.
581 //
582 return(HWREGBITW(SYSCTL_PPBASE + ((ui32Peripheral & 0xff00) >> 8),
583 ui32Peripheral & 0xff));
584 }
585
586 //*****************************************************************************
587 //
588 //! Determines if a peripheral is ready.
589 //!
590 //! \param ui32Peripheral is the peripheral in question.
591 //!
592 //! This function determines if a particular peripheral is ready to be
593 //! accessed. The peripheral may be in a non-ready state if it is not enabled,
594 //! is being held in reset, or is in the process of becoming ready after being
595 //! enabled or taken out of reset.
596 //!
597 //! The \e ui32Peripheral parameter must be only one of the following values:
598 //! \b SYSCTL_PERIPH_ADC0, \b SYSCTL_PERIPH_ADC1, \b SYSCTL_PERIPH_CAN0,
599 //! \b SYSCTL_PERIPH_CAN1, \b SYSCTL_PERIPH_CCM0,\b SYSCTL_PERIPH_COMP0,
600 //! \b SYSCTL_PERIPH_EEPROM0, \b SYSCTL_PERIPH_EMAC, \b SYSCTL_PERIPH_EPHY,
601 //! \b SYSCTL_PERIPH_EPI0,
602 //! \b SYSCTL_PERIPH_GPIOA, \b SYSCTL_PERIPH_GPIOB, \b SYSCTL_PERIPH_GPIOC,
603 //! \b SYSCTL_PERIPH_GPIOD, \b SYSCTL_PERIPH_GPIOE, \b SYSCTL_PERIPH_GPIOF,
604 //! \b SYSCTL_PERIPH_GPIOG, \b SYSCTL_PERIPH_GPIOH, \b SYSCTL_PERIPH_GPIOJ,
605 //! \b SYSCTL_PERIPH_GPIOK, \b SYSCTL_PERIPH_GPIOL, \b SYSCTL_PERIPH_GPIOM,
606 //! \b SYSCTL_PERIPH_GPION, \b SYSCTL_PERIPH_GPIOP, \b SYSCTL_PERIPH_GPIOQ,
607 //! \b SYSCTL_PERIPH_GPIOR, \b SYSCTL_PERIPH_GPIOS, \b SYSCTL_PERIPH_GPIOT,
608 //! \b SYSCTL_PERIPH_HIBERNATE,
609 //! \b SYSCTL_PERIPH_I2C0, \b SYSCTL_PERIPH_I2C1, \b SYSCTL_PERIPH_I2C2,
610 //! \b SYSCTL_PERIPH_I2C3, \b SYSCTL_PERIPH_I2C4, \b SYSCTL_PERIPH_I2C5,
611 //! \b SYSCTL_PERIPH_I2C6, \b SYSCTL_PERIPH_I2C7, \b SYSCTL_PERIPH_I2C8,
612 //! \b SYSCTL_PERIPH_I2C9, \b SYSCTL_PERIPH_LCD0,
613 //! \b SYSCTL_PERIPH_ONEWIRE0,
614 //! \b SYSCTL_PERIPH_PWM0, \b SYSCTL_PERIPH_PWM1, \b SYSCTL_PERIPH_QEI0,
615 //! \b SYSCTL_PERIPH_QEI1, \b SYSCTL_PERIPH_SSI0, \b SYSCTL_PERIPH_SSI1,
616 //! \b SYSCTL_PERIPH_SSI2, \b SYSCTL_PERIPH_SSI3, \b SYSCTL_PERIPH_TIMER0,
617 //! \b SYSCTL_PERIPH_TIMER1, \b SYSCTL_PERIPH_TIMER2, \b SYSCTL_PERIPH_TIMER3,
618 //! \b SYSCTL_PERIPH_TIMER4, \b SYSCTL_PERIPH_TIMER5, \b SYSCTL_PERIPH_TIMER6,
619 //! \b SYSCTL_PERIPH_TIMER7, \b SYSCTL_PERIPH_UART0, \b SYSCTL_PERIPH_UART1,
620 //! \b SYSCTL_PERIPH_UART2, \b SYSCTL_PERIPH_UART3, \b SYSCTL_PERIPH_UART4,
621 //! \b SYSCTL_PERIPH_UART5, \b SYSCTL_PERIPH_UART6, \b SYSCTL_PERIPH_UART7,
622 //! \b SYSCTL_PERIPH_UDMA, \b SYSCTL_PERIPH_USB0, \b SYSCTL_PERIPH_WDOG0,
623 //! \b SYSCTL_PERIPH_WDOG1, \b SYSCTL_PERIPH_WTIMER0, \b SYSCTL_PERIPH_WTIMER1,
624 //! \b SYSCTL_PERIPH_WTIMER2, \b SYSCTL_PERIPH_WTIMER3,
625 //! \b SYSCTL_PERIPH_WTIMER4, or \b SYSCTL_PERIPH_WTIMER5
626 //!
627 //! \note The ability to check for a peripheral being ready varies based on the
628 //! Tiva part in use. Please consult the data sheet for the part you are
629 //! using to determine if this feature is available.
630 //!
631 //! \return Returns \b true if the specified peripheral is ready and \b false
632 //! if it is not.
633 //
634 //*****************************************************************************
635 bool
SysCtlPeripheralReady(uint32_t ui32Peripheral)636 SysCtlPeripheralReady(uint32_t ui32Peripheral)
637 {
638 //
639 // Check the arguments.
640 //
641 ASSERT(_SysCtlPeripheralValid(ui32Peripheral));
642
643 //
644 // See if this peripheral is ready.
645 //
646 return(HWREGBITW(SYSCTL_PRBASE + ((ui32Peripheral & 0xff00) >> 8),
647 ui32Peripheral & 0xff));
648 }
649
650 //*****************************************************************************
651 //
652 //! Powers on a peripheral.
653 //!
654 //! \param ui32Peripheral is the peripheral to be powered on.
655 //!
656 //! This function turns on the power to a peripheral. The peripheral continues
657 //! to receive power even when its clock is not enabled.
658 //!
659 //! The \e ui32Peripheral parameter must be only one of the following values:
660 //! \b SYSCTL_PERIPH_CAN0,\b SYSCTL_PERIPH_CAN1, \b SYSCTL_PERIPH_EMAC,
661 //! \b SYSCTL_PERIPH_EPHY, \b SYSCTL_PERIPH_LCD0, \b SYSCTL_PERIPH_USB0
662 //!
663 //! \note The ability to power off a peripheral varies based on the Tiva
664 //! part in use. Please consult the data sheet for the part you are using to
665 //! determine if this feature is available.
666 //!
667 //! \return None.
668 //
669 //*****************************************************************************
670 void
SysCtlPeripheralPowerOn(uint32_t ui32Peripheral)671 SysCtlPeripheralPowerOn(uint32_t ui32Peripheral)
672 {
673 //
674 // Check the arguments.
675 //
676 ASSERT(_SysCtlPeripheralValid(ui32Peripheral));
677
678 //
679 // Power on this peripheral.
680 //
681 HWREGBITW(SYSCTL_PCBASE + ((ui32Peripheral & 0xff00) >> 8),
682 ui32Peripheral & 0xff) = 1;
683 }
684
685 //*****************************************************************************
686 //
687 //! Powers off a peripheral.
688 //!
689 //! \param ui32Peripheral is the peripheral to be powered off.
690 //!
691 //! This function allows the power to a peripheral to be turned off. The
692 //! peripheral continues to receive power when its clock is enabled, but
693 //! the power is removed when its clock is disabled.
694 //!
695 //! The \e ui32Peripheral parameter must be only one of the following values:
696 //! \b SYSCTL_PERIPH_CAN0,\b SYSCTL_PERIPH_CAN1, \b SYSCTL_PERIPH_EMAC,
697 //! \b SYSCTL_PERIPH_EPHY, \b SYSCTL_PERIPH_LCD0, \b SYSCTL_PERIPH_USB0
698 //!
699 //! \note The ability to power off a peripheral varies based on the Tiva
700 //! part in use. Please consult the data sheet for the part you are using to
701 //! determine if this feature is available.
702 //!
703 //! \return None.
704 //
705 //*****************************************************************************
706 void
SysCtlPeripheralPowerOff(uint32_t ui32Peripheral)707 SysCtlPeripheralPowerOff(uint32_t ui32Peripheral)
708 {
709 //
710 // Check the arguments.
711 //
712 ASSERT(_SysCtlPeripheralValid(ui32Peripheral));
713
714 //
715 // Power off this peripheral.
716 //
717 HWREGBITW(SYSCTL_PCBASE + ((ui32Peripheral & 0xff00) >> 8),
718 ui32Peripheral & 0xff) = 0;
719 }
720
721 //*****************************************************************************
722 //
723 //! Performs a software reset of a peripheral.
724 //!
725 //! \param ui32Peripheral is the peripheral to reset.
726 //!
727 //! This function performs a software reset of the specified peripheral. An
728 //! individual peripheral reset signal is asserted for a brief period and then
729 //! de-asserted, returning the internal state of the peripheral to its reset
730 //! condition.
731 //!
732 //! The \e ui32Peripheral parameter must be only one of the following values:
733 //! \b SYSCTL_PERIPH_ADC0, \b SYSCTL_PERIPH_ADC1, \b SYSCTL_PERIPH_CAN0,
734 //! \b SYSCTL_PERIPH_CAN1, \b SYSCTL_PERIPH_CCM0,\b SYSCTL_PERIPH_COMP0,
735 //! \b SYSCTL_PERIPH_EEPROM0, \b SYSCTL_PERIPH_EMAC, \b SYSCTL_PERIPH_EPHY,
736 //! \b SYSCTL_PERIPH_EPI0,
737 //! \b SYSCTL_PERIPH_GPIOA, \b SYSCTL_PERIPH_GPIOB, \b SYSCTL_PERIPH_GPIOC,
738 //! \b SYSCTL_PERIPH_GPIOD, \b SYSCTL_PERIPH_GPIOE, \b SYSCTL_PERIPH_GPIOF,
739 //! \b SYSCTL_PERIPH_GPIOG, \b SYSCTL_PERIPH_GPIOH, \b SYSCTL_PERIPH_GPIOJ,
740 //! \b SYSCTL_PERIPH_GPIOK, \b SYSCTL_PERIPH_GPIOL, \b SYSCTL_PERIPH_GPIOM,
741 //! \b SYSCTL_PERIPH_GPION, \b SYSCTL_PERIPH_GPIOP, \b SYSCTL_PERIPH_GPIOQ,
742 //! \b SYSCTL_PERIPH_GPIOR, \b SYSCTL_PERIPH_GPIOS, \b SYSCTL_PERIPH_GPIOT,
743 //! \b SYSCTL_PERIPH_HIBERNATE,
744 //! \b SYSCTL_PERIPH_I2C0, \b SYSCTL_PERIPH_I2C1, \b SYSCTL_PERIPH_I2C2,
745 //! \b SYSCTL_PERIPH_I2C3, \b SYSCTL_PERIPH_I2C4, \b SYSCTL_PERIPH_I2C5,
746 //! \b SYSCTL_PERIPH_I2C6, \b SYSCTL_PERIPH_I2C7, \b SYSCTL_PERIPH_I2C8,
747 //! \b SYSCTL_PERIPH_I2C9, \b SYSCTL_PERIPH_LCD0,
748 //! \b SYSCTL_PERIPH_ONEWIRE0,
749 //! \b SYSCTL_PERIPH_PWM0, \b SYSCTL_PERIPH_PWM1, \b SYSCTL_PERIPH_QEI0,
750 //! \b SYSCTL_PERIPH_QEI1, \b SYSCTL_PERIPH_SSI0, \b SYSCTL_PERIPH_SSI1,
751 //! \b SYSCTL_PERIPH_SSI2, \b SYSCTL_PERIPH_SSI3, \b SYSCTL_PERIPH_TIMER0,
752 //! \b SYSCTL_PERIPH_TIMER1, \b SYSCTL_PERIPH_TIMER2, \b SYSCTL_PERIPH_TIMER3,
753 //! \b SYSCTL_PERIPH_TIMER4, \b SYSCTL_PERIPH_TIMER5, \b SYSCTL_PERIPH_TIMER6,
754 //! \b SYSCTL_PERIPH_TIMER7, \b SYSCTL_PERIPH_UART0, \b SYSCTL_PERIPH_UART1,
755 //! \b SYSCTL_PERIPH_UART2, \b SYSCTL_PERIPH_UART3, \b SYSCTL_PERIPH_UART4,
756 //! \b SYSCTL_PERIPH_UART5, \b SYSCTL_PERIPH_UART6, \b SYSCTL_PERIPH_UART7,
757 //! \b SYSCTL_PERIPH_UDMA, \b SYSCTL_PERIPH_USB0, \b SYSCTL_PERIPH_WDOG0,
758 //! \b SYSCTL_PERIPH_WDOG1, \b SYSCTL_PERIPH_WTIMER0, \b SYSCTL_PERIPH_WTIMER1,
759 //! \b SYSCTL_PERIPH_WTIMER2, \b SYSCTL_PERIPH_WTIMER3,
760 //! \b SYSCTL_PERIPH_WTIMER4, or \b SYSCTL_PERIPH_WTIMER5
761 //!
762 //! \return None.
763 //
764 //*****************************************************************************
765 void
SysCtlPeripheralReset(uint32_t ui32Peripheral)766 SysCtlPeripheralReset(uint32_t ui32Peripheral)
767 {
768 volatile uint_fast8_t ui8Delay;
769
770 //
771 // Check the arguments.
772 //
773 ASSERT(_SysCtlPeripheralValid(ui32Peripheral));
774
775 //
776 // Put the peripheral into the reset state.
777 //
778 HWREGBITW(SYSCTL_SRBASE + ((ui32Peripheral & 0xff00) >> 8),
779 ui32Peripheral & 0xff) = 1;
780
781 //
782 // Delay for a little bit.
783 //
784 for(ui8Delay = 0; ui8Delay < 16; ui8Delay++)
785 {
786 }
787
788 //
789 // Take the peripheral out of the reset state.
790 //
791 HWREGBITW(SYSCTL_SRBASE + ((ui32Peripheral & 0xff00) >> 8),
792 ui32Peripheral & 0xff) = 0;
793 }
794
795 //*****************************************************************************
796 //
797 //! Enables a peripheral.
798 //!
799 //! \param ui32Peripheral is the peripheral to enable.
800 //!
801 //! This function enables a peripheral. At power-up, all peripherals are
802 //! disabled; they must be enabled in order to operate or respond to register
803 //! reads/writes.
804 //!
805 //! The \e ui32Peripheral parameter must be only one of the following values:
806 //! \b SYSCTL_PERIPH_ADC0, \b SYSCTL_PERIPH_ADC1, \b SYSCTL_PERIPH_CAN0,
807 //! \b SYSCTL_PERIPH_CAN1, \b SYSCTL_PERIPH_CCM0,\b SYSCTL_PERIPH_COMP0,
808 //! \b SYSCTL_PERIPH_EEPROM0, \b SYSCTL_PERIPH_EMAC, \b SYSCTL_PERIPH_EPHY,
809 //! \b SYSCTL_PERIPH_EPI0,
810 //! \b SYSCTL_PERIPH_GPIOA, \b SYSCTL_PERIPH_GPIOB, \b SYSCTL_PERIPH_GPIOC,
811 //! \b SYSCTL_PERIPH_GPIOD, \b SYSCTL_PERIPH_GPIOE, \b SYSCTL_PERIPH_GPIOF,
812 //! \b SYSCTL_PERIPH_GPIOG, \b SYSCTL_PERIPH_GPIOH, \b SYSCTL_PERIPH_GPIOJ,
813 //! \b SYSCTL_PERIPH_GPIOK, \b SYSCTL_PERIPH_GPIOL, \b SYSCTL_PERIPH_GPIOM,
814 //! \b SYSCTL_PERIPH_GPION, \b SYSCTL_PERIPH_GPIOP, \b SYSCTL_PERIPH_GPIOQ,
815 //! \b SYSCTL_PERIPH_GPIOR, \b SYSCTL_PERIPH_GPIOS, \b SYSCTL_PERIPH_GPIOT,
816 //! \b SYSCTL_PERIPH_HIBERNATE,
817 //! \b SYSCTL_PERIPH_I2C0, \b SYSCTL_PERIPH_I2C1, \b SYSCTL_PERIPH_I2C2,
818 //! \b SYSCTL_PERIPH_I2C3, \b SYSCTL_PERIPH_I2C4, \b SYSCTL_PERIPH_I2C5,
819 //! \b SYSCTL_PERIPH_I2C6, \b SYSCTL_PERIPH_I2C7, \b SYSCTL_PERIPH_I2C8,
820 //! \b SYSCTL_PERIPH_I2C9, \b SYSCTL_PERIPH_LCD0,
821 //! \b SYSCTL_PERIPH_ONEWIRE0,
822 //! \b SYSCTL_PERIPH_PWM0, \b SYSCTL_PERIPH_PWM1, \b SYSCTL_PERIPH_QEI0,
823 //! \b SYSCTL_PERIPH_QEI1, \b SYSCTL_PERIPH_SSI0, \b SYSCTL_PERIPH_SSI1,
824 //! \b SYSCTL_PERIPH_SSI2, \b SYSCTL_PERIPH_SSI3, \b SYSCTL_PERIPH_TIMER0,
825 //! \b SYSCTL_PERIPH_TIMER1, \b SYSCTL_PERIPH_TIMER2, \b SYSCTL_PERIPH_TIMER3,
826 //! \b SYSCTL_PERIPH_TIMER4, \b SYSCTL_PERIPH_TIMER5, \b SYSCTL_PERIPH_TIMER6,
827 //! \b SYSCTL_PERIPH_TIMER7, \b SYSCTL_PERIPH_UART0, \b SYSCTL_PERIPH_UART1,
828 //! \b SYSCTL_PERIPH_UART2, \b SYSCTL_PERIPH_UART3, \b SYSCTL_PERIPH_UART4,
829 //! \b SYSCTL_PERIPH_UART5, \b SYSCTL_PERIPH_UART6, \b SYSCTL_PERIPH_UART7,
830 //! \b SYSCTL_PERIPH_UDMA, \b SYSCTL_PERIPH_USB0, \b SYSCTL_PERIPH_WDOG0,
831 //! \b SYSCTL_PERIPH_WDOG1, \b SYSCTL_PERIPH_WTIMER0, \b SYSCTL_PERIPH_WTIMER1,
832 //! \b SYSCTL_PERIPH_WTIMER2, \b SYSCTL_PERIPH_WTIMER3,
833 //! \b SYSCTL_PERIPH_WTIMER4, or \b SYSCTL_PERIPH_WTIMER5
834 //!
835 //! \note It takes five clock cycles after the write to enable a peripheral
836 //! before the the peripheral is actually enabled. During this time, attempts
837 //! to access the peripheral result in a bus fault. Care should be taken
838 //! to ensure that the peripheral is not accessed during this brief time
839 //! period.
840 //!
841 //! \return None.
842 //
843 //*****************************************************************************
844 void
SysCtlPeripheralEnable(uint32_t ui32Peripheral)845 SysCtlPeripheralEnable(uint32_t ui32Peripheral)
846 {
847 //
848 // Check the arguments.
849 //
850 ASSERT(_SysCtlPeripheralValid(ui32Peripheral));
851
852 //
853 // Enable this peripheral.
854 //
855 HWREGBITW(SYSCTL_RCGCBASE + ((ui32Peripheral & 0xff00) >> 8),
856 ui32Peripheral & 0xff) = 1;
857 }
858
859 //*****************************************************************************
860 //
861 //! Disables a peripheral.
862 //!
863 //! \param ui32Peripheral is the peripheral to disable.
864 //!
865 //! This function disables a peripheral. Once disabled, they do not operate or
866 //! respond to register reads/writes.
867 //!
868 //! The \e ui32Peripheral parameter must be only one of the following values:
869 //! \b SYSCTL_PERIPH_ADC0, \b SYSCTL_PERIPH_ADC1, \b SYSCTL_PERIPH_CAN0,
870 //! \b SYSCTL_PERIPH_CAN1, \b SYSCTL_PERIPH_CCM0,\b SYSCTL_PERIPH_COMP0,
871 //! \b SYSCTL_PERIPH_EEPROM0, \b SYSCTL_PERIPH_EMAC, \b SYSCTL_PERIPH_EPHY,
872 //! \b SYSCTL_PERIPH_EPI0,
873 //! \b SYSCTL_PERIPH_GPIOA, \b SYSCTL_PERIPH_GPIOB, \b SYSCTL_PERIPH_GPIOC,
874 //! \b SYSCTL_PERIPH_GPIOD, \b SYSCTL_PERIPH_GPIOE, \b SYSCTL_PERIPH_GPIOF,
875 //! \b SYSCTL_PERIPH_GPIOG, \b SYSCTL_PERIPH_GPIOH, \b SYSCTL_PERIPH_GPIOJ,
876 //! \b SYSCTL_PERIPH_GPIOK, \b SYSCTL_PERIPH_GPIOL, \b SYSCTL_PERIPH_GPIOM,
877 //! \b SYSCTL_PERIPH_GPION, \b SYSCTL_PERIPH_GPIOP, \b SYSCTL_PERIPH_GPIOQ,
878 //! \b SYSCTL_PERIPH_GPIOR, \b SYSCTL_PERIPH_GPIOS, \b SYSCTL_PERIPH_GPIOT,
879 //! \b SYSCTL_PERIPH_HIBERNATE,
880 //! \b SYSCTL_PERIPH_I2C0, \b SYSCTL_PERIPH_I2C1, \b SYSCTL_PERIPH_I2C2,
881 //! \b SYSCTL_PERIPH_I2C3, \b SYSCTL_PERIPH_I2C4, \b SYSCTL_PERIPH_I2C5,
882 //! \b SYSCTL_PERIPH_I2C6, \b SYSCTL_PERIPH_I2C7, \b SYSCTL_PERIPH_I2C8,
883 //! \b SYSCTL_PERIPH_I2C9, \b SYSCTL_PERIPH_LCD0,
884 //! \b SYSCTL_PERIPH_ONEWIRE0,
885 //! \b SYSCTL_PERIPH_PWM0, \b SYSCTL_PERIPH_PWM1, \b SYSCTL_PERIPH_QEI0,
886 //! \b SYSCTL_PERIPH_QEI1, \b SYSCTL_PERIPH_SSI0, \b SYSCTL_PERIPH_SSI1,
887 //! \b SYSCTL_PERIPH_SSI2, \b SYSCTL_PERIPH_SSI3, \b SYSCTL_PERIPH_TIMER0,
888 //! \b SYSCTL_PERIPH_TIMER1, \b SYSCTL_PERIPH_TIMER2, \b SYSCTL_PERIPH_TIMER3,
889 //! \b SYSCTL_PERIPH_TIMER4, \b SYSCTL_PERIPH_TIMER5, \b SYSCTL_PERIPH_TIMER6,
890 //! \b SYSCTL_PERIPH_TIMER7, \b SYSCTL_PERIPH_UART0, \b SYSCTL_PERIPH_UART1,
891 //! \b SYSCTL_PERIPH_UART2, \b SYSCTL_PERIPH_UART3, \b SYSCTL_PERIPH_UART4,
892 //! \b SYSCTL_PERIPH_UART5, \b SYSCTL_PERIPH_UART6, \b SYSCTL_PERIPH_UART7,
893 //! \b SYSCTL_PERIPH_UDMA, \b SYSCTL_PERIPH_USB0, \b SYSCTL_PERIPH_WDOG0,
894 //! \b SYSCTL_PERIPH_WDOG1, \b SYSCTL_PERIPH_WTIMER0, \b SYSCTL_PERIPH_WTIMER1,
895 //! \b SYSCTL_PERIPH_WTIMER2, \b SYSCTL_PERIPH_WTIMER3,
896 //! \b SYSCTL_PERIPH_WTIMER4, or \b SYSCTL_PERIPH_WTIMER5
897 //!
898 //! \return None.
899 //
900 //*****************************************************************************
901 void
SysCtlPeripheralDisable(uint32_t ui32Peripheral)902 SysCtlPeripheralDisable(uint32_t ui32Peripheral)
903 {
904 //
905 // Check the arguments.
906 //
907 ASSERT(_SysCtlPeripheralValid(ui32Peripheral));
908
909 //
910 // Disable this peripheral.
911 //
912 HWREGBITW(SYSCTL_RCGCBASE + ((ui32Peripheral & 0xff00) >> 8),
913 ui32Peripheral & 0xff) = 0;
914 }
915
916 //*****************************************************************************
917 //
918 //! Enables a peripheral in sleep mode.
919 //!
920 //! \param ui32Peripheral is the peripheral to enable in sleep mode.
921 //!
922 //! This function allows a peripheral to continue operating when the processor
923 //! goes into sleep mode. Because the clocking configuration of the device
924 //! does not change, any peripheral can safely continue operating while the
925 //! processor is in sleep mode and can therefore wake the processor from sleep
926 //! mode.
927 //!
928 //! Sleep mode clocking of peripherals must be enabled via
929 //! SysCtlPeripheralClockGating(); if disabled, the peripheral sleep mode
930 //! configuration is maintained but has no effect when sleep mode is entered.
931 //!
932 //! The \e ui32Peripheral parameter must be only one of the following values:
933 //! \b SYSCTL_PERIPH_ADC0, \b SYSCTL_PERIPH_ADC1, \b SYSCTL_PERIPH_CAN0,
934 //! \b SYSCTL_PERIPH_CAN1, \b SYSCTL_PERIPH_CCM0,\b SYSCTL_PERIPH_COMP0,
935 //! \b SYSCTL_PERIPH_EEPROM0, \b SYSCTL_PERIPH_EMAC, \b SYSCTL_PERIPH_EPHY,
936 //! \b SYSCTL_PERIPH_EPI0,
937 //! \b SYSCTL_PERIPH_GPIOA, \b SYSCTL_PERIPH_GPIOB, \b SYSCTL_PERIPH_GPIOC,
938 //! \b SYSCTL_PERIPH_GPIOD, \b SYSCTL_PERIPH_GPIOE, \b SYSCTL_PERIPH_GPIOF,
939 //! \b SYSCTL_PERIPH_GPIOG, \b SYSCTL_PERIPH_GPIOH, \b SYSCTL_PERIPH_GPIOJ,
940 //! \b SYSCTL_PERIPH_GPIOK, \b SYSCTL_PERIPH_GPIOL, \b SYSCTL_PERIPH_GPIOM,
941 //! \b SYSCTL_PERIPH_GPION, \b SYSCTL_PERIPH_GPIOP, \b SYSCTL_PERIPH_GPIOQ,
942 //! \b SYSCTL_PERIPH_GPIOR, \b SYSCTL_PERIPH_GPIOS, \b SYSCTL_PERIPH_GPIOT,
943 //! \b SYSCTL_PERIPH_HIBERNATE,
944 //! \b SYSCTL_PERIPH_I2C0, \b SYSCTL_PERIPH_I2C1, \b SYSCTL_PERIPH_I2C2,
945 //! \b SYSCTL_PERIPH_I2C3, \b SYSCTL_PERIPH_I2C4, \b SYSCTL_PERIPH_I2C5,
946 //! \b SYSCTL_PERIPH_I2C6, \b SYSCTL_PERIPH_I2C7, \b SYSCTL_PERIPH_I2C8,
947 //! \b SYSCTL_PERIPH_I2C9, \b SYSCTL_PERIPH_LCD0,
948 //! \b SYSCTL_PERIPH_ONEWIRE0,
949 //! \b SYSCTL_PERIPH_PWM0, \b SYSCTL_PERIPH_PWM1, \b SYSCTL_PERIPH_QEI0,
950 //! \b SYSCTL_PERIPH_QEI1, \b SYSCTL_PERIPH_SSI0, \b SYSCTL_PERIPH_SSI1,
951 //! \b SYSCTL_PERIPH_SSI2, \b SYSCTL_PERIPH_SSI3, \b SYSCTL_PERIPH_TIMER0,
952 //! \b SYSCTL_PERIPH_TIMER1, \b SYSCTL_PERIPH_TIMER2, \b SYSCTL_PERIPH_TIMER3,
953 //! \b SYSCTL_PERIPH_TIMER4, \b SYSCTL_PERIPH_TIMER5, \b SYSCTL_PERIPH_TIMER6,
954 //! \b SYSCTL_PERIPH_TIMER7, \b SYSCTL_PERIPH_UART0, \b SYSCTL_PERIPH_UART1,
955 //! \b SYSCTL_PERIPH_UART2, \b SYSCTL_PERIPH_UART3, \b SYSCTL_PERIPH_UART4,
956 //! \b SYSCTL_PERIPH_UART5, \b SYSCTL_PERIPH_UART6, \b SYSCTL_PERIPH_UART7,
957 //! \b SYSCTL_PERIPH_UDMA, \b SYSCTL_PERIPH_USB0, \b SYSCTL_PERIPH_WDOG0,
958 //! \b SYSCTL_PERIPH_WDOG1, \b SYSCTL_PERIPH_WTIMER0, \b SYSCTL_PERIPH_WTIMER1,
959 //! \b SYSCTL_PERIPH_WTIMER2, \b SYSCTL_PERIPH_WTIMER3,
960 //! \b SYSCTL_PERIPH_WTIMER4, or \b SYSCTL_PERIPH_WTIMER5
961 //!
962 //! \return None.
963 //
964 //*****************************************************************************
965 void
SysCtlPeripheralSleepEnable(uint32_t ui32Peripheral)966 SysCtlPeripheralSleepEnable(uint32_t ui32Peripheral)
967 {
968 //
969 // Check the arguments.
970 //
971 ASSERT(_SysCtlPeripheralValid(ui32Peripheral));
972
973 //
974 // Enable this peripheral in sleep mode.
975 //
976 HWREGBITW(SYSCTL_SCGCBASE + ((ui32Peripheral & 0xff00) >> 8),
977 ui32Peripheral & 0xff) = 1;
978 }
979
980 //*****************************************************************************
981 //
982 //! Disables a peripheral in sleep mode.
983 //!
984 //! \param ui32Peripheral is the peripheral to disable in sleep mode.
985 //!
986 //! This function causes a peripheral to stop operating when the processor goes
987 //! into sleep mode. Disabling peripherals while in sleep mode helps to lower
988 //! the current draw of the device. If enabled (via SysCtlPeripheralEnable()),
989 //! the peripheral automatically resumes operation when the processor
990 //! leaves sleep mode, maintaining its entire state from before sleep mode was
991 //! entered.
992 //!
993 //! Sleep mode clocking of peripherals must be enabled via
994 //! SysCtlPeripheralClockGating(); if disabled, the peripheral sleep mode
995 //! configuration is maintained but has no effect when sleep mode is entered.
996 //!
997 //! The \e ui32Peripheral parameter must be only one of the following values:
998 //! \b SYSCTL_PERIPH_ADC0, \b SYSCTL_PERIPH_ADC1, \b SYSCTL_PERIPH_CAN0,
999 //! \b SYSCTL_PERIPH_CAN1, \b SYSCTL_PERIPH_CCM0,\b SYSCTL_PERIPH_COMP0,
1000 //! \b SYSCTL_PERIPH_EEPROM0, \b SYSCTL_PERIPH_EMAC, \b SYSCTL_PERIPH_EPHY,
1001 //! \b SYSCTL_PERIPH_EPI0,
1002 //! \b SYSCTL_PERIPH_GPIOA, \b SYSCTL_PERIPH_GPIOB, \b SYSCTL_PERIPH_GPIOC,
1003 //! \b SYSCTL_PERIPH_GPIOD, \b SYSCTL_PERIPH_GPIOE, \b SYSCTL_PERIPH_GPIOF,
1004 //! \b SYSCTL_PERIPH_GPIOG, \b SYSCTL_PERIPH_GPIOH, \b SYSCTL_PERIPH_GPIOJ,
1005 //! \b SYSCTL_PERIPH_GPIOK, \b SYSCTL_PERIPH_GPIOL, \b SYSCTL_PERIPH_GPIOM,
1006 //! \b SYSCTL_PERIPH_GPION, \b SYSCTL_PERIPH_GPIOP, \b SYSCTL_PERIPH_GPIOQ,
1007 //! \b SYSCTL_PERIPH_GPIOR, \b SYSCTL_PERIPH_GPIOS, \b SYSCTL_PERIPH_GPIOT,
1008 //! \b SYSCTL_PERIPH_HIBERNATE,
1009 //! \b SYSCTL_PERIPH_I2C0, \b SYSCTL_PERIPH_I2C1, \b SYSCTL_PERIPH_I2C2,
1010 //! \b SYSCTL_PERIPH_I2C3, \b SYSCTL_PERIPH_I2C4, \b SYSCTL_PERIPH_I2C5,
1011 //! \b SYSCTL_PERIPH_I2C6, \b SYSCTL_PERIPH_I2C7, \b SYSCTL_PERIPH_I2C8,
1012 //! \b SYSCTL_PERIPH_I2C9, \b SYSCTL_PERIPH_LCD0,
1013 //! \b SYSCTL_PERIPH_ONEWIRE0,
1014 //! \b SYSCTL_PERIPH_PWM0, \b SYSCTL_PERIPH_PWM1, \b SYSCTL_PERIPH_QEI0,
1015 //! \b SYSCTL_PERIPH_QEI1, \b SYSCTL_PERIPH_SSI0, \b SYSCTL_PERIPH_SSI1,
1016 //! \b SYSCTL_PERIPH_SSI2, \b SYSCTL_PERIPH_SSI3, \b SYSCTL_PERIPH_TIMER0,
1017 //! \b SYSCTL_PERIPH_TIMER1, \b SYSCTL_PERIPH_TIMER2, \b SYSCTL_PERIPH_TIMER3,
1018 //! \b SYSCTL_PERIPH_TIMER4, \b SYSCTL_PERIPH_TIMER5, \b SYSCTL_PERIPH_TIMER6,
1019 //! \b SYSCTL_PERIPH_TIMER7, \b SYSCTL_PERIPH_UART0, \b SYSCTL_PERIPH_UART1,
1020 //! \b SYSCTL_PERIPH_UART2, \b SYSCTL_PERIPH_UART3, \b SYSCTL_PERIPH_UART4,
1021 //! \b SYSCTL_PERIPH_UART5, \b SYSCTL_PERIPH_UART6, \b SYSCTL_PERIPH_UART7,
1022 //! \b SYSCTL_PERIPH_UDMA, \b SYSCTL_PERIPH_USB0, \b SYSCTL_PERIPH_WDOG0,
1023 //! \b SYSCTL_PERIPH_WDOG1, \b SYSCTL_PERIPH_WTIMER0, \b SYSCTL_PERIPH_WTIMER1,
1024 //! \b SYSCTL_PERIPH_WTIMER2, \b SYSCTL_PERIPH_WTIMER3,
1025 //! \b SYSCTL_PERIPH_WTIMER4, or \b SYSCTL_PERIPH_WTIMER5
1026 //!
1027 //! \return None.
1028 //
1029 //*****************************************************************************
1030 void
SysCtlPeripheralSleepDisable(uint32_t ui32Peripheral)1031 SysCtlPeripheralSleepDisable(uint32_t ui32Peripheral)
1032 {
1033 //
1034 // Check the arguments.
1035 //
1036 ASSERT(_SysCtlPeripheralValid(ui32Peripheral));
1037
1038 //
1039 // Disable this peripheral in sleep mode.
1040 //
1041 HWREGBITW(SYSCTL_SCGCBASE + ((ui32Peripheral & 0xff00) >> 8),
1042 ui32Peripheral & 0xff) = 0;
1043 }
1044
1045 //*****************************************************************************
1046 //
1047 //! Enables a peripheral in deep-sleep mode.
1048 //!
1049 //! \param ui32Peripheral is the peripheral to enable in deep-sleep mode.
1050 //!
1051 //! This function allows a peripheral to continue operating when the processor
1052 //! goes into deep-sleep mode. Because the clocking configuration of the
1053 //! device may change, not all peripherals can safely continue operating while
1054 //! the processor is in deep-sleep mode. Those that must run at a particular
1055 //! frequency (such as a UART) do not work as expected if the clock changes.
1056 //! It is the responsibility of the caller to make sensible choices.
1057 //!
1058 //! Deep-sleep mode clocking of peripherals must be enabled via
1059 //! SysCtlPeripheralClockGating(); if disabled, the peripheral deep-sleep mode
1060 //! configuration is maintained but has no effect when deep-sleep mode is
1061 //! entered.
1062 //!
1063 //! The \e ui32Peripheral parameter must be only one of the following values:
1064 //! \b SYSCTL_PERIPH_ADC0, \b SYSCTL_PERIPH_ADC1, \b SYSCTL_PERIPH_CAN0,
1065 //! \b SYSCTL_PERIPH_CAN1, \b SYSCTL_PERIPH_CCM0,\b SYSCTL_PERIPH_COMP0,
1066 //! \b SYSCTL_PERIPH_EEPROM0, \b SYSCTL_PERIPH_EMAC, \b SYSCTL_PERIPH_EPHY,
1067 //! \b SYSCTL_PERIPH_EPI0,
1068 //! \b SYSCTL_PERIPH_GPIOA, \b SYSCTL_PERIPH_GPIOB, \b SYSCTL_PERIPH_GPIOC,
1069 //! \b SYSCTL_PERIPH_GPIOD, \b SYSCTL_PERIPH_GPIOE, \b SYSCTL_PERIPH_GPIOF,
1070 //! \b SYSCTL_PERIPH_GPIOG, \b SYSCTL_PERIPH_GPIOH, \b SYSCTL_PERIPH_GPIOJ,
1071 //! \b SYSCTL_PERIPH_GPIOK, \b SYSCTL_PERIPH_GPIOL, \b SYSCTL_PERIPH_GPIOM,
1072 //! \b SYSCTL_PERIPH_GPION, \b SYSCTL_PERIPH_GPIOP, \b SYSCTL_PERIPH_GPIOQ,
1073 //! \b SYSCTL_PERIPH_GPIOR, \b SYSCTL_PERIPH_GPIOS, \b SYSCTL_PERIPH_GPIOT,
1074 //! \b SYSCTL_PERIPH_HIBERNATE,
1075 //! \b SYSCTL_PERIPH_I2C0, \b SYSCTL_PERIPH_I2C1, \b SYSCTL_PERIPH_I2C2,
1076 //! \b SYSCTL_PERIPH_I2C3, \b SYSCTL_PERIPH_I2C4, \b SYSCTL_PERIPH_I2C5,
1077 //! \b SYSCTL_PERIPH_I2C6, \b SYSCTL_PERIPH_I2C7, \b SYSCTL_PERIPH_I2C8,
1078 //! \b SYSCTL_PERIPH_I2C9, \b SYSCTL_PERIPH_LCD0,
1079 //! \b SYSCTL_PERIPH_ONEWIRE0,
1080 //! \b SYSCTL_PERIPH_PWM0, \b SYSCTL_PERIPH_PWM1, \b SYSCTL_PERIPH_QEI0,
1081 //! \b SYSCTL_PERIPH_QEI1, \b SYSCTL_PERIPH_SSI0, \b SYSCTL_PERIPH_SSI1,
1082 //! \b SYSCTL_PERIPH_SSI2, \b SYSCTL_PERIPH_SSI3, \b SYSCTL_PERIPH_TIMER0,
1083 //! \b SYSCTL_PERIPH_TIMER1, \b SYSCTL_PERIPH_TIMER2, \b SYSCTL_PERIPH_TIMER3,
1084 //! \b SYSCTL_PERIPH_TIMER4, \b SYSCTL_PERIPH_TIMER5, \b SYSCTL_PERIPH_TIMER6,
1085 //! \b SYSCTL_PERIPH_TIMER7, \b SYSCTL_PERIPH_UART0, \b SYSCTL_PERIPH_UART1,
1086 //! \b SYSCTL_PERIPH_UART2, \b SYSCTL_PERIPH_UART3, \b SYSCTL_PERIPH_UART4,
1087 //! \b SYSCTL_PERIPH_UART5, \b SYSCTL_PERIPH_UART6, \b SYSCTL_PERIPH_UART7,
1088 //! \b SYSCTL_PERIPH_UDMA, \b SYSCTL_PERIPH_USB0, \b SYSCTL_PERIPH_WDOG0,
1089 //! \b SYSCTL_PERIPH_WDOG1, \b SYSCTL_PERIPH_WTIMER0, \b SYSCTL_PERIPH_WTIMER1,
1090 //! \b SYSCTL_PERIPH_WTIMER2, \b SYSCTL_PERIPH_WTIMER3,
1091 //! \b SYSCTL_PERIPH_WTIMER4, or \b SYSCTL_PERIPH_WTIMER5
1092 //!
1093 //! \return None.
1094 //
1095 //*****************************************************************************
1096 void
SysCtlPeripheralDeepSleepEnable(uint32_t ui32Peripheral)1097 SysCtlPeripheralDeepSleepEnable(uint32_t ui32Peripheral)
1098 {
1099 //
1100 // Check the arguments.
1101 //
1102 ASSERT(_SysCtlPeripheralValid(ui32Peripheral));
1103
1104 //
1105 // Enable this peripheral in deep-sleep mode.
1106 //
1107 HWREGBITW(SYSCTL_DCGCBASE + ((ui32Peripheral & 0xff00) >> 8),
1108 ui32Peripheral & 0xff) = 1;
1109 }
1110
1111 //*****************************************************************************
1112 //
1113 //! Disables a peripheral in deep-sleep mode.
1114 //!
1115 //! \param ui32Peripheral is the peripheral to disable in deep-sleep mode.
1116 //!
1117 //! This function causes a peripheral to stop operating when the processor goes
1118 //! into deep-sleep mode. Disabling peripherals while in deep-sleep mode helps
1119 //! to lower the current draw of the device, and can keep peripherals that
1120 //! require a particular clock frequency from operating when the clock changes
1121 //! as a result of entering deep-sleep mode. If enabled (via
1122 //! SysCtlPeripheralEnable()), the peripheral automatically resumes
1123 //! operation when the processor leaves deep-sleep mode, maintaining its entire
1124 //! state from before deep-sleep mode was entered.
1125 //!
1126 //! Deep-sleep mode clocking of peripherals must be enabled via
1127 //! SysCtlPeripheralClockGating(); if disabled, the peripheral deep-sleep mode
1128 //! configuration is maintained but has no effect when deep-sleep mode is
1129 //! entered.
1130 //!
1131 //! The \e ui32Peripheral parameter must be only one of the following values:
1132 //! \b SYSCTL_PERIPH_ADC0, \b SYSCTL_PERIPH_ADC1, \b SYSCTL_PERIPH_CAN0,
1133 //! \b SYSCTL_PERIPH_CAN1, \b SYSCTL_PERIPH_CCM0,\b SYSCTL_PERIPH_COMP0,
1134 //! \b SYSCTL_PERIPH_EEPROM0, \b SYSCTL_PERIPH_EMAC, \b SYSCTL_PERIPH_EPHY,
1135 //! \b SYSCTL_PERIPH_EPI0,
1136 //! \b SYSCTL_PERIPH_GPIOA, \b SYSCTL_PERIPH_GPIOB, \b SYSCTL_PERIPH_GPIOC,
1137 //! \b SYSCTL_PERIPH_GPIOD, \b SYSCTL_PERIPH_GPIOE, \b SYSCTL_PERIPH_GPIOF,
1138 //! \b SYSCTL_PERIPH_GPIOG, \b SYSCTL_PERIPH_GPIOH, \b SYSCTL_PERIPH_GPIOJ,
1139 //! \b SYSCTL_PERIPH_GPIOK, \b SYSCTL_PERIPH_GPIOL, \b SYSCTL_PERIPH_GPIOM,
1140 //! \b SYSCTL_PERIPH_GPION, \b SYSCTL_PERIPH_GPIOP, \b SYSCTL_PERIPH_GPIOQ,
1141 //! \b SYSCTL_PERIPH_GPIOR, \b SYSCTL_PERIPH_GPIOS, \b SYSCTL_PERIPH_GPIOT,
1142 //! \b SYSCTL_PERIPH_HIBERNATE,
1143 //! \b SYSCTL_PERIPH_I2C0, \b SYSCTL_PERIPH_I2C1, \b SYSCTL_PERIPH_I2C2,
1144 //! \b SYSCTL_PERIPH_I2C3, \b SYSCTL_PERIPH_I2C4, \b SYSCTL_PERIPH_I2C5,
1145 //! \b SYSCTL_PERIPH_I2C6, \b SYSCTL_PERIPH_I2C7, \b SYSCTL_PERIPH_I2C8,
1146 //! \b SYSCTL_PERIPH_I2C9, \b SYSCTL_PERIPH_LCD0,
1147 //! \b SYSCTL_PERIPH_ONEWIRE0,
1148 //! \b SYSCTL_PERIPH_PWM0, \b SYSCTL_PERIPH_PWM1, \b SYSCTL_PERIPH_QEI0,
1149 //! \b SYSCTL_PERIPH_QEI1, \b SYSCTL_PERIPH_SSI0, \b SYSCTL_PERIPH_SSI1,
1150 //! \b SYSCTL_PERIPH_SSI2, \b SYSCTL_PERIPH_SSI3, \b SYSCTL_PERIPH_TIMER0,
1151 //! \b SYSCTL_PERIPH_TIMER1, \b SYSCTL_PERIPH_TIMER2, \b SYSCTL_PERIPH_TIMER3,
1152 //! \b SYSCTL_PERIPH_TIMER4, \b SYSCTL_PERIPH_TIMER5, \b SYSCTL_PERIPH_TIMER6,
1153 //! \b SYSCTL_PERIPH_TIMER7, \b SYSCTL_PERIPH_UART0, \b SYSCTL_PERIPH_UART1,
1154 //! \b SYSCTL_PERIPH_UART2, \b SYSCTL_PERIPH_UART3, \b SYSCTL_PERIPH_UART4,
1155 //! \b SYSCTL_PERIPH_UART5, \b SYSCTL_PERIPH_UART6, \b SYSCTL_PERIPH_UART7,
1156 //! \b SYSCTL_PERIPH_UDMA, \b SYSCTL_PERIPH_USB0, \b SYSCTL_PERIPH_WDOG0,
1157 //! \b SYSCTL_PERIPH_WDOG1, \b SYSCTL_PERIPH_WTIMER0, \b SYSCTL_PERIPH_WTIMER1,
1158 //! \b SYSCTL_PERIPH_WTIMER2, \b SYSCTL_PERIPH_WTIMER3,
1159 //! \b SYSCTL_PERIPH_WTIMER4, or \b SYSCTL_PERIPH_WTIMER5
1160 //!
1161 //! \return None.
1162 //
1163 //*****************************************************************************
1164 void
SysCtlPeripheralDeepSleepDisable(uint32_t ui32Peripheral)1165 SysCtlPeripheralDeepSleepDisable(uint32_t ui32Peripheral)
1166 {
1167 //
1168 // Check the arguments.
1169 //
1170 ASSERT(_SysCtlPeripheralValid(ui32Peripheral));
1171
1172 //
1173 // Disable this peripheral in deep-sleep mode.
1174 //
1175 HWREGBITW(SYSCTL_DCGCBASE + ((ui32Peripheral & 0xff00) >> 8),
1176 ui32Peripheral & 0xff) = 0;
1177 }
1178
1179 //*****************************************************************************
1180 //
1181 //! Controls peripheral clock gating in sleep and deep-sleep mode.
1182 //!
1183 //! \param bEnable is a boolean that is \b true if the sleep and deep-sleep
1184 //! peripheral configuration should be used and \b false if not.
1185 //!
1186 //! This function controls how peripherals are clocked when the processor goes
1187 //! into sleep or deep-sleep mode. By default, the peripherals are clocked the
1188 //! same as in run mode; if peripheral clock gating is enabled, they are
1189 //! clocked according to the configuration set by
1190 //! SysCtlPeripheralSleepEnable(), SysCtlPeripheralSleepDisable(),
1191 //! SysCtlPeripheralDeepSleepEnable(), and SysCtlPeripheralDeepSleepDisable().
1192 //!
1193 //! \return None.
1194 //
1195 //*****************************************************************************
1196 void
SysCtlPeripheralClockGating(bool bEnable)1197 SysCtlPeripheralClockGating(bool bEnable)
1198 {
1199 if(CLASS_IS_TM4C123)
1200 {
1201 //
1202 // Enable peripheral clock gating as requested.
1203 //
1204 if(bEnable)
1205 {
1206 HWREG(SYSCTL_RCC) |= SYSCTL_RCC_ACG;
1207 }
1208 else
1209 {
1210 HWREG(SYSCTL_RCC) &= ~(SYSCTL_RCC_ACG);
1211 }
1212 }
1213 else
1214 {
1215 //
1216 // Enable peripheral clock gating as requested.
1217 //
1218 if(bEnable)
1219 {
1220 HWREG(SYSCTL_RSCLKCFG) |= SYSCTL_RSCLKCFG_ACG;
1221 }
1222 else
1223 {
1224 HWREG(SYSCTL_RSCLKCFG) &= ~SYSCTL_RSCLKCFG_ACG;
1225 }
1226 }
1227 }
1228
1229 //*****************************************************************************
1230 //
1231 //! Registers an interrupt handler for the system control interrupt.
1232 //!
1233 //! \param pfnHandler is a pointer to the function to be called when the system
1234 //! control interrupt occurs.
1235 //!
1236 //! This function registers the handler to be called when a system control
1237 //! interrupt occurs. This function enables the global interrupt in the
1238 //! interrupt controller; specific system control interrupts must be enabled
1239 //! via SysCtlIntEnable(). It is the interrupt handler's responsibility to
1240 //! clear the interrupt source via SysCtlIntClear().
1241 //!
1242 //! System control can generate interrupts when the PLL achieves lock, if the
1243 //! internal LDO current limit is exceeded, if the internal oscillator fails,
1244 //! if the main oscillator fails, if the internal LDO output voltage droops too
1245 //! much, if the external voltage droops too much, or if the PLL fails.
1246 //!
1247 //! \sa IntRegister() for important information about registering interrupt
1248 //! handlers.
1249 //!
1250 //! \note The events that cause system control interrupts vary based on the
1251 //! Tiva part in use. Please consult the data sheet for the part you are
1252 //! using to determine which interrupt sources are available.
1253 //!
1254 //! \return None.
1255 //
1256 //*****************************************************************************
1257 void
SysCtlIntRegister(void (* pfnHandler)(void))1258 SysCtlIntRegister(void (*pfnHandler)(void))
1259 {
1260 //
1261 // Register the interrupt handler, returning an error if an error occurs.
1262 //
1263 IntRegister(INT_SYSCTL_TM4C123, pfnHandler);
1264
1265 //
1266 // Enable the system control interrupt.
1267 //
1268 IntEnable(INT_SYSCTL_TM4C123);
1269 }
1270
1271 //*****************************************************************************
1272 //
1273 //! Unregisters the interrupt handler for the system control interrupt.
1274 //!
1275 //! This function unregisters the handler to be called when a system control
1276 //! interrupt occurs. This function also masks off the interrupt in the
1277 //! interrupt controller so that the interrupt handler no longer is called.
1278 //!
1279 //! \sa IntRegister() for important information about registering interrupt
1280 //! handlers.
1281 //!
1282 //! \return None.
1283 //
1284 //*****************************************************************************
1285 void
SysCtlIntUnregister(void)1286 SysCtlIntUnregister(void)
1287 {
1288 //
1289 // Disable the interrupt.
1290 //
1291 IntDisable(INT_SYSCTL_TM4C123);
1292
1293 //
1294 // Unregister the interrupt handler.
1295 //
1296 IntUnregister(INT_SYSCTL_TM4C123);
1297 }
1298
1299 //*****************************************************************************
1300 //
1301 //! Enables individual system control interrupt sources.
1302 //!
1303 //! \param ui32Ints is a bit mask of the interrupt sources to be enabled. Must
1304 //! be a logical OR of \b SYSCTL_INT_BOR0, \b SYSCTL_INT_VDDA_OK,
1305 //! \b SYSCTL_INT_MOSC_PUP, \b SYSCTL_INT_USBPLL_LOCK,
1306 //! \b SYSCTL_INT_PLL_LOCK, \b SYSCTL_INT_MOSC_FAIL, \b SYSCTL_INT_BOR, and/or
1307 //! \b SYSCTL_INT_BOR1.
1308 //!
1309 //! This function enables the indicated system control interrupt sources. Only
1310 //! the sources that are enabled can be reflected to the processor interrupt;
1311 //! disabled sources have no effect on the processor.
1312 //!
1313 //! \note The interrupt sources vary based on the Tiva part in use.
1314 //! Please consult the data sheet for the part you are using to determine
1315 //! which interrupt sources are available.
1316 //!
1317 //! \return None.
1318 //
1319 //*****************************************************************************
1320 void
SysCtlIntEnable(uint32_t ui32Ints)1321 SysCtlIntEnable(uint32_t ui32Ints)
1322 {
1323 //
1324 // Enable the specified interrupts.
1325 //
1326 HWREG(SYSCTL_IMC) |= ui32Ints;
1327 }
1328
1329 //*****************************************************************************
1330 //
1331 //! Disables individual system control interrupt sources.
1332 //!
1333 //! \param ui32Ints is a bit mask of the interrupt sources to be disabled.
1334 //! Must be a logical OR of \b SYSCTL_INT_BOR0, \b SYSCTL_INT_VDDA_OK,
1335 //! \b SYSCTL_INT_MOSC_PUP, \b SYSCTL_INT_USBPLL_LOCK,
1336 //! \b SYSCTL_INT_PLL_LOCK, \b SYSCTL_INT_MOSC_FAIL, \b SYSCTL_INT_BOR, and/or
1337 //! \b SYSCTL_INT_BOR1.
1338 //!
1339 //! This function disables the indicated system control interrupt sources.
1340 //! Only the sources that are enabled can be reflected to the processor
1341 //! interrupt; disabled sources have no effect on the processor.
1342 //!
1343 //! \note The interrupt sources vary based on the Tiva part in use.
1344 //! Please consult the data sheet for the part you are using to determine
1345 //! which interrupt sources are available.
1346 //!
1347 //! \return None.
1348 //
1349 //*****************************************************************************
1350 void
SysCtlIntDisable(uint32_t ui32Ints)1351 SysCtlIntDisable(uint32_t ui32Ints)
1352 {
1353 //
1354 // Disable the specified interrupts.
1355 //
1356 HWREG(SYSCTL_IMC) &= ~(ui32Ints);
1357 }
1358
1359 //*****************************************************************************
1360 //
1361 //! Clears system control interrupt sources.
1362 //!
1363 //! \param ui32Ints is a bit mask of the interrupt sources to be cleared. Must
1364 //! be a logical OR of \b SYSCTL_INT_BOR0, \b SYSCTL_INT_VDDA_OK,
1365 //! \b SYSCTL_INT_MOSC_PUP, \b SYSCTL_INT_USBPLL_LOCK,
1366 //! \b SYSCTL_INT_PLL_LOCK, \b SYSCTL_INT_MOSC_FAIL, \b SYSCTL_INT_BOR, and/or
1367 //! \b SYSCTL_INT_BOR1.
1368 //!
1369 //! The specified system control interrupt sources are cleared, so that they no
1370 //! longer assert. This function must be called in the interrupt handler to
1371 //! keep it from being called again immediately on exit.
1372 //!
1373 //! \note Because there is a write buffer in the Cortex-M processor, it may
1374 //! take several clock cycles before the interrupt source is actually cleared.
1375 //! Therefore, it is recommended that the interrupt source be cleared early in
1376 //! the interrupt handler (as opposed to the very last action) to avoid
1377 //! returning from the interrupt handler before the interrupt source is
1378 //! actually cleared. Failure to do so may result in the interrupt handler
1379 //! being immediately reentered (because the interrupt controller still sees
1380 //! the interrupt source asserted).
1381 //!
1382 //! \note The interrupt sources vary based on the Tiva part in use.
1383 //! Please consult the data sheet for the part you are using to determine
1384 //! which interrupt sources are available.
1385 //!
1386 //! \return None.
1387 //
1388 //*****************************************************************************
1389 void
SysCtlIntClear(uint32_t ui32Ints)1390 SysCtlIntClear(uint32_t ui32Ints)
1391 {
1392 //
1393 // Clear the requested interrupt sources.
1394 //
1395 HWREG(SYSCTL_MISC) = ui32Ints;
1396 }
1397
1398 //*****************************************************************************
1399 //
1400 //! Gets the current interrupt status.
1401 //!
1402 //! \param bMasked is false if the raw interrupt status is required and true if
1403 //! the masked interrupt status is required.
1404 //!
1405 //! This function returns the interrupt status for the system controller.
1406 //! Either the raw interrupt status or the status of interrupts that are
1407 //! allowed to reflect to the processor can be returned.
1408 //!
1409 //! \note The interrupt sources vary based on the Tiva part in use.
1410 //! Please consult the data sheet for the part you are using to determine
1411 //! which interrupt sources are available.
1412 //!
1413 //! \return The current interrupt status, enumerated as a bit field of
1414 //! \b SYSCTL_INT_BOR0, \b SYSCTL_INT_VDDA_OK,
1415 //! \b SYSCTL_INT_MOSC_PUP, \b SYSCTL_INT_USBPLL_LOCK,
1416 //! \b SYSCTL_INT_PLL_LOCK, \b SYSCTL_INT_MOSC_FAIL, \b SYSCTL_INT_BOR, and/or
1417 //! \b SYSCTL_INT_BOR1.
1418 //
1419 //*****************************************************************************
1420 uint32_t
SysCtlIntStatus(bool bMasked)1421 SysCtlIntStatus(bool bMasked)
1422 {
1423 //
1424 // Return either the interrupt status or the raw interrupt status as
1425 // requested.
1426 //
1427 if(bMasked)
1428 {
1429 return(HWREG(SYSCTL_MISC));
1430 }
1431 else
1432 {
1433 return(HWREG(SYSCTL_RIS));
1434 }
1435 }
1436
1437 //*****************************************************************************
1438 //
1439 //! Sets the output voltage of the LDO when the device enters sleep mode.
1440 //!
1441 //! \param ui32Voltage is the required output voltage from the LDO while in
1442 //! sleep mode.
1443 //!
1444 //! This function sets the output voltage of the LDO while in sleep mode.
1445 //! The \e ui32Voltage parameter must be one of the following values:
1446 //! \b SYSCTL_LDO_0_90V, \b SYSCTL_LDO_0_95V, \b SYSCTL_LDO_1_00V,
1447 //! \b SYSCTL_LDO_1_05V, \b SYSCTL_LDO_1_10V, \b SYSCTL_LDO_1_15V, or
1448 //! \b SYSCTL_LDO_1_20V.
1449 //!
1450 //! \note The availability of this feature, the default LDO voltage, and the
1451 //! adjustment range varies with the Tiva part in use. Please consult the
1452 //! data sheet for the part you are using to determine whether this support is
1453 //! available.
1454 //!
1455 //! \return None.
1456 //
1457 //*****************************************************************************
1458 void
SysCtlLDOSleepSet(uint32_t ui32Voltage)1459 SysCtlLDOSleepSet(uint32_t ui32Voltage)
1460 {
1461 //
1462 // Check the arguments.
1463 //
1464 ASSERT((ui32Voltage == SYSCTL_LDO_0_90V) ||
1465 (ui32Voltage == SYSCTL_LDO_0_95V) ||
1466 (ui32Voltage == SYSCTL_LDO_1_00V) ||
1467 (ui32Voltage == SYSCTL_LDO_1_05V) ||
1468 (ui32Voltage == SYSCTL_LDO_1_10V) ||
1469 (ui32Voltage == SYSCTL_LDO_1_15V) ||
1470 (ui32Voltage == SYSCTL_LDO_1_20V));
1471
1472 //
1473 // Set the sleep-mode LDO voltage to the requested value.
1474 //
1475 HWREG(SYSCTL_LDOSPCTL) = ui32Voltage;
1476 }
1477
1478 //*****************************************************************************
1479 //
1480 //! Returns the output voltage of the LDO when the device enters sleep mode.
1481 //!
1482 //! This function determines the output voltage of the LDO while in sleep mode,
1483 //! as specified by the control register.
1484 //!
1485 //! \note The availability of this feature, the default LDO voltage, and the
1486 //! adjustment range varies with the Tiva part in use. Please consult the
1487 //! data sheet for the part you are using to determine whether this support is
1488 //! available.
1489 //!
1490 //! \return Returns the sleep-mode voltage of the LDO and is one of
1491 //! \b SYSCTL_LDO_0_90V, \b SYSCTL_LDO_0_95V, \b SYSCTL_LDO_1_00V,
1492 //! \b SYSCTL_LDO_1_05V, \b SYSCTL_LDO_1_10V, \b SYSCTL_LDO_1_15V, or
1493 //! \b SYSCTL_LDO_1_20V.
1494 //
1495 //*****************************************************************************
1496 uint32_t
SysCtlLDOSleepGet(void)1497 SysCtlLDOSleepGet(void)
1498 {
1499 //
1500 // Return the sleep-mode LDO voltage setting.
1501 //
1502 return(HWREG(SYSCTL_LDOSPCTL));
1503 }
1504
1505 //*****************************************************************************
1506 //
1507 //! Sets the output voltage of the LDO when the device enters deep-sleep
1508 //! mode.
1509 //!
1510 //! \param ui32Voltage is the required output voltage from the LDO while in
1511 //! deep-sleep mode.
1512 //!
1513 //! This function sets the output voltage of the LDO while in deep-sleep mode.
1514 //! The \e ui32Voltage parameter specifies the output voltage of the LDO and
1515 //! must be one of the following values: \b SYSCTL_LDO_0_90V,
1516 //! \b SYSCTL_LDO_0_95V, \b SYSCTL_LDO_1_00V, \b SYSCTL_LDO_1_05V,
1517 //! \b SYSCTL_LDO_1_10V, \b SYSCTL_LDO_1_15V, or \b SYSCTL_LDO_1_20V.
1518 //!
1519 //! \note The availability of this feature, the default LDO voltage, and the
1520 //! adjustment range varies with the Tiva part in use. Please consult the
1521 //! data sheet for the part you are using to determine whether this support is
1522 //! available.
1523 //!
1524 //! \return None.
1525 //
1526 //*****************************************************************************
1527 void
SysCtlLDODeepSleepSet(uint32_t ui32Voltage)1528 SysCtlLDODeepSleepSet(uint32_t ui32Voltage)
1529 {
1530 //
1531 // Check the arguments.
1532 //
1533 ASSERT((ui32Voltage == SYSCTL_LDO_0_90V) ||
1534 (ui32Voltage == SYSCTL_LDO_0_95V) ||
1535 (ui32Voltage == SYSCTL_LDO_1_00V) ||
1536 (ui32Voltage == SYSCTL_LDO_1_05V) ||
1537 (ui32Voltage == SYSCTL_LDO_1_10V) ||
1538 (ui32Voltage == SYSCTL_LDO_1_15V) ||
1539 (ui32Voltage == SYSCTL_LDO_1_20V));
1540
1541 //
1542 // Set the deep-sleep LDO voltage to the requested value.
1543 //
1544 HWREG(SYSCTL_LDODPCTL) = ui32Voltage;
1545 }
1546
1547 //*****************************************************************************
1548 //
1549 //! Returns the output voltage of the LDO when the device enters deep-sleep
1550 //! mode.
1551 //!
1552 //! This function returns the output voltage of the LDO when the device is
1553 //! in deep-sleep mode, as specified by the control register.
1554 //!
1555 //! \note The availability of this feature, the default LDO voltage, and the
1556 //! adjustment range varies with the Tiva part in use. Please consult the
1557 //! data sheet for the part you are using to determine whether this support is
1558 //! available.
1559 //!
1560 //! \return Returns the deep-sleep-mode voltage of the LDO; is one of
1561 //! \b SYSCTL_LDO_0_90V, \b SYSCTL_LDO_0_95V, \b SYSCTL_LDO_1_00V,
1562 //! \b SYSCTL_LDO_1_05V, \b SYSCTL_LDO_1_10V, \b SYSCTL_LDO_1_15V, or
1563 //! \b SYSCTL_LDO_1_20V.
1564 //
1565 //*****************************************************************************
1566 uint32_t
SysCtlLDODeepSleepGet(void)1567 SysCtlLDODeepSleepGet(void)
1568 {
1569 //
1570 // Return the deep-sleep-mode LDO voltage setting.
1571 //
1572 return(HWREG(SYSCTL_LDODPCTL));
1573 }
1574
1575 //*****************************************************************************
1576 //
1577 //! Configures the power to the flash and SRAM while in sleep mode.
1578 //!
1579 //! \param ui32Config is the required flash and SRAM power configuration.
1580 //!
1581 //! This function allows the power configuration of the flash and SRAM while in
1582 //! sleep mode to be set. The \e ui32Config parameter is the logical OR of the
1583 //! flash power configuration and the SRAM power configuration.
1584 //!
1585 //! The flash power configuration is specified as either:
1586 //!
1587 //! - \b SYSCTL_FLASH_NORMAL - The flash is left in fully powered mode,
1588 //! providing fast wake-up time but higher power consumption.
1589 //! - \b SYSCTL_FLASH_LOW_POWER - The flash is in low power mode, providing
1590 //! reduced power consumption but longer wake-up time.
1591 //!
1592 //! The SRAM power configuration is specified as one of:
1593 //!
1594 //! - \b SYSCTL_SRAM_NORMAL - The SRAM is left in fully powered mode, providing
1595 //! fast wake-up time but higher power consumption.
1596 //! - \b SYSCTL_SRAM_STANDBY - The SRAM is placed into a lower power mode,
1597 //! providing reduced power consumption but longer wake-up time.
1598 //! - \b SYSCTL_SRAM_LOW_POWER - The SRAM is placed into lowest power mode,
1599 //! providing further reduced power consumption but longer wake-up time.
1600 //!
1601 //! \note The availability of this feature varies with the Tiva part in
1602 //! use. Please consult the data sheet for the part you are using to determine
1603 //! whether this support is available.
1604 //!
1605 //! \return None.
1606 //
1607 //*****************************************************************************
1608 void
SysCtlSleepPowerSet(uint32_t ui32Config)1609 SysCtlSleepPowerSet(uint32_t ui32Config)
1610 {
1611 //
1612 // Set the sleep-mode flash and SRAM power configuration.
1613 //
1614 HWREG(SYSCTL_SLPPWRCFG) = ui32Config;
1615 }
1616
1617 //*****************************************************************************
1618 //
1619 //! Configures the power to the flash and SRAM while in deep-sleep mode.
1620 //!
1621 //! \param ui32Config is the required flash and SRAM power configuration.
1622 //!
1623 //! This function allows the power configuration of the flash and SRAM while in
1624 //! deep-sleep mode to be set. The \e ui32Config parameter is the logical OR
1625 //! of the flash power configuration and the SRAM power configuration.
1626 //!
1627 //! The flash power configuration is specified as either:
1628 //!
1629 //! - \b SYSCTL_FLASH_NORMAL - The flash is left in fully powered mode,
1630 //! providing fast wake-up time but higher power consumption.
1631 //! - \b SYSCTL_FLASH_LOW_POWER - The flash is in low power mode, providing
1632 //! reduced power consumption but longer wake-up time.
1633 //!
1634 //! The SRAM power configuration is specified as one of:
1635 //!
1636 //! - \b SYSCTL_LDO_SLEEP - The LDO is in sleep mode.
1637 //! - \b SYSCTL_TEMP_LOW_POWER - The temperature sensor in low power mode.
1638 //! - \b SYSCTL_SRAM_NORMAL - The SRAM is left in fully powered mode, providing
1639 //! fast wake-up time but higher power consumption.
1640 //! - \b SYSCTL_SRAM_STANDBY - The SRAM is placed into a lower power mode,
1641 //! providing reduced power consumption but longer wake-up time.
1642 //! - \b SYSCTL_SRAM_LOW_POWER - The SRAM is placed into lowest power mode,
1643 //! providing further reduced power consumption but longer wake-up time.
1644 //!
1645 //! \note The availability of this feature varies with the Tiva part in
1646 //! use. Please consult the data sheet for the part you are using to determine
1647 //! whether this support is available.
1648 //!
1649 //! \return None.
1650 //
1651 //*****************************************************************************
1652 void
SysCtlDeepSleepPowerSet(uint32_t ui32Config)1653 SysCtlDeepSleepPowerSet(uint32_t ui32Config)
1654 {
1655 //
1656 // Set the deep-sleep-mode flash and SRAM power configuration.
1657 //
1658 HWREG(SYSCTL_DSLPPWRCFG) = ui32Config;
1659 }
1660
1661 //*****************************************************************************
1662 //
1663 //! Resets the device.
1664 //!
1665 //! This function performs a software reset of the entire device. The
1666 //! processor and all peripherals are reset and all device registers are
1667 //! returned to their default values (with the exception of the reset cause
1668 //! register, which maintains its current value but has the software reset
1669 //! bit set as well).
1670 //!
1671 //! \return This function does not return.
1672 //
1673 //*****************************************************************************
1674 void
SysCtlReset(void)1675 SysCtlReset(void)
1676 {
1677 //
1678 // Perform a software reset request. This request causes the device to
1679 // reset, no further code is executed.
1680 //
1681 HWREG(NVIC_APINT) = NVIC_APINT_VECTKEY | NVIC_APINT_SYSRESETREQ;
1682
1683 //
1684 // The device should have reset, so this should never be reached. Just in
1685 // case, loop forever.
1686 //
1687 while(1)
1688 {
1689 }
1690 }
1691
1692 //*****************************************************************************
1693 //
1694 //! Puts the processor into sleep mode.
1695 //!
1696 //! This function places the processor into sleep mode; it does not return
1697 //! until the processor returns to run mode. The peripherals that are enabled
1698 //! via SysCtlPeripheralSleepEnable() continue to operate and can wake up the
1699 //! processor (if automatic clock gating is enabled with
1700 //! SysCtlPeripheralClockGating(), otherwise all peripherals continue to
1701 //! operate).
1702 //!
1703 //! \return None.
1704 //
1705 //*****************************************************************************
1706 void
SysCtlSleep(void)1707 SysCtlSleep(void)
1708 {
1709 //
1710 // Wait for an interrupt.
1711 //
1712 CPUwfi();
1713 }
1714
1715 //*****************************************************************************
1716 //
1717 //! Puts the processor into deep-sleep mode.
1718 //!
1719 //! This function places the processor into deep-sleep mode; it does not return
1720 //! until the processor returns to run mode. The peripherals that are enabled
1721 //! via SysCtlPeripheralDeepSleepEnable() continue to operate and can wake up
1722 //! the processor (if automatic clock gating is enabled with
1723 //! SysCtlPeripheralClockGating(), otherwise all peripherals continue to
1724 //! operate).
1725 //!
1726 //! \return None.
1727 //
1728 //*****************************************************************************
1729 void
SysCtlDeepSleep(void)1730 SysCtlDeepSleep(void)
1731 {
1732 //
1733 // Enable deep-sleep.
1734 //
1735 HWREG(NVIC_SYS_CTRL) |= NVIC_SYS_CTRL_SLEEPDEEP;
1736
1737 //
1738 // Wait for an interrupt.
1739 //
1740 CPUwfi();
1741
1742 //
1743 // Disable deep-sleep so that a future sleep works correctly.
1744 //
1745 HWREG(NVIC_SYS_CTRL) &= ~(NVIC_SYS_CTRL_SLEEPDEEP);
1746 }
1747
1748 //*****************************************************************************
1749 //
1750 //! Gets the reason for a reset.
1751 //!
1752 //! This function returns the reason(s) for a reset. Because the reset
1753 //! reasons are sticky until either cleared by software or a power-on reset,
1754 //! multiple reset reasons may be returned if multiple resets have occurred.
1755 //! The reset reason is a logical OR of \b SYSCTL_CAUSE_HSRVREQ,
1756 //! \b SYSCTL_CAUSE_HIB, \b SYSCTL_CAUSE_WDOG1, \b SYSCTL_CAUSE_SW,
1757 //! \b SYSCTL_CAUSE_WDOG0, \b SYSCTL_CAUSE_BOR, \b SYSCTL_CAUSE_POR,
1758 //! and/or \b SYSCTL_CAUSE_EXT.
1759 //!
1760 //! \return Returns the reason(s) for a reset.
1761 //
1762 //*****************************************************************************
1763 uint32_t
SysCtlResetCauseGet(void)1764 SysCtlResetCauseGet(void)
1765 {
1766 //
1767 // Return the reset reasons.
1768 //
1769 return(HWREG(SYSCTL_RESC));
1770 }
1771
1772 //*****************************************************************************
1773 //
1774 //! Clears reset reasons.
1775 //!
1776 //! \param ui32Causes are the reset causes to be cleared; must be a logical OR
1777 //! of \b SYSCTL_CAUSE_HSRVREQ, \b SYSCTL_CAUSE_HIB, \b SYSCTL_CAUSE_WDOG1,
1778 //! \b SYSCTL_CAUSE_SW, \b SYSCTL_CAUSE_WDOG0, \b SYSCTL_CAUSE_BOR,
1779 //! \b SYSCTL_CAUSE_POR, and/or \b SYSCTL_CAUSE_EXT.
1780 //!
1781 //! This function clears the specified sticky reset reasons. Once cleared,
1782 //! another reset for the same reason can be detected, and a reset for a
1783 //! different reason can be distinguished (instead of having two reset causes
1784 //! set). If the reset reason is used by an application, all reset causes
1785 //! should be cleared after they are retrieved with SysCtlResetCauseGet().
1786 //!
1787 //! \return None.
1788 //
1789 //*****************************************************************************
1790 void
SysCtlResetCauseClear(uint32_t ui32Causes)1791 SysCtlResetCauseClear(uint32_t ui32Causes)
1792 {
1793 //
1794 // Clear the given reset reasons.
1795 //
1796 HWREG(SYSCTL_RESC) &= ~(ui32Causes);
1797 }
1798
1799 //*****************************************************************************
1800 //
1801 //! Provides a small delay.
1802 //!
1803 //! \param ui32Count is the number of delay loop iterations to perform.
1804 //!
1805 //! This function provides a means of generating a delay by executing a simple
1806 //! 3 instruction cycle loop a given number of times. It is written in
1807 //! assembly to keep the loop instruction count consistent across tool chains.
1808 //!
1809 //! It is important to note that this function does NOT provide an accurate
1810 //! timing mechanism. Although the delay loop is 3 instruction cycles long,
1811 //! the execution time of the loop will vary dramatically depending upon the
1812 //! application's interrupt environment (the loop will be interrupted unless
1813 //! run with interrupts disabled and this is generally an unwise thing to do)
1814 //! and also the current system clock rate and flash timings (wait states and
1815 //! the operation of the prefetch buffer affect the timing).
1816 //!
1817 //! For better accuracy, the ROM version of this function may be used. This
1818 //! version will not suffer from flash- and prefect buffer-related timing
1819 //! variability but will still be delayed by interrupt service routines.
1820 //!
1821 //! For best accuracy, a system timer should be used with code either polling
1822 //! for a particular timer value being exceeded or processing the timer
1823 //! interrupt to determine when a particular time period has elapsed.
1824 //!
1825 //! \return None.
1826 //
1827 //*****************************************************************************
1828 #if defined(ewarm) || defined(DOXYGEN)
1829 void
SysCtlDelay(uint32_t ui32Count)1830 SysCtlDelay(uint32_t ui32Count)
1831 {
1832 __asm(" subs r0, #1\n"
1833 " bne.n SysCtlDelay\n"
1834 " bx lr");
1835 }
1836 #endif
1837 #if defined(codered) || defined(gcc) || defined(sourcerygxx)
1838 void __attribute__((naked))
SysCtlDelay(uint32_t ui32Count)1839 SysCtlDelay(uint32_t ui32Count)
1840 {
1841 __asm(" subs r0, #1\n"
1842 " bne SysCtlDelay\n"
1843 " bx lr");
1844 }
1845 #endif
1846 #if defined(rvmdk) || defined(__ARMCC_VERSION)
1847 __asm void
SysCtlDelay(uint32_t ui32Count)1848 SysCtlDelay(uint32_t ui32Count)
1849 {
1850 subs r0, #1;
1851 bne SysCtlDelay;
1852 bx lr;
1853 }
1854 #endif
1855 //
1856 // For CCS implement this function in pure assembly. This prevents the TI
1857 // compiler from doing funny things with the optimizer.
1858 //
1859 #if defined(ccs)
1860 __asm(" .sect \".text:SysCtlDelay\"\n"
1861 " .clink\n"
1862 " .thumbfunc SysCtlDelay\n"
1863 " .thumb\n"
1864 " .global SysCtlDelay\n"
1865 "SysCtlDelay:\n"
1866 " subs r0, #1\n"
1867 " bne.n SysCtlDelay\n"
1868 " bx lr\n");
1869 #endif
1870
1871 //*****************************************************************************
1872 //
1873 //! Sets the configuration of the main oscillator (MOSC) control.
1874 //!
1875 //! \param ui32Config is the required configuration of the MOSC control.
1876 //!
1877 //! This function configures the control of the main oscillator. The
1878 //! \e ui32Config is specified as the logical OR of the following values:
1879 //!
1880 //! - \b SYSCTL_MOSC_VALIDATE enables the MOSC verification circuit that
1881 //! detects a failure of the main oscillator (such as a loss of the clock).
1882 //! - \b SYSCTL_MOSC_INTERRUPT indicates that a MOSC failure should generate an
1883 //! interrupt instead of resetting the processor.
1884 //! - \b SYSCTL_MOSC_NO_XTAL indicates that there is no crystal or oscillator
1885 //! connected to the OSC0/OSC1 pins, allowing power consumption to be
1886 //! reduced.
1887 //! - \b SYSCTL_MOSC_PWR_DIS disable power to the main oscillator. If this
1888 //! parameter is not specified, the MOSC input remains powered.
1889 //! - \b SYSCTL_MOSC_LOWFREQ MOSC is less than 10 MHz.
1890 //! - \b SYSCTL_MOSC_HIGHFREQ MOSC is greater than 10 MHz.
1891 //! - \b SYSCTL_MOSC_SESRC specifies that the MOSC is a single-ended
1892 //! oscillator connected to OSC0. If this parameter is not specified, the
1893 //! input is assumed to be a crystal.
1894 //!
1895 //! \note The availability of MOSC control varies based on the Tiva part
1896 //! in use. Please consult the data sheet for the part you are using to
1897 //! determine whether this support is available. In addition, the capability
1898 //! of MOSC control varies based on the Tiva part in use.
1899 //!
1900 //! \return None.
1901 //
1902 //*****************************************************************************
1903 void
SysCtlMOSCConfigSet(uint32_t ui32Config)1904 SysCtlMOSCConfigSet(uint32_t ui32Config)
1905 {
1906 //
1907 // Configure the MOSC control.
1908 //
1909 HWREG(SYSCTL_MOSCCTL) = ui32Config;
1910 }
1911
1912 //*****************************************************************************
1913 //
1914 //! Calibrates the precision internal oscillator.
1915 //!
1916 //! \param ui32Type is the type of calibration to perform.
1917 //!
1918 //! This function performs a calibration of the PIOSC. There are three types
1919 //! of calibration available; the desired calibration type as specified in
1920 //! \e ui32Type is one of:
1921 //!
1922 //! - \b SYSCTL_PIOSC_CAL_AUTO to perform automatic calibration using the
1923 //! 32-kHz clock from the hibernate module as a reference. This type is
1924 //! only possible on parts that have a hibernate module, and then only if
1925 //! it is enabled, a 32.768-kHz clock source is attached to the XOSC0/1
1926 //! pins and the hibernate module's RTC is also enabled.
1927 //!
1928 //! - \b SYSCTL_PIOSC_CAL_FACT to reset the PIOSC calibration to the factory
1929 //! provided calibration.
1930 //!
1931 //! - \b SYSCTL_PIOSC_CAL_USER to set the PIOSC calibration to a user-supplied
1932 //! value. The value to be used is ORed into the lower 7-bits of this value,
1933 //! with 0x40 being the ``nominal'' value (in other words, if everything were
1934 //! perfect, 0x40 provides exactly 16 MHz). Values larger than 0x40
1935 //! slow down PIOSC, and values smaller than 0x40 speed up PIOSC.
1936 //!
1937 //! \return Returns 1 if the calibration was successful and 0 if it failed.
1938 //
1939 //*****************************************************************************
1940 uint32_t
SysCtlPIOSCCalibrate(uint32_t ui32Type)1941 SysCtlPIOSCCalibrate(uint32_t ui32Type)
1942 {
1943 //
1944 // Perform the requested calibration. If performing user calibration, the
1945 // UTEN bit must be set with one write, then the UT field in a second
1946 // write, and the UPDATE bit in a final write. For other calibration
1947 // types, a single write to set UPDATE or CAL is all that is required.
1948 //
1949 if(ui32Type & (SYSCTL_PIOSCCAL_UTEN | SYSCTL_PIOSCCAL_UPDATE))
1950 {
1951 HWREG(SYSCTL_PIOSCCAL) = ui32Type & SYSCTL_PIOSCCAL_UTEN;
1952 HWREG(SYSCTL_PIOSCCAL) =
1953 ui32Type & (SYSCTL_PIOSCCAL_UTEN | SYSCTL_PIOSCCAL_UT_M);
1954 }
1955 HWREG(SYSCTL_PIOSCCAL) = ui32Type;
1956
1957 //
1958 // See if an automatic calibration was requested.
1959 //
1960 if(ui32Type & SYSCTL_PIOSCCAL_CAL)
1961 {
1962 //
1963 // Wait for the automatic calibration to complete.
1964 //
1965 while((HWREG(SYSCTL_PIOSCSTAT) & SYSCTL_PIOSCSTAT_CR_M) == 0)
1966 {
1967 }
1968
1969 //
1970 // If the automatic calibration failed, return an error.
1971 //
1972 if((HWREG(SYSCTL_PIOSCSTAT) & SYSCTL_PIOSCSTAT_CR_M) !=
1973 SYSCTL_PIOSCSTAT_CRPASS)
1974 {
1975 return(0);
1976 }
1977 }
1978
1979 //
1980 // The calibration was successful.
1981 //
1982 return(1);
1983 }
1984
1985 //*****************************************************************************
1986 //
1987 //! Sets the type of reset issued due to certain reset events.
1988 //!
1989 //! \param ui32Behavior specifies the types of resets for each of the
1990 //! configurable reset events.
1991 //!
1992 //! This function sets the types of reset issued when a configurable reset
1993 //! event occurs. The reset events that are configurable are: Watchdog 0 or 1,
1994 //! a brown out and the external RSTn pin. The valid actions are either a
1995 //! system reset or a full POR sequence. See the data sheet for more
1996 //! information on the differences between a full POR and a system reset. All
1997 //! reset behaviors can be configured with a single call using the logical OR
1998 //! of the values defined below. Any reset option that is not specifically set
1999 //! remains configured for its default behavior. Either POR or system reset
2000 //! can be selected for each reset cause.
2001 //!
2002 //! Valid values are logical combinations of the following:
2003 //!
2004 //! - \b SYSCTL_ONRST_WDOG0_POR configures a Watchdog 0 reset to perform a full
2005 //! POR.
2006 //! - \b SYSCTL_ONRST_WDOG0_SYS configures a Watchdog 0 reset to perform a
2007 //! system reset.
2008 //! - \b SYSCTL_ONRST_WDOG1_POR configures a Watchdog 1 reset to perform a full
2009 //! POR.
2010 //! - \b SYSCTL_ONRST_WDOG1_SYS configures a Watchdog 1 reset to perform a
2011 //! system reset.
2012 //! - \b SYSCTL_ONRST_BOR_POR configures a brown-out reset to perform a full
2013 //! POR.
2014 //! - \b SYSCTL_ONRST_BOR_SYS configures a brown-out reset to perform a system
2015 //! reset.
2016 //! - \b SYSCTL_ONRST_EXT_POR configures an external pin reset to perform a
2017 //! full POR.
2018 //! - \b SYSCTL_ONRST_EXT_SYS configures an external pin reset to perform a
2019 //! system reset.
2020 //!
2021 //! \b Example: Set Watchdog 0 reset to trigger a POR and a brown-out reset
2022 //! to trigger a system reset while leaving the remaining resets with their
2023 //! default behaviors.
2024 //!
2025 //! \verbatim
2026 //! SysCtlResetBehaviorSet(SYSCTL_ONRST_WDOG0_POR | SYSCTL_ONRST_BOR_SYS);
2027 //! \endverbatim
2028 //!
2029 //! \note This function cannot be used with TM4C123 devices.
2030 //!
2031 //! \return None.
2032 //
2033 //*****************************************************************************
2034 void
SysCtlResetBehaviorSet(uint32_t ui32Behavior)2035 SysCtlResetBehaviorSet(uint32_t ui32Behavior)
2036 {
2037 HWREG(SYSCTL_RESBEHAVCTL) = ui32Behavior;
2038 }
2039
2040 //*****************************************************************************
2041 //
2042 //! Returns the current types of reset issued due to reset events.
2043 //!
2044 //! This function returns the types of resets issued when a configurable reset
2045 //! occurs. The value returned is a logical OR combination of the valid values
2046 //! that are described in the documentation for the \e ui32Behavior parameter
2047 //! of the SysCtlResetBehaviorSet() function.
2048 //!
2049 //! \note This function should only be used with Flurry-class devices.
2050 //!
2051 //! \return The reset behaviors for all configurable resets.
2052 //
2053 //*****************************************************************************
2054 uint32_t
SysCtlResetBehaviorGet(void)2055 SysCtlResetBehaviorGet(void)
2056 {
2057 return(HWREG(SYSCTL_RESBEHAVCTL));
2058 }
2059
2060 //*****************************************************************************
2061 //
2062 //! Configures the system clock.
2063 //!
2064 //! \param ui32Config is the required configuration of the device clocking.
2065 //! \param ui32SysClock is the requested processor frequency.
2066 //!
2067 //! This function configures the main system clocking for the device. The
2068 //! input frequency, oscillator source, whether or not to enable the PLL, and
2069 //! the system clock divider are all configured with this function. This
2070 //! function configures the system frequency to the closest available divisor
2071 //! of one of the fixed PLL VCO settings provided in the \e ui32Config
2072 //! parameter. The caller sets the \e ui32SysClock parameter to request the
2073 //! system clock frequency, and this function then attempts to match this using
2074 //! the values provided in the \e ui32Config parameter. If this function
2075 //! cannot exactly match the requested frequency, it picks the closest
2076 //! frequency that is lower than the requested frequency. The \e ui32Config
2077 //! parameter provides the remaining configuration options using a set of
2078 //! defines that are a logical OR of several different values, many of which
2079 //! are grouped into sets where only one of the set can be chosen. This
2080 //! function returns the current system frequency which may not match the
2081 //! requested frequency.
2082 //!
2083 //! If the application is using an external crystal then the frequency is
2084 //! set by using one of the following values:
2085 //! \b SYSCTL_XTAL_5MHZ, \b SYSCTL_XTAL_6MHZ, \b SYSCTL_XTAL_8MHZ,
2086 //! \b SYSCTL_XTAL_10MHZ, \b SYSCTL_XTAL_12MHZ, \b SYSCTL_XTAL_16MHZ,
2087 //! \b SYSCTL_XTAL_18MHZ, \b SYSCTL_XTAL_20MHZ, \b SYSCTL_XTAL_24MHZ, or
2088 //! \b SYSCTL_XTAL_25MHz.
2089 //!
2090 //! The oscillator source is chosen with one of the following values:
2091 //!
2092 //! - \b SYSCTL_OSC_MAIN to use an external crystal or oscillator.
2093 //! - \b SYSCTL_OSC_INT to use the 16-MHz precision internal oscillator.
2094 //! - \b SYSCTL_OSC_INT30 to use the internal low frequency oscillator.
2095 //! - \b SYSCTL_OSC_EXT32 to use the hibernate modules 32.786-kHz oscillator.
2096 //! This option is only available on devices that include the hibernation
2097 //! module.
2098 //!
2099 //! The system clock source is chosen with one of the following values:
2100 //!
2101 //! - \b SYSCTL_USE_PLL is used to select the PLL output as the system clock.
2102 //! - \b SYSCTL_USE_OSC is used to choose one of the oscillators as the
2103 //! system clock.
2104 //!
2105 //! The PLL VCO frequency is chosen with one of the the following values:
2106 //!
2107 //! - \b SYSCTL_CFG_VCO_480 to set the PLL VCO output to 480-MHz
2108 //! - \b SYSCTL_CFG_VCO_320 to set the PLL VCO output to 320-MHz
2109 //!
2110 //! Example: Configure the system clocking to be 40 MHz with a 320-MHz PLL
2111 //! setting using the 16-MHz internal oscillator.
2112 //!
2113 //! \verbatim
2114 //! SysCtlClockFreqSet(SYSCTL_OSC_INT | SYSCTL_USE_PLL | SYSCTL_CFG_VCO_320,
2115 //! 40000000);
2116 //! \endverbatim
2117 //!
2118 //! \note This function cannot be used with TM4C123 devices. For TM4C123
2119 //! devices use the SysCtlClockSet() function.
2120 //!
2121 //! \return The actual configured system clock frequency in Hz or zero if the
2122 //! value could not be changed due to a parameter error or PLL lock failure.
2123 //
2124 //*****************************************************************************
2125 uint32_t
SysCtlClockFreqSet(uint32_t ui32Config,uint32_t ui32SysClock)2126 SysCtlClockFreqSet(uint32_t ui32Config, uint32_t ui32SysClock)
2127 {
2128 int32_t i32Timeout, i32VCOIdx, i32XtalIdx;
2129 uint32_t ui32MOSCCTL;
2130 uint32_t ui32Delay;
2131 uint32_t ui32SysDiv, ui32Osc, ui32OscSelect, ui32RSClkConfig;
2132
2133 //
2134 // TM4C123 devices should not use this function.
2135 //
2136 if(CLASS_IS_TM4C123)
2137 {
2138 return(0);
2139 }
2140
2141 //
2142 // Get the index of the crystal from the ui32Config parameter.
2143 //
2144 i32XtalIdx = SysCtlXtalCfgToIndex(ui32Config);
2145
2146 //
2147 // Determine which non-PLL source was selected.
2148 //
2149 if((ui32Config & 0x38) == SYSCTL_OSC_INT)
2150 {
2151 //
2152 // Use the nominal frequency for the PIOSC oscillator and set the
2153 // crystal select.
2154 //
2155 ui32Osc = 16000000;
2156 ui32OscSelect = SYSCTL_RSCLKCFG_OSCSRC_PIOSC;
2157 ui32OscSelect |= SYSCTL_RSCLKCFG_PLLSRC_PIOSC;
2158
2159 //
2160 // Force the crystal index to the value for 16-MHz.
2161 //
2162 i32XtalIdx = SysCtlXtalCfgToIndex(SYSCTL_XTAL_16MHZ);
2163 }
2164 else if((ui32Config & 0x38) == SYSCTL_OSC_INT30)
2165 {
2166 //
2167 // Use the nominal frequency for the low frequency oscillator.
2168 //
2169 ui32Osc = 30000;
2170 ui32OscSelect = SYSCTL_RSCLKCFG_OSCSRC_LFIOSC;
2171 }
2172 else if((ui32Config & 0x38) == (SYSCTL_OSC_EXT32 & 0x38))
2173 {
2174 //
2175 // Use the RTC frequency.
2176 //
2177 ui32Osc = 32768;
2178 ui32OscSelect = SYSCTL_RSCLKCFG_OSCSRC_RTC;
2179 }
2180 else if((ui32Config & 0x38) == SYSCTL_OSC_MAIN)
2181 {
2182 //
2183 // Bounds check the source frequency for the main oscillator. The is
2184 // because the PLL tables in the g_pppui32XTALtoVCO structure range
2185 // from 5MHz to 25MHz.
2186 //
2187 if((i32XtalIdx > (SysCtlXtalCfgToIndex(SYSCTL_XTAL_25MHZ))) ||
2188 (i32XtalIdx < (SysCtlXtalCfgToIndex(SYSCTL_XTAL_5MHZ))))
2189 {
2190 return(0);
2191 }
2192
2193 ui32Osc = g_pui32Xtals[i32XtalIdx];
2194
2195 //
2196 // Set the PLL source select to MOSC.
2197 //
2198 ui32OscSelect = SYSCTL_RSCLKCFG_OSCSRC_MOSC;
2199 ui32OscSelect |= SYSCTL_RSCLKCFG_PLLSRC_MOSC;
2200
2201 //
2202 // Clear MOSC power down, high oscillator range setting, and no crystal
2203 // present setting.
2204 //
2205 ui32MOSCCTL = HWREG(SYSCTL_MOSCCTL) &
2206 ~(SYSCTL_MOSCCTL_OSCRNG | SYSCTL_MOSCCTL_PWRDN |
2207 SYSCTL_MOSCCTL_NOXTAL);
2208
2209 //
2210 // Increase the drive strength for MOSC of 10 MHz and above.
2211 //
2212 if(i32XtalIdx >= (SysCtlXtalCfgToIndex(SYSCTL_XTAL_10MHZ) -
2213 (SysCtlXtalCfgToIndex(SYSCTL_XTAL_5MHZ))))
2214 {
2215 ui32MOSCCTL |= SYSCTL_MOSCCTL_OSCRNG;
2216 }
2217
2218 HWREG(SYSCTL_MOSCCTL) = ui32MOSCCTL;
2219
2220 //
2221 // Timeout using the legacy delay value.
2222 //
2223 ui32Delay = 524288;
2224
2225 while((HWREG(SYSCTL_RIS) & SYSCTL_RIS_MOSCPUPRIS) == 0)
2226 {
2227 ui32Delay--;
2228
2229 if(ui32Delay == 0)
2230 {
2231 break;
2232 }
2233 }
2234
2235 //
2236 // If the main oscillator failed to start up then do not switch to
2237 // it and return.
2238 //
2239 if(ui32Delay == 0)
2240 {
2241 return(0);
2242 }
2243
2244
2245 }
2246 else
2247 {
2248 //
2249 // This was an invalid request because no oscillator source was
2250 // indicated.
2251 //
2252 ui32Osc = 0;
2253 ui32OscSelect = SYSCTL_RSCLKCFG_OSCSRC_PIOSC;
2254 }
2255
2256 //
2257 // Check if the running with the PLL enabled was requested.
2258 //
2259 if((ui32Config & SYSCTL_USE_OSC) == SYSCTL_USE_PLL)
2260 {
2261 //
2262 // ui32Config must be SYSCTL_OSC_MAIN or SYSCTL_OSC_INT.
2263 //
2264 if(((ui32Config & 0x38) != SYSCTL_OSC_MAIN) &&
2265 ((ui32Config & 0x38) != SYSCTL_OSC_INT))
2266 {
2267 return(0);
2268 }
2269
2270 //
2271 // Get the VCO index out of the ui32Config parameter.
2272 //
2273 i32VCOIdx = (ui32Config >> 24) & 7;
2274
2275 //
2276 // Check that the VCO index is not out of bounds.
2277 //
2278 ASSERT(i32VCOIdx < MAX_VCO_ENTRIES);
2279
2280 //
2281 // Set the memory timings for the maximum external frequency since
2282 // this could be a switch to PIOSC or possibly to MOSC which can be
2283 // up to 25MHz.
2284 //
2285 HWREG(SYSCTL_MEMTIM0) = _SysCtlMemTimingGet(25000000);
2286
2287 //
2288 // Clear the old PLL divider and source in case it was set.
2289 //
2290 ui32RSClkConfig = HWREG(SYSCTL_RSCLKCFG) &
2291 ~(SYSCTL_RSCLKCFG_PSYSDIV_M |
2292 SYSCTL_RSCLKCFG_OSCSRC_M |
2293 SYSCTL_RSCLKCFG_PLLSRC_M | SYSCTL_RSCLKCFG_USEPLL);
2294
2295 //
2296 // Update the memory timings to match running from PIOSC.
2297 //
2298 ui32RSClkConfig |= SYSCTL_RSCLKCFG_MEMTIMU;
2299
2300 //
2301 // Update clock configuration to switch back to PIOSC.
2302 //
2303 HWREG(SYSCTL_RSCLKCFG) = ui32RSClkConfig;
2304
2305 //
2306 // The table starts at 5 MHz so modify the index to match this.
2307 //
2308 i32XtalIdx -= SysCtlXtalCfgToIndex(SYSCTL_XTAL_5MHZ);
2309
2310 //
2311 // Calculate the System divider such that we get a frequency that is
2312 // the closest to the requested frequency without going over.
2313 //
2314 ui32SysDiv = (g_pui32VCOFrequencies[i32VCOIdx] + ui32SysClock - 1) /
2315 ui32SysClock;
2316
2317 //
2318 // Set the oscillator source.
2319 //
2320 HWREG(SYSCTL_RSCLKCFG) |= ui32OscSelect;
2321
2322 //
2323 // Set the M, N and Q values provided from the table and preserve
2324 // the power state of the main PLL.
2325 //
2326 HWREG(SYSCTL_PLLFREQ1) =
2327 g_pppui32XTALtoVCO[i32VCOIdx][i32XtalIdx][1];
2328 HWREG(SYSCTL_PLLFREQ1) |= PLL_Q_TO_REG(ui32SysDiv);
2329 HWREG(SYSCTL_PLLFREQ0) =
2330 (g_pppui32XTALtoVCO[i32VCOIdx][i32XtalIdx][0] |
2331 (HWREG(SYSCTL_PLLFREQ0) & SYSCTL_PLLFREQ0_PLLPWR));
2332
2333 //
2334 // Calculate the actual system clock as PSYSDIV is always div-by 2.
2335 //
2336 ui32SysClock = _SysCtlFrequencyGet(ui32Osc) / 2;
2337
2338 //
2339 // Set the Flash and EEPROM timing values.
2340 //
2341 HWREG(SYSCTL_MEMTIM0) = _SysCtlMemTimingGet(ui32SysClock);
2342
2343 //
2344 // Check if the PLL is already powered up.
2345 //
2346 if(HWREG(SYSCTL_PLLFREQ0) & SYSCTL_PLLFREQ0_PLLPWR)
2347 {
2348 //
2349 // Trigger the PLL to lock to the new frequency.
2350 //
2351 HWREG(SYSCTL_RSCLKCFG) |= SYSCTL_RSCLKCFG_NEWFREQ;
2352 }
2353 else
2354 {
2355 //
2356 // Power up the PLL.
2357 //
2358 HWREG(SYSCTL_PLLFREQ0) |= SYSCTL_PLLFREQ0_PLLPWR;
2359 }
2360
2361 //
2362 // Wait until the PLL has locked.
2363 //
2364 for(i32Timeout = 32768; i32Timeout > 0; i32Timeout--)
2365 {
2366 if((HWREG(SYSCTL_PLLSTAT) & SYSCTL_PLLSTAT_LOCK))
2367 {
2368 break;
2369 }
2370 }
2371
2372 //
2373 // If the loop above did not timeout then switch over to the PLL
2374 //
2375 if(i32Timeout)
2376 {
2377 ui32RSClkConfig = HWREG(SYSCTL_RSCLKCFG);
2378 ui32RSClkConfig |= (1 << SYSCTL_RSCLKCFG_PSYSDIV_S) |
2379 ui32OscSelect | SYSCTL_RSCLKCFG_USEPLL;
2380 ui32RSClkConfig |= SYSCTL_RSCLKCFG_MEMTIMU;
2381
2382 //
2383 // Set the new clock configuration.
2384 //
2385 HWREG(SYSCTL_RSCLKCFG) = ui32RSClkConfig;
2386 }
2387 else
2388 {
2389 ui32SysClock = 0;
2390 }
2391 }
2392 else
2393 {
2394 //
2395 // Set the Flash and EEPROM timing values for PIOSC.
2396 //
2397 HWREG(SYSCTL_MEMTIM0) = _SysCtlMemTimingGet(16000000);
2398
2399 //
2400 // Make sure that the PLL is powered down since it is not being used.
2401 //
2402 HWREG(SYSCTL_PLLFREQ0) &= ~SYSCTL_PLLFREQ0_PLLPWR;
2403
2404 //
2405 // Clear the old PLL divider and source in case it was set.
2406 //
2407 ui32RSClkConfig = HWREG(SYSCTL_RSCLKCFG);
2408 ui32RSClkConfig &= ~(SYSCTL_RSCLKCFG_OSYSDIV_M |
2409 SYSCTL_RSCLKCFG_OSCSRC_M |
2410 SYSCTL_RSCLKCFG_USEPLL);
2411
2412 //
2413 // Update the memory timings.
2414 //
2415 ui32RSClkConfig |= SYSCTL_RSCLKCFG_MEMTIMU;
2416
2417 //
2418 // Set the new clock configuration.
2419 //
2420 HWREG(SYSCTL_RSCLKCFG) = ui32RSClkConfig;
2421
2422 //
2423 // If zero given as the system clock then default to divide by 1.
2424 //
2425 if(ui32SysClock == 0)
2426 {
2427 ui32SysDiv = 0;
2428 }
2429 else
2430 {
2431 //
2432 // Calculate the System divider based on the requested
2433 // frequency.
2434 //
2435 ui32SysDiv = ui32Osc / ui32SysClock;
2436
2437 //
2438 // If the system divisor is not already zero, subtract one to
2439 // set the value in the register which requires the value to
2440 // be n-1.
2441 //
2442 if(ui32SysDiv != 0)
2443 {
2444 ui32SysDiv -= 1;
2445 }
2446
2447 //
2448 // Calculate the system clock.
2449 //
2450 ui32SysClock = ui32Osc / (ui32SysDiv + 1);
2451 }
2452
2453 //
2454 // Set the memory timing values for the new system clock.
2455 //
2456 HWREG(SYSCTL_MEMTIM0) = _SysCtlMemTimingGet(ui32SysClock);
2457
2458 //
2459 // Set the new system clock values.
2460 //
2461 ui32RSClkConfig = HWREG(SYSCTL_RSCLKCFG);
2462 ui32RSClkConfig |= (ui32SysDiv << SYSCTL_RSCLKCFG_OSYSDIV_S) |
2463 ui32OscSelect;
2464
2465 //
2466 // Update the memory timings.
2467 //
2468 ui32RSClkConfig |= SYSCTL_RSCLKCFG_MEMTIMU;
2469
2470 //
2471 // Set the new clock configuration.
2472 //
2473 HWREG(SYSCTL_RSCLKCFG) = ui32RSClkConfig;
2474 }
2475
2476 //
2477 // Finally change the OSCSRC back to PIOSC
2478 //
2479 HWREG(SYSCTL_RSCLKCFG) &= ~(SYSCTL_RSCLKCFG_OSCSRC_M);
2480
2481 return(ui32SysClock);
2482 }
2483
2484 //*****************************************************************************
2485 //
2486 //! Sets the clocking of the device.
2487 //!
2488 //! \param ui32Config is the required configuration of the device clocking.
2489 //!
2490 //! This function configures the clocking of the device. The input crystal
2491 //! frequency, oscillator to be used, use of the PLL, and the system clock
2492 //! divider are all configured with this function.
2493 //!
2494 //! The \e ui32Config parameter is the logical OR of several different values,
2495 //! many of which are grouped into sets where only one can be chosen.
2496 //!
2497 //! The system clock divider is chosen with one of the following values:
2498 //! \b SYSCTL_SYSDIV_1, \b SYSCTL_SYSDIV_2, \b SYSCTL_SYSDIV_3, ...
2499 //! \b SYSCTL_SYSDIV_64.
2500 //!
2501 //! The use of the PLL is chosen with either \b SYSCTL_USE_PLL or
2502 //! \b SYSCTL_USE_OSC.
2503 //!
2504 //! The external crystal frequency is chosen with one of the following values:
2505 //! \b SYSCTL_XTAL_4MHZ, \b SYSCTL_XTAL_4_09MHZ, \b SYSCTL_XTAL_4_91MHZ,
2506 //! \b SYSCTL_XTAL_5MHZ, \b SYSCTL_XTAL_5_12MHZ, \b SYSCTL_XTAL_6MHZ,
2507 //! \b SYSCTL_XTAL_6_14MHZ, \b SYSCTL_XTAL_7_37MHZ, \b SYSCTL_XTAL_8MHZ,
2508 //! \b SYSCTL_XTAL_8_19MHZ, \b SYSCTL_XTAL_10MHZ, \b SYSCTL_XTAL_12MHZ,
2509 //! \b SYSCTL_XTAL_12_2MHZ, \b SYSCTL_XTAL_13_5MHZ, \b SYSCTL_XTAL_14_3MHZ,
2510 //! \b SYSCTL_XTAL_16MHZ, \b SYSCTL_XTAL_16_3MHZ, \b SYSCTL_XTAL_18MHZ,
2511 //! \b SYSCTL_XTAL_20MHZ, \b SYSCTL_XTAL_24MHZ, or \b SYSCTL_XTAL_25MHz.
2512 //! Values below \b SYSCTL_XTAL_5MHZ are not valid when the PLL is in
2513 //! operation.
2514 //!
2515 //! The oscillator source is chosen with one of the following values:
2516 //! \b SYSCTL_OSC_MAIN, \b SYSCTL_OSC_INT, \b SYSCTL_OSC_INT4,
2517 //! \b SYSCTL_OSC_INT30, or \b SYSCTL_OSC_EXT32. \b SYSCTL_OSC_EXT32 is only
2518 //! available on devices with the hibernate module, and then only when the
2519 //! hibernate module has been enabled.
2520 //!
2521 //! The internal and main oscillators are disabled with the
2522 //! \b SYSCTL_INT_OSC_DIS and \b SYSCTL_MAIN_OSC_DIS flags, respectively.
2523 //! The external oscillator must be enabled in order to use an external clock
2524 //! source. Note that attempts to disable the oscillator used to clock the
2525 //! device is prevented by the hardware.
2526 //!
2527 //! To clock the system from an external source (such as an external crystal
2528 //! oscillator), use \b SYSCTL_USE_OSC \b | \b SYSCTL_OSC_MAIN. To clock the
2529 //! system from the main oscillator, use \b SYSCTL_USE_OSC \b |
2530 //! \b SYSCTL_OSC_MAIN. To clock the system from the PLL, use
2531 //! \b SYSCTL_USE_PLL \b | \b SYSCTL_OSC_MAIN, and select the appropriate
2532 //! crystal with one of the \b SYSCTL_XTAL_xxx values.
2533 //!
2534 //! \note This function should only be called on TM4C123 devices. For
2535 //! all other devices use the SysCtlClockFreqSet() function.
2536 //!
2537 //! \note If selecting the PLL as the system clock source (that is, via
2538 //! \b SYSCTL_USE_PLL), this function polls the PLL lock interrupt to
2539 //! determine when the PLL has locked. If an interrupt handler for the
2540 //! system control interrupt is in place, and it responds to and clears the
2541 //! PLL lock interrupt, this function delays until its timeout has occurred
2542 //! instead of completing as soon as PLL lock is achieved.
2543 //!
2544 //! \return None.
2545 //
2546 //*****************************************************************************
2547 void
SysCtlClockSet(uint32_t ui32Config)2548 SysCtlClockSet(uint32_t ui32Config)
2549 {
2550 uint32_t ui32Delay, ui32RCC, ui32RCC2;
2551
2552 //
2553 // Get the current value of the RCC and RCC2 registers.
2554 //
2555 ui32RCC = HWREG(SYSCTL_RCC);
2556 ui32RCC2 = HWREG(SYSCTL_RCC2);
2557
2558 //
2559 // Bypass the PLL and system clock dividers for now.
2560 //
2561 ui32RCC |= SYSCTL_RCC_BYPASS;
2562 ui32RCC &= ~(SYSCTL_RCC_USESYSDIV);
2563 ui32RCC2 |= SYSCTL_RCC2_BYPASS2;
2564
2565 //
2566 // Write the new RCC value.
2567 //
2568 HWREG(SYSCTL_RCC) = ui32RCC;
2569 HWREG(SYSCTL_RCC2) = ui32RCC2;
2570
2571 //
2572 // See if the oscillator needs to be enabled.
2573 //
2574 if((ui32RCC & SYSCTL_RCC_MOSCDIS) && !(ui32Config & SYSCTL_MAIN_OSC_DIS))
2575 {
2576 //
2577 // Make sure that the required oscillators are enabled. For now, the
2578 // previously enabled oscillators must be enabled along with the newly
2579 // requested oscillators.
2580 //
2581 ui32RCC &= (~SYSCTL_RCC_MOSCDIS | (ui32Config & SYSCTL_MAIN_OSC_DIS));
2582
2583 //
2584 // Clear the MOSC power up raw interrupt status to be sure it is not
2585 // set when waiting below.
2586 //
2587 HWREG(SYSCTL_MISC) = SYSCTL_MISC_MOSCPUPMIS;
2588
2589 //
2590 // Write the new RCC value.
2591 //
2592 HWREG(SYSCTL_RCC) = ui32RCC;
2593
2594 //
2595 // Timeout using the legacy delay value.
2596 //
2597 ui32Delay = 524288;
2598
2599 while((HWREG(SYSCTL_RIS) & SYSCTL_RIS_MOSCPUPRIS) == 0)
2600 {
2601 ui32Delay--;
2602
2603 if(ui32Delay == 0)
2604 {
2605 break;
2606 }
2607 }
2608
2609 //
2610 // If the main oscillator failed to start up then do not switch to
2611 // it and return.
2612 //
2613 if(ui32Delay == 0)
2614 {
2615 return;
2616 }
2617
2618 }
2619
2620 //
2621 // Set the new crystal value and oscillator source. Because the OSCSRC2
2622 // field in RCC2 overlaps the XTAL field in RCC, the OSCSRC field has a
2623 // special encoding within ui32Config to avoid the overlap.
2624 //
2625 ui32RCC &= ~(SYSCTL_RCC_XTAL_M | SYSCTL_RCC_OSCSRC_M);
2626 ui32RCC |= ui32Config & (SYSCTL_RCC_XTAL_M | SYSCTL_RCC_OSCSRC_M);
2627 ui32RCC2 &= ~(SYSCTL_RCC2_USERCC2 | SYSCTL_RCC2_OSCSRC2_M);
2628 ui32RCC2 |= ui32Config & (SYSCTL_RCC2_USERCC2 | SYSCTL_RCC_OSCSRC_M);
2629 ui32RCC2 |= (ui32Config & 0x00000008) << 3;
2630
2631 //
2632 // Write the new RCC value.
2633 //
2634 HWREG(SYSCTL_RCC) = ui32RCC;
2635 HWREG(SYSCTL_RCC2) = ui32RCC2;
2636
2637 //
2638 // Set the PLL configuration.
2639 //
2640 ui32RCC &= ~SYSCTL_RCC_PWRDN;
2641 ui32RCC |= ui32Config & SYSCTL_RCC_PWRDN;
2642 ui32RCC2 &= ~SYSCTL_RCC2_PWRDN2;
2643 ui32RCC2 |= ui32Config & SYSCTL_RCC2_PWRDN2;
2644
2645 //
2646 // Clear the PLL lock interrupt.
2647 //
2648 HWREG(SYSCTL_MISC) = SYSCTL_MISC_PLLLMIS;
2649
2650 //
2651 // Write the new RCC value.
2652 //
2653 if(ui32RCC2 & SYSCTL_RCC2_USERCC2)
2654 {
2655 HWREG(SYSCTL_RCC2) = ui32RCC2;
2656 HWREG(SYSCTL_RCC) = ui32RCC;
2657 }
2658 else
2659 {
2660 HWREG(SYSCTL_RCC) = ui32RCC;
2661 HWREG(SYSCTL_RCC2) = ui32RCC2;
2662 }
2663
2664 //
2665 // Set the requested system divider and disable the appropriate
2666 // oscillators. This value is not written immediately.
2667 //
2668 ui32RCC &= ~(SYSCTL_RCC_SYSDIV_M | SYSCTL_RCC_USESYSDIV |
2669 SYSCTL_RCC_MOSCDIS);
2670 ui32RCC |= ui32Config & (SYSCTL_RCC_SYSDIV_M | SYSCTL_RCC_USESYSDIV |
2671 SYSCTL_RCC_MOSCDIS);
2672 ui32RCC2 &= ~(SYSCTL_RCC2_SYSDIV2_M);
2673 ui32RCC2 |= ui32Config & SYSCTL_RCC2_SYSDIV2_M;
2674 if(ui32Config & SYSCTL_RCC2_DIV400)
2675 {
2676 ui32RCC |= SYSCTL_RCC_USESYSDIV;
2677 ui32RCC2 &= ~(SYSCTL_RCC_USESYSDIV);
2678 ui32RCC2 |= ui32Config & (SYSCTL_RCC2_DIV400 | SYSCTL_RCC2_SYSDIV2LSB);
2679 }
2680 else
2681 {
2682 ui32RCC2 &= ~(SYSCTL_RCC2_DIV400);
2683 }
2684
2685 //
2686 // See if the PLL output is being used to clock the system.
2687 //
2688 if(!(ui32Config & SYSCTL_RCC_BYPASS))
2689 {
2690 //
2691 // Wait until the PLL has locked.
2692 //
2693 for(ui32Delay = 32768; ui32Delay > 0; ui32Delay--)
2694 {
2695 if((HWREG(SYSCTL_PLLSTAT) & SYSCTL_PLLSTAT_LOCK))
2696 {
2697 break;
2698 }
2699 }
2700
2701 //
2702 // Enable use of the PLL.
2703 //
2704 ui32RCC &= ~(SYSCTL_RCC_BYPASS);
2705 ui32RCC2 &= ~(SYSCTL_RCC2_BYPASS2);
2706 }
2707
2708 //
2709 // Write the final RCC value.
2710 //
2711 HWREG(SYSCTL_RCC) = ui32RCC;
2712 HWREG(SYSCTL_RCC2) = ui32RCC2;
2713
2714 //
2715 // Delay for a little bit so that the system divider takes effect.
2716 //
2717 SysCtlDelay(16);
2718 }
2719
2720 //*****************************************************************************
2721 //
2722 //! Gets the processor clock rate.
2723 //!
2724 //! This function determines the clock rate of the processor clock, which is
2725 //! also the clock rate of the peripheral modules (with the exception of
2726 //! PWM, which has its own clock divider; other peripherals may have different
2727 //! clocking, see the device data sheet for details).
2728 //!
2729 //! \note This cannot return accurate results if SysCtlClockSet() has not
2730 //! been called to configure the clocking of the device, or if the device is
2731 //! directly clocked from a crystal (or a clock source) that is not one of the
2732 //! supported crystal frequencies. In the latter case, this function should be
2733 //! modified to directly return the correct system clock rate.
2734 //!
2735 //! \note This function can only be called on TM4C123 devices. For TM4C129
2736 //! devices, the return value from SysCtlClockFreqSet() indicates the system
2737 //! clock frequency.
2738 //!
2739 //! \return The processor clock rate for TM4C123 devices only.
2740 //
2741 //*****************************************************************************
2742 uint32_t
SysCtlClockGet(void)2743 SysCtlClockGet(void)
2744 {
2745 uint32_t ui32RCC, ui32RCC2, ui32PLL, ui32Clk, ui32Max;
2746 uint32_t ui32PLL1;
2747
2748 //
2749 // This function is only valid on TM4C123 devices.
2750 //
2751 ASSERT(CLASS_IS_TM4C123);
2752
2753 //
2754 // Read RCC and RCC2.
2755 //
2756 ui32RCC = HWREG(SYSCTL_RCC);
2757 ui32RCC2 = HWREG(SYSCTL_RCC2);
2758
2759 //
2760 // Get the base clock rate.
2761 //
2762 switch((ui32RCC2 & SYSCTL_RCC2_USERCC2) ?
2763 (ui32RCC2 & SYSCTL_RCC2_OSCSRC2_M) :
2764 (ui32RCC & SYSCTL_RCC_OSCSRC_M))
2765 {
2766 //
2767 // The main oscillator is the clock source. Determine its rate from
2768 // the crystal setting field.
2769 //
2770 case SYSCTL_RCC_OSCSRC_MAIN:
2771 {
2772 ui32Clk = g_pui32Xtals[(ui32RCC & SYSCTL_RCC_XTAL_M) >>
2773 SYSCTL_RCC_XTAL_S];
2774 break;
2775 }
2776
2777 //
2778 // The internal oscillator is the source clock.
2779 //
2780 case SYSCTL_RCC_OSCSRC_INT:
2781 {
2782 //
2783 // The internal oscillator on all devices is 16 MHz.
2784 //
2785 ui32Clk = 16000000;
2786 break;
2787 }
2788
2789 //
2790 // The internal oscillator divided by four is the source clock.
2791 //
2792 case SYSCTL_RCC_OSCSRC_INT4:
2793 {
2794 //
2795 // The internal oscillator on all devices is 16 MHz.
2796 //
2797 ui32Clk = 16000000 / 4;
2798 break;
2799 }
2800
2801 //
2802 // The internal 30-KHz oscillator is the source clock.
2803 //
2804 case SYSCTL_RCC_OSCSRC_30:
2805 {
2806 //
2807 // The internal 30-KHz oscillator has an accuracy of +/- 30%.
2808 //
2809 ui32Clk = 30000;
2810 break;
2811 }
2812
2813 //
2814 // The 32.768-KHz clock from the hibernate module is the source clock.
2815 //
2816 case SYSCTL_RCC2_OSCSRC2_32:
2817 {
2818 ui32Clk = 32768;
2819 break;
2820 }
2821
2822 //
2823 // An unknown setting, so return a zero clock (that is, an unknown
2824 // clock rate).
2825 //
2826 default:
2827 {
2828 return(0);
2829 }
2830 }
2831
2832 //
2833 // Default the maximum frequency to the maximum 32-bit unsigned value.
2834 //
2835 ui32Max = 0xffffffff;
2836
2837 //
2838 // See if the PLL is being used.
2839 //
2840 if(((ui32RCC2 & SYSCTL_RCC2_USERCC2) &&
2841 !(ui32RCC2 & SYSCTL_RCC2_BYPASS2)) ||
2842 (!(ui32RCC2 & SYSCTL_RCC2_USERCC2) && !(ui32RCC & SYSCTL_RCC_BYPASS)))
2843 {
2844 //
2845 // Read the two PLL frequency registers. The formula for a
2846 // TM4C123 device is "(xtal * m) / ((q + 1) * (n + 1))".
2847 //
2848 ui32PLL = HWREG(SYSCTL_PLLFREQ0);
2849 ui32PLL1 = HWREG(SYSCTL_PLLFREQ1);
2850
2851 //
2852 // Divide the input clock by the dividers.
2853 //
2854 ui32Clk /= ((((ui32PLL1 & SYSCTL_PLLFREQ1_Q_M) >>
2855 SYSCTL_PLLFREQ1_Q_S) + 1) *
2856 (((ui32PLL1 & SYSCTL_PLLFREQ1_N_M) >>
2857 SYSCTL_PLLFREQ1_N_S) + 1) * 2);
2858
2859 //
2860 // Multiply the clock by the multiplier, which is split into an
2861 // integer part and a fractional part.
2862 //
2863 ui32Clk = ((ui32Clk * ((ui32PLL & SYSCTL_PLLFREQ0_MINT_M) >>
2864 SYSCTL_PLLFREQ0_MINT_S)) +
2865 ((ui32Clk * ((ui32PLL & SYSCTL_PLLFREQ0_MFRAC_M) >>
2866 SYSCTL_PLLFREQ0_MFRAC_S)) >> 10));
2867
2868 //
2869 // Force the system divider to be enabled. It is always used when
2870 // using the PLL, but in some cases it does not read as being enabled.
2871 //
2872 ui32RCC |= SYSCTL_RCC_USESYSDIV;
2873
2874 //
2875 // Calculate the maximum system frequency.
2876 //
2877 switch(HWREG(SYSCTL_DC1) & SYSCTL_DC1_MINSYSDIV_M)
2878 {
2879 case SYSCTL_DC1_MINSYSDIV_80:
2880 {
2881 ui32Max = 80000000;
2882 break;
2883 }
2884 case SYSCTL_DC1_MINSYSDIV_50:
2885 {
2886 ui32Max = 50000000;
2887 break;
2888 }
2889 case SYSCTL_DC1_MINSYSDIV_40:
2890 {
2891 ui32Max = 40000000;
2892 break;
2893 }
2894 case SYSCTL_DC1_MINSYSDIV_25:
2895 {
2896 ui32Max = 25000000;
2897 break;
2898 }
2899 case SYSCTL_DC1_MINSYSDIV_20:
2900 {
2901 ui32Max = 20000000;
2902 break;
2903 }
2904 default:
2905 {
2906 break;
2907 }
2908 }
2909 }
2910
2911 //
2912 // See if the system divider is being used.
2913 //
2914 if(ui32RCC & SYSCTL_RCC_USESYSDIV)
2915 {
2916 //
2917 // Adjust the clock rate by the system clock divider.
2918 //
2919 if(ui32RCC2 & SYSCTL_RCC2_USERCC2)
2920 {
2921 if((ui32RCC2 & SYSCTL_RCC2_DIV400) &&
2922 (((ui32RCC2 & SYSCTL_RCC2_USERCC2) &&
2923 !(ui32RCC2 & SYSCTL_RCC2_BYPASS2)) ||
2924 (!(ui32RCC2 & SYSCTL_RCC2_USERCC2) &&
2925 !(ui32RCC & SYSCTL_RCC_BYPASS))))
2926
2927 {
2928 ui32Clk = ((ui32Clk * 2) / (((ui32RCC2 &
2929 (SYSCTL_RCC2_SYSDIV2_M |
2930 SYSCTL_RCC2_SYSDIV2LSB)) >>
2931 (SYSCTL_RCC2_SYSDIV2_S - 1)) +
2932 1));
2933 }
2934 else
2935 {
2936 ui32Clk /= (((ui32RCC2 & SYSCTL_RCC2_SYSDIV2_M) >>
2937 SYSCTL_RCC2_SYSDIV2_S) + 1);
2938 }
2939 }
2940 else
2941 {
2942 ui32Clk /= (((ui32RCC & SYSCTL_RCC_SYSDIV_M) >>
2943 SYSCTL_RCC_SYSDIV_S) + 1);
2944 }
2945 }
2946
2947 //
2948 // Limit the maximum clock to the maximum clock frequency.
2949 //
2950 if(ui32Max < ui32Clk)
2951 {
2952 ui32Clk = ui32Max;
2953 }
2954
2955 //
2956 // Return the computed clock rate.
2957 //
2958 return(ui32Clk);
2959 }
2960
2961 //*****************************************************************************
2962 //
2963 //! Sets the clocking of the device while in deep-sleep mode.
2964 //!
2965 //! \param ui32Config is the required configuration of the device clocking
2966 //! while in deep-sleep mode.
2967 //!
2968 //! This function configures the clocking of the device while in deep-sleep
2969 //! mode. The oscillator to be used and the system clock divider are
2970 //! configured with this function.
2971 //!
2972 //! The \e ui32Config parameter is the logical OR of the following values:
2973 //!
2974 //! The system clock divider is chosen from one of the following values:
2975 //! \b SYSCTL_DSLP_DIV_1, \b SYSCTL_DSLP_DIV_2, \b SYSCTL_DSLP_DIV_3, ...
2976 //! \b SYSCTL_DSLP_DIV_64.
2977 //!
2978 //! The oscillator source is chosen from one of the following values:
2979 //! \b SYSCTL_DSLP_OSC_MAIN, \b SYSCTL_DSLP_OSC_INT, \b SYSCTL_DSLP_OSC_INT30,
2980 //! or \b SYSCTL_DSLP_OSC_EXT32. \b SYSCTL_OSC_EXT32 is only available on
2981 //! devices with the hibernation module, and then only when the hibernation
2982 //! module has been enabled.
2983 //!
2984 //! The precision internal oscillator can be powered down in deep-sleep mode by
2985 //! specifying \b SYSCTL_DSLP_PIOSC_PD. The precision internal oscillator is
2986 //! not powered down if it is required for operation while in deep-sleep
2987 //! (based on other configuration settings.)
2988 //!
2989 //! \note This function should only be called on TM4C123 devices. For
2990 //! other devices use the SysCtlDeepSleepClockConfigSet() function.
2991 //!
2992 //! \note The availability of deep-sleep clocking configuration varies with the
2993 //! Tiva part in use. Please consult the data sheet for the part you are
2994 //! using to determine whether this support is available.
2995 //!
2996 //! \return None.
2997 //
2998 //*****************************************************************************
2999 void
SysCtlDeepSleepClockSet(uint32_t ui32Config)3000 SysCtlDeepSleepClockSet(uint32_t ui32Config)
3001 {
3002 //
3003 // Set the deep-sleep clock configuration.
3004 //
3005 HWREG(SYSCTL_DSLPCLKCFG) = ui32Config;
3006 }
3007
3008 //*****************************************************************************
3009 //
3010 //! Sets the clock configuration of the device while in deep-sleep mode.
3011 //!
3012 //! \param ui32Div is the clock divider when in deep-sleep mode.
3013 //! \param ui32Config is the configuration of the device clocking while
3014 //! in deep-sleep mode.
3015 //!
3016 //! This function configures the clocking of the device while in deep-sleep
3017 //! mode. The \e ui32Config parameter selects the oscillator and the
3018 //! \e ui32Div parameter sets the clock divider used in deep-sleep mode. The
3019 //! valid values for the \e ui32Div parameter range from 1 to 1024, however not
3020 //! all Tiva microcontrollers support this full range. This function
3021 //! replaces the SysCtlDeepSleepClockSet() function and can be used on
3022 //! Tiva devices that support deep-sleep mode.
3023 //!
3024 //! The oscillator source is chosen from one of the following values:
3025 //! \b SYSCTL_DSLP_OSC_MAIN, \b SYSCTL_DSLP_OSC_INT, \b SYSCTL_DSLP_OSC_INT30,
3026 //! or \b SYSCTL_DSLP_OSC_EXT32. The \b SYSCTL_DSLP_OSC_EXT32 option is only
3027 //! available on devices with the hibernation module, and then only when the
3028 //! hibernation module is enabled.
3029 //!
3030 //! The precision internal oscillator can be powered down in deep-sleep mode by
3031 //! specifying \b SYSCTL_DSLP_PIOSC_PD. The precision internal oscillator is
3032 //! not powered down if it is required for operation while in deep-sleep
3033 //! (based on other configuration settings).
3034 //!
3035 //! The main oscillator can be powered down in deep-sleep mode by
3036 //! specifying \b SYSCTL_DSLP_MOSC_PD. The main oscillator is
3037 //! not powered down if it is required for operation while in deep-sleep
3038 //! (based on other configuration settings).
3039 //!
3040 //! \note The availability of deep-sleep clocking configuration and the
3041 //! configuration values vary with the Tiva device in use. Please consult
3042 //! the data sheet for the device you are using to determine whether the
3043 //! desired configuration options are available and to determine the valid
3044 //! range for the clock divider.
3045 //!
3046 //! \return None.
3047 //
3048 //*****************************************************************************
3049 void
SysCtlDeepSleepClockConfigSet(uint32_t ui32Div,uint32_t ui32Config)3050 SysCtlDeepSleepClockConfigSet(uint32_t ui32Div, uint32_t ui32Config)
3051 {
3052 uint32_t ui32Value;
3053
3054 ASSERT(ui32Div != 0);
3055
3056 if(CLASS_IS_TM4C123)
3057 {
3058 //
3059 // Set the deep-sleep clock configuration.
3060 //
3061 HWREG(SYSCTL_DSLPCLKCFG) = (ui32Config & ~SYSCTL_DSLPCLKCFG_D_M) |
3062 ((ui32Div - 1) << SYSCTL_DSLPCLKCFG_D_S);
3063 }
3064 else
3065 {
3066 //
3067 // Initialize the value with the divider.
3068 //
3069 ui32Value = ui32Div - 1;
3070
3071 //
3072 // Set the clock source selection based on the defines used for
3073 // SysCtlDeepSleepClockSet() function so that there is some backwards
3074 // compatibility.
3075 //
3076 switch(ui32Config & SYSCTL_DSLPCLKCFG_O_M)
3077 {
3078 //
3079 // Choose the main external oscillator.
3080 //
3081 case SYSCTL_DSLP_OSC_MAIN:
3082 {
3083 ui32Value |= SYSCTL_DSCLKCFG_DSOSCSRC_MOSC;
3084
3085 break;
3086 }
3087
3088 //
3089 // Choose the low frequency oscillator.
3090 //
3091 case SYSCTL_DSLP_OSC_INT30:
3092 {
3093 ui32Value |= SYSCTL_DSCLKCFG_DSOSCSRC_LFIOSC;
3094
3095 break;
3096 }
3097
3098 //
3099 // Choose the low frequency oscillator.
3100 //
3101 case SYSCTL_DSLP_OSC_EXT32:
3102 {
3103 ui32Value |= SYSCTL_DSCLKCFG_DSOSCSRC_RTC;
3104
3105 break;
3106 }
3107 //
3108 // The zero value uses the PIOSC as the clock source.
3109 //
3110 case SYSCTL_DSLP_OSC_INT:
3111 default:
3112 {
3113 break;
3114 }
3115 }
3116
3117 //
3118 // Set the PIOSC power down bit.
3119 //
3120 if(ui32Config & SYSCTL_DSLP_PIOSC_PD)
3121 {
3122 ui32Value |= SYSCTL_DSCLKCFG_PIOSCPD;
3123 }
3124
3125 //
3126 // Set the PIOSC power down bit.
3127 //
3128 if(ui32Config & SYSCTL_DSLP_MOSC_PD)
3129 {
3130 ui32Value |= SYSCTL_DSCLKCFG_MOSCDPD;
3131 }
3132
3133 //
3134 // Update the deep-sleep clock configuration.
3135 //
3136 HWREG(SYSCTL_DSCLKCFG) = ui32Value;
3137 }
3138 }
3139
3140 //*****************************************************************************
3141 //
3142 //! Sets the PWM clock configuration.
3143 //!
3144 //! \param ui32Config is the configuration for the PWM clock; it must be one of
3145 //! \b SYSCTL_PWMDIV_1, \b SYSCTL_PWMDIV_2, \b SYSCTL_PWMDIV_4,
3146 //! \b SYSCTL_PWMDIV_8, \b SYSCTL_PWMDIV_16, \b SYSCTL_PWMDIV_32, or
3147 //! \b SYSCTL_PWMDIV_64.
3148 //!
3149 //! This function configures the rate of the clock provided to the PWM module
3150 //! as a ratio of the processor clock. This clock is used by the PWM module to
3151 //! generate PWM signals; its rate forms the basis for all PWM signals.
3152 //!
3153 //! \note This function should only be used with TM4C123 devices. For
3154 //! other TM4C devices, the PWMClockSet() function should be used.
3155 //!
3156 //! \note The clocking of the PWM is dependent on the system clock rate as
3157 //! configured by SysCtlClockSet().
3158 //!
3159 //! \return None.
3160 //
3161 //*****************************************************************************
3162 void
SysCtlPWMClockSet(uint32_t ui32Config)3163 SysCtlPWMClockSet(uint32_t ui32Config)
3164 {
3165 //
3166 // Check the arguments.
3167 //
3168 ASSERT((ui32Config == SYSCTL_PWMDIV_1) ||
3169 (ui32Config == SYSCTL_PWMDIV_2) ||
3170 (ui32Config == SYSCTL_PWMDIV_4) ||
3171 (ui32Config == SYSCTL_PWMDIV_8) ||
3172 (ui32Config == SYSCTL_PWMDIV_16) ||
3173 (ui32Config == SYSCTL_PWMDIV_32) ||
3174 (ui32Config == SYSCTL_PWMDIV_64));
3175
3176 //
3177 // Check that there is a PWM block on this part.
3178 //
3179 ASSERT(HWREG(SYSCTL_DC1) & (SYSCTL_DC1_PWM0 | SYSCTL_DC1_PWM1));
3180
3181 //
3182 // Set the PWM clock configuration into the run-mode clock configuration
3183 // register.
3184 //
3185 HWREG(SYSCTL_RCC) = ((HWREG(SYSCTL_RCC) &
3186 ~(SYSCTL_RCC_USEPWMDIV | SYSCTL_RCC_PWMDIV_M)) |
3187 ui32Config);
3188 }
3189
3190 //*****************************************************************************
3191 //
3192 //! Gets the current PWM clock configuration.
3193 //!
3194 //! This function returns the current PWM clock configuration.
3195 //!
3196 //! \return Returns the current PWM clock configuration; is one of
3197 //! \b SYSCTL_PWMDIV_1, \b SYSCTL_PWMDIV_2, \b SYSCTL_PWMDIV_4,
3198 //! \b SYSCTL_PWMDIV_8, \b SYSCTL_PWMDIV_16, \b SYSCTL_PWMDIV_32, or
3199 //! \b SYSCTL_PWMDIV_64.
3200 //!
3201 //! \note This function should only be used with TM4C123 devices. For
3202 //! other TM4C devices, the PWMClockGet() function should be used.
3203 //
3204 //*****************************************************************************
3205 uint32_t
SysCtlPWMClockGet(void)3206 SysCtlPWMClockGet(void)
3207 {
3208 //
3209 // Check that there is a PWM block on this part.
3210 //
3211 ASSERT(HWREG(SYSCTL_DC1) & (SYSCTL_DC1_PWM0 | SYSCTL_DC1_PWM1));
3212
3213 //
3214 // Return the current PWM clock configuration. Make sure that
3215 // SYSCTL_PWMDIV_1 is returned in all cases where the divider is disabled.
3216 //
3217 if(!(HWREG(SYSCTL_RCC) & SYSCTL_RCC_USEPWMDIV))
3218 {
3219 //
3220 // The divider is not active so reflect this in the value we return.
3221 //
3222 return(SYSCTL_PWMDIV_1);
3223 }
3224 else
3225 {
3226 //
3227 // The divider is active so directly return the masked register value.
3228 //
3229 return(HWREG(SYSCTL_RCC) &
3230 (SYSCTL_RCC_USEPWMDIV | SYSCTL_RCC_PWMDIV_M));
3231 }
3232 }
3233
3234 //*****************************************************************************
3235 //
3236 //! Enables access to a GPIO peripheral via the AHB.
3237 //!
3238 //! \param ui32GPIOPeripheral is the GPIO peripheral to enable.
3239 //!
3240 //! This function is used to enable the specified GPIO peripheral to be
3241 //! accessed from the Advanced Host Bus (AHB) instead of the legacy Advanced
3242 //! Peripheral Bus (APB). When a GPIO peripheral is enabled for AHB access,
3243 //! the \b _AHB_BASE form of the base address should be used for GPIO
3244 //! functions. For example, instead of using \b GPIO_PORTA_BASE as the base
3245 //! address for GPIO functions, use \b GPIO_PORTA_AHB_BASE instead.
3246 //!
3247 //! The \e ui32GPIOPeripheral argument must be only one of the following
3248 //! values:
3249 //! \b SYSCTL_PERIPH_GPIOA, \b SYSCTL_PERIPH_GPIOB, \b SYSCTL_PERIPH_GPIOC,
3250 //! \b SYSCTL_PERIPH_GPIOD, \b SYSCTL_PERIPH_GPIOE, \b SYSCTL_PERIPH_GPIOF,
3251 //! \b SYSCTL_PERIPH_GPIOG, \b SYSCTL_PERIPH_GPIOH, or \b SYSCTL_PERIPH_GPIOJ.
3252 //!
3253 //! \note On some devices, all GPIO ports are only available on AHB.
3254 //!
3255 //! \return None.
3256 //
3257 //*****************************************************************************
3258 void
SysCtlGPIOAHBEnable(uint32_t ui32GPIOPeripheral)3259 SysCtlGPIOAHBEnable(uint32_t ui32GPIOPeripheral)
3260 {
3261 //
3262 // Check the arguments.
3263 //
3264 ASSERT((ui32GPIOPeripheral == SYSCTL_PERIPH_GPIOA) ||
3265 (ui32GPIOPeripheral == SYSCTL_PERIPH_GPIOB) ||
3266 (ui32GPIOPeripheral == SYSCTL_PERIPH_GPIOC) ||
3267 (ui32GPIOPeripheral == SYSCTL_PERIPH_GPIOD) ||
3268 (ui32GPIOPeripheral == SYSCTL_PERIPH_GPIOE) ||
3269 (ui32GPIOPeripheral == SYSCTL_PERIPH_GPIOF) ||
3270 (ui32GPIOPeripheral == SYSCTL_PERIPH_GPIOG) ||
3271 (ui32GPIOPeripheral == SYSCTL_PERIPH_GPIOH) ||
3272 (ui32GPIOPeripheral == SYSCTL_PERIPH_GPIOJ));
3273
3274 //
3275 // Enable this GPIO for AHB access.
3276 //
3277 HWREG(SYSCTL_GPIOHBCTL) |= (1 << (ui32GPIOPeripheral & 0xF));
3278 }
3279
3280 //*****************************************************************************
3281 //
3282 //! Disables access to a GPIO peripheral via the AHB.
3283 //!
3284 //! \param ui32GPIOPeripheral is the GPIO peripheral to disable.
3285 //!
3286 //! This function disables the specified GPIO peripheral for access from the
3287 //! Advanced Host Bus (AHB). Once disabled, the GPIO peripheral is accessed
3288 //! from the legacy Advanced Peripheral Bus (APB).
3289 //!
3290 //! The \b ui32GPIOPeripheral argument must be only one of the following
3291 //! values:
3292 //! \b SYSCTL_PERIPH_GPIOA, \b SYSCTL_PERIPH_GPIOB, \b SYSCTL_PERIPH_GPIOC,
3293 //! \b SYSCTL_PERIPH_GPIOD, \b SYSCTL_PERIPH_GPIOE, \b SYSCTL_PERIPH_GPIOF,
3294 //! \b SYSCTL_PERIPH_GPIOG, \b SYSCTL_PERIPH_GPIOH, or \b SYSCTL_PERIPH_GPIOJ.
3295 //!
3296 //! \note Some devices allow disabling AHB access to GPIO ports that are only
3297 //! present on the AHB. Disabling AHB access to these ports will disable
3298 //! access to these GPIO ports. On some devices, all GPIO ports are only
3299 //! available on AHB.
3300 //!
3301 //! \return None.
3302 //
3303 //*****************************************************************************
3304 void
SysCtlGPIOAHBDisable(uint32_t ui32GPIOPeripheral)3305 SysCtlGPIOAHBDisable(uint32_t ui32GPIOPeripheral)
3306 {
3307 //
3308 // Check the arguments.
3309 //
3310 ASSERT((ui32GPIOPeripheral == SYSCTL_PERIPH_GPIOA) ||
3311 (ui32GPIOPeripheral == SYSCTL_PERIPH_GPIOB) ||
3312 (ui32GPIOPeripheral == SYSCTL_PERIPH_GPIOC) ||
3313 (ui32GPIOPeripheral == SYSCTL_PERIPH_GPIOD) ||
3314 (ui32GPIOPeripheral == SYSCTL_PERIPH_GPIOE) ||
3315 (ui32GPIOPeripheral == SYSCTL_PERIPH_GPIOF) ||
3316 (ui32GPIOPeripheral == SYSCTL_PERIPH_GPIOG) ||
3317 (ui32GPIOPeripheral == SYSCTL_PERIPH_GPIOH) ||
3318 (ui32GPIOPeripheral == SYSCTL_PERIPH_GPIOJ));
3319
3320 //
3321 // Disable this GPIO for AHB access.
3322 //
3323 HWREG(SYSCTL_GPIOHBCTL) &= ~(1 << (ui32GPIOPeripheral & 0xF));
3324 }
3325
3326 //*****************************************************************************
3327 //
3328 //! Powers up the USB PLL.
3329 //!
3330 //! This function enables the USB controller's PLL, which is used by its
3331 //! physical layer. This call is necessary before connecting to any external
3332 //! devices.
3333 //!
3334 //! \note This function should only be called on TM4C123 devices.
3335 //!
3336 //! \return None.
3337 //
3338 //*****************************************************************************
3339 void
SysCtlUSBPLLEnable(void)3340 SysCtlUSBPLLEnable(void)
3341 {
3342 //
3343 // Turn on the USB PLL.
3344 //
3345 HWREG(SYSCTL_RCC2) &= ~SYSCTL_RCC2_USBPWRDN;
3346 }
3347
3348 //*****************************************************************************
3349 //
3350 //! Powers down the USB PLL.
3351 //!
3352 //! This function disables the USB controller's PLL, which is used by its
3353 //! physical layer. The USB registers are still accessible, but the physical
3354 //! layer no longer functions.
3355 //!
3356 //! \note This function should only be called on TM4C123 devices.
3357 //!
3358 //! \return None.
3359 //
3360 //*****************************************************************************
3361 void
SysCtlUSBPLLDisable(void)3362 SysCtlUSBPLLDisable(void)
3363 {
3364 //
3365 // Turn off the USB PLL.
3366 //
3367 HWREG(SYSCTL_RCC2) |= SYSCTL_RCC2_USBPWRDN;
3368 }
3369
3370 //*****************************************************************************
3371 //
3372 //! Configures the response to system voltage events.
3373 //!
3374 //! \param ui32Config holds the configuration options for the voltage events.
3375 //!
3376 //! This function configures the response to voltage-related events.
3377 //! These events are triggered when the voltage rails drop below certain
3378 //! levels. The \e ui32Config parameter provides the configuration for the
3379 //! voltage events and is a combination of the \b SYSCTL_VEVENT_* values.
3380 //!
3381 //! The response to a brown out on the VDDA rail is set by using one of the
3382 //! following values:
3383 //! - \b SYSCTL_VEVENT_VDDABO_NONE - There is no action taken on a VDDA
3384 //! brown out.
3385 //! - \b SYSCTL_VEVENT_VDDABO_INT - A system interrupt is generated when a
3386 //! VDDA brown out occurs.
3387 //! - \b SYSCTL_VEVENT_VDDABO_NMI - An NMI is generated when a VDDA brown out
3388 //! occurs.
3389 //! - \b SYSCTL_VEVENT_VDDABO_RST - A reset is generated when a VDDA brown out
3390 //! occurs. The type of reset that is generated is controller by the
3391 //! \b SYSCTL_ONRST_BOR_* setting passed into the SysCtlResetBehaviorSet()
3392 //! function.
3393 //!
3394 //! The response to a brown out on the VDD rail is set by using one of the
3395 //! following values:
3396 //! - \b SYSCTL_VEVENT_VDDBO_NONE - There is no action taken on a VDD
3397 //! brown out.
3398 //! - \b SYSCTL_VEVENT_VDDBO_INT - A system interrupt is generated when a
3399 //! VDD brown out occurs.
3400 //! - \b SYSCTL_VEVENT_VDDBO_NMI - An NMI is generated when a VDD brown out
3401 //! occurs.
3402 //! - \b SYSCTL_VEVENT_VDDBO_RST - A reset is generated when a VDD brown out
3403 //! occurs. The type of reset that is generated is controller by the
3404 //! \b SYSCTL_ONRST_BOR_* setting passed into the SysCtlResetBehaviorSet()
3405 //! function.
3406 //!
3407 //! \b Example: Configure the voltage events to trigger an interrupt on a VDDA
3408 //! brown out, an NMI on a VDDC brown out and a reset on a VDD brown out.
3409 //!
3410 //! \verbatim
3411 //!
3412 //! //
3413 //! // Configure the BOR rest to trigger a full POR. This is needed because
3414 //! // the SysCtlVoltageEventConfig() call is triggering a reset so the type
3415 //! // of reset is specified by this call.
3416 //! //
3417 //! SysCtlResetBehaviorSet(SYSCTL_ONRST_BOR_POR);
3418 //!
3419 //! //
3420 //! // Trigger an interrupt on a VDDA brown out and a reset on a VDD brown out.
3421 //! //
3422 //! SysCtlVoltageEventConfig(SYSCTL_VEVENT_VDDABO_INT |
3423 //! SYSCTL_VEVENT_VDDBO_RST);
3424 //! \endverbatim
3425 //!
3426 //! \return None.
3427 //
3428 //*****************************************************************************
3429 void
SysCtlVoltageEventConfig(uint32_t ui32Config)3430 SysCtlVoltageEventConfig(uint32_t ui32Config)
3431 {
3432 //
3433 // Set the requested events.
3434 //
3435 HWREG(SYSCTL_PTBOCTL) = ui32Config;
3436 }
3437
3438 //*****************************************************************************
3439 //
3440 //! Returns the voltage event status.
3441 //!
3442 //! This function returns the voltage event status for the system controller.
3443 //! The value returned is a logical OR of the following values:
3444 //! - \b SYSCTL_VESTAT_VDDBOR a brown-out event occurred on the VDD rail.
3445 //! - \b SYSCTL_VESTAT_VDDABOR a brown-out event occurred on the VDDA rail.
3446 //!
3447 //! The values returned from this function can be passed to the
3448 //! SysCtlVoltageEventClear() to clear the current voltage event status.
3449 //! Because voltage events are not cleared due to a reset, the voltage event
3450 //! status must be cleared by calling SysCtlVoltageEventClear().
3451 //!
3452 //! \b Example: Clear the current voltage event status.
3453 //!
3454 //! \verbatim
3455 //! uint32_t ui32VoltageEvents;
3456 //!
3457 //! //
3458 //! // Read the current voltage event status.
3459 //! //
3460 //! ui32VoltageEvents = SysCtlVoltageEventStatus();
3461 //!
3462 //! //
3463 //! // Clear all the current voltage events.
3464 //! //
3465 //! SysCtlVoltageEventClear(ui32VoltageEvents);
3466 //! \endverbatim
3467 //!
3468 //! \return The current voltage event status.
3469 //!
3470 //! \note The availability of voltage events varies with the Tiva part
3471 //! in use. Please consult the data sheet for the part you are using to
3472 //! determine which interrupt sources are available.
3473 //
3474 //*****************************************************************************
3475 uint32_t
SysCtlVoltageEventStatus(void)3476 SysCtlVoltageEventStatus(void)
3477 {
3478 //
3479 // Return the current voltage event status.
3480 //
3481 return(HWREG(SYSCTL_PWRTC));
3482 }
3483
3484 //*****************************************************************************
3485 //
3486 //! Clears the voltage event status.
3487 //!
3488 //! \param ui32Status is a bit mask of the voltage events to clear.
3489 //!
3490 //! This function clears the current voltage events status for the values
3491 //! specified in the \e ui32Status parameter. The \e ui32Status value must be
3492 //! a logical OR of the following values:
3493 //! - \b SYSCTL_VESTAT_VDDBOR a brown-out event occurred on the VDD rail.
3494 //! - \b SYSCTL_VESTAT_VDDABOR a brown-out event occurred on the VDDA rail.
3495 //!
3496 //! \b Example: Clear the current voltage event status.
3497 //!
3498 //! \verbatim
3499 //! //
3500 //! // Clear all the current voltage events.
3501 //! //
3502 //! SysCtlVoltageEventClear(SysCtlVoltageEventStatus());
3503 //! \endverbatim
3504 //!
3505 //! \note The availability of voltage event status varies with the
3506 //! Tiva part in use. Please consult the data sheet for the part you are
3507 //! using to determine which interrupt sources are available.
3508 //!
3509 //! \return None.
3510 //
3511 //*****************************************************************************
3512 void
SysCtlVoltageEventClear(uint32_t ui32Status)3513 SysCtlVoltageEventClear(uint32_t ui32Status)
3514 {
3515 //
3516 // Clear the requested voltage events.
3517 //
3518 HWREG(SYSCTL_PWRTC) |= ui32Status;
3519 }
3520
3521 //*****************************************************************************
3522 //
3523 //! Gets the effective VCO frequency.
3524 //!
3525 //! \param ui32Crystal holds the crystal value used for the PLL.
3526 //! \param pui32VCOFrequency is a pointer to the storage location which holds
3527 //! value of the VCO computed.
3528 //!
3529 //! This function calculates the VCO of the PLL before the system divider is
3530 //! applied
3531 //!
3532 //! \return \b true if the PLL is configured correctly and a VCO is valid or
3533 //! \b false if the device is not TM4C129x or the PLL is not used
3534 //
3535 //*****************************************************************************
3536 bool
SysCtlVCOGet(uint32_t ui32Crystal,uint32_t * pui32VCOFrequency)3537 SysCtlVCOGet(uint32_t ui32Crystal, uint32_t *pui32VCOFrequency)
3538 {
3539 int32_t i32XtalIdx;
3540 uint32_t ui32RSClkConfig, ui32PLLFreq0, ui32PLLFreq1, ui32Osc;
3541 uint32_t ui32MInt, ui32MFrac, ui32NDiv, ui32QDiv, ui32TempVCO;
3542
3543 //
3544 // Check if TM4C123 device is being used. should not use this function.
3545 //
3546 if(CLASS_IS_TM4C123)
3547 {
3548 //
3549 // Return error if TM4C123.
3550 //
3551 *pui32VCOFrequency = 0;
3552 return(false);
3553 }
3554
3555 //
3556 // Read the RSCLKCFG register to determine if PLL is being used.
3557 //
3558 ui32RSClkConfig = HWREG(SYSCTL_RSCLKCFG);
3559
3560 //
3561 // Check if PLL is used.
3562 //
3563 if((ui32RSClkConfig & SYSCTL_RSCLKCFG_USEPLL) != SYSCTL_RSCLKCFG_USEPLL)
3564 {
3565 //
3566 // Return error if PLL is not used.
3567 //
3568 *pui32VCOFrequency = 0;
3569 return(false);
3570 }
3571
3572 //
3573 // Get the index of the crystal from the ui32Config parameter.
3574 //
3575 i32XtalIdx = SysCtlXtalCfgToIndex(ui32Crystal);
3576
3577 //
3578 // Get the value of the crystal frequency based on the index
3579 //
3580 ui32Osc = g_pui32Xtals[i32XtalIdx];
3581
3582 //
3583 // Read the PLLFREQ0 and PLLFREQ1 registers to get information on the
3584 // MINT, MFRAC, N and Q values of the PLL
3585 //
3586 ui32PLLFreq0 = HWREG(SYSCTL_PLLFREQ0);
3587 ui32PLLFreq1 = HWREG(SYSCTL_PLLFREQ1);
3588
3589 ui32MInt = (ui32PLLFreq0 & SYSCTL_PLLFREQ0_MINT_M) >>
3590 SYSCTL_PLLFREQ0_MINT_S;
3591 ui32MFrac = (ui32PLLFreq0 & SYSCTL_PLLFREQ0_MFRAC_M) >>
3592 SYSCTL_PLLFREQ0_MFRAC_S;
3593 ui32NDiv = (ui32PLLFreq1 & SYSCTL_PLLFREQ1_N_M) >>
3594 SYSCTL_PLLFREQ1_N_S;
3595 ui32QDiv = (ui32PLLFreq1 & SYSCTL_PLLFREQ1_Q_M) >>
3596 SYSCTL_PLLFREQ1_Q_S;
3597
3598 //
3599 // Calculate the VCO at the output of the PLL
3600 //
3601 ui32TempVCO = (ui32Osc * ui32MInt) + ((ui32Osc * ui32MFrac) / 1024);
3602 ui32TempVCO /= ((ui32NDiv + 1) * (ui32QDiv + 1));
3603
3604 *pui32VCOFrequency = ui32TempVCO;
3605 return(true);
3606 }
3607
3608 //*****************************************************************************
3609 //
3610 //! Returns the current NMI status.
3611 //!
3612 //! This function returns the NMI status for the system controller. The valid
3613 //! values for the \e ui32Ints parameter are a logical OR of the following
3614 //! values:
3615 //! - \b SYSCTL_NMI_MOSCFAIL the main oscillator is not present or did not
3616 //! start.
3617 //! - \b SYSCTL_NMI_TAMPER a tamper event has been detected.
3618 //! - \b SYSCTL_NMI_WDT0 watchdog 0 generated a timeout.
3619 //! - \b SYSCTL_NMI_WDT1 watchdog 1 generated a timeout.
3620 //! - \b SYSCTL_NMI_POWER a power event occurred.
3621 //! - \b SYSCTL_NMI_EXTERNAL an external NMI pin asserted.
3622 //!
3623 //! \b Example: Clear all current NMI status flags.
3624 //!
3625 //! \verbatim
3626 //!
3627 //! //
3628 //! // Clear all the current NMI sources.
3629 //! //
3630 //! SysCtlNMIClear(SysCtlNMIStatus());
3631 //! \endverbatim
3632 //!
3633 //! \note The availability of the NMI status varies with the Tiva part in
3634 //! use. Please consult the data sheet for the part you are using to determine
3635 //! which interrupt sources are available.
3636 //!
3637 //! \return The current NMI status.
3638 //
3639 //*****************************************************************************
3640 uint32_t
SysCtlNMIStatus(void)3641 SysCtlNMIStatus(void)
3642 {
3643 return(HWREG(SYSCTL_NMIC));
3644 }
3645
3646 //*****************************************************************************
3647 //
3648 //! Clears NMI sources.
3649 //!
3650 //! \param ui32Ints is a bit mask of the non-maskable interrupt sources.
3651 //!
3652 //! This function clears the current NMI status specified in the \e ui32Ints
3653 //! parameter. The valid values for the \e ui32Ints parameter are a logical OR
3654 //! of the following values:
3655 //! - \b SYSCTL_NMI_MOSCFAIL the main oscillator is not present or did not
3656 //! start.
3657 //! - \b SYSCTL_NMI_TAMPER a tamper event has been detected.
3658 //! - \b SYSCTL_NMI_WDT0 watchdog 0 generated a timeout.
3659 //! - \b SYSCTL_NMI_WDT1 watchdog 1 generated a timeout.
3660 //! - \b SYSCTL_NMI_POWER a power event occurred.
3661 //! - \b SYSCTL_NMI_EXTERNAL an external NMI pin asserted.
3662 //!
3663 //! \b Example: Clear all current NMI status flags.
3664 //!
3665 //! \verbatim
3666 //!
3667 //! //
3668 //! // Clear all the current NMI sources.
3669 //! //
3670 //! SysCtlNMIClear(SysCtlNMIStatus());
3671 //! \endverbatim
3672 //!
3673 //! \note The availability of the NMI status varies with the Tiva part in
3674 //! use. Please consult the data sheet for the part you are using to determine
3675 //! which interrupt sources are available.
3676 //!
3677 //! \return None.
3678 //
3679 //*****************************************************************************
3680 void
SysCtlNMIClear(uint32_t ui32Ints)3681 SysCtlNMIClear(uint32_t ui32Ints)
3682 {
3683 //
3684 // Clear the requested interrupt sources.
3685 //
3686 HWREG(SYSCTL_NMIC) &= ~ui32Ints;
3687 }
3688
3689 //*****************************************************************************
3690 //
3691 //! Configures and enables or disables the clock output on the DIVSCLK pin.
3692 //!
3693 //! \param ui32Config holds the configuration options including enabling or
3694 //! disabling the clock output on the DIVSCLK pin.
3695 //! \param ui32Div is the divisor for the clock selected in the \e ui32Config
3696 //! parameter.
3697 //!
3698 //! This function selects the source for the DIVSCLK, enables or disables
3699 //! the clock output and provides an output divider value. The \e ui32Div
3700 //! parameter specifies the divider for the selected clock source and has a
3701 //! valid range of 1-256. The \e ui32Config parameter configures
3702 //! the DIVSCLK output based on the following settings:
3703 //!
3704 //! The first setting allows the output to be enabled or disabled.
3705 //! - \b SYSCTL_CLKOUT_EN - enable the DIVSCLK output.
3706 //! - \b SYSCTL_CLKOUT_DIS - disable the DIVSCLK output (default).
3707 //!
3708 //! The next group of settings selects the source for the DIVSCLK.
3709 //! - \b SYSCTL_CLKOUT_SYSCLK - use the current system clock as the
3710 //! source (default).
3711 //! - \b SYSCTL_CLKOUT_PIOSC - use the PIOSC as the source.
3712 //! - \b SYSCTL_CLKOUT_MOSC - use the MOSC as the source.
3713 //!
3714 //! \b Example: Enable the PIOSC divided by 4 as the DIVSCLK output.
3715 //!
3716 //! \verbatim
3717 //!
3718 //! //
3719 //! // Enable the PIOSC divided by 4 as the DIVSCLK output.
3720 //! //
3721 //! SysCtlClockOutConfig(SYSCTL_DIVSCLK_EN | SYSCTL_DIVSCLK_SRC_PIOSC, 4);
3722 //! \endverbatim
3723 //!
3724 //! \note The availability of the DIVSCLK output varies with the Tiva part
3725 //! in use. Please consult the data sheet for the part you are using to
3726 //! determine which interrupt sources are available.
3727 //!
3728 //! \return None.
3729 //
3730 //*****************************************************************************
3731 void
SysCtlClockOutConfig(uint32_t ui32Config,uint32_t ui32Div)3732 SysCtlClockOutConfig(uint32_t ui32Config, uint32_t ui32Div)
3733 {
3734 ASSERT(ui32Div != 0);
3735 ASSERT((ui32Config & ~(SYSCTL_CLKOUT_EN | SYSCTL_CLKOUT_DIS |
3736 SYSCTL_CLKOUT_SYSCLK | SYSCTL_CLKOUT_PIOSC |
3737 SYSCTL_CLKOUT_MOSC)) == 0);
3738
3739 //
3740 // Set the requested configuration and divisor.
3741 //
3742 HWREG(SYSCTL_DIVSCLK) = ui32Config | ((ui32Div - 1) &
3743 SYSCTL_DIVSCLK_DIV_M);
3744 }
3745
3746 //*****************************************************************************
3747 //
3748 //! Configures the alternate peripheral clock source.
3749 //!
3750 //! \param ui32Config holds the configuration options for the alternate
3751 //! peripheral clock.
3752 //!
3753 //! This function configures the alternate peripheral clock. The alternate
3754 //! peripheral clock is used to provide a known clock in all operating modes
3755 //! to peripherals that support using the alternate peripheral clock as an
3756 //! input clock. The \e ui32Config parameter value provides the clock input
3757 //! source using one of the following values:
3758 //! - \b SYSCTL_ALTCLK_PIOSC - use the PIOSC as the alternate clock
3759 //! source (default).
3760 //! - \b SYSCTL_ALTCLK_RTCOSC - use the Hibernate module RTC clock as the
3761 //! alternate clock source.
3762 //! - \b SYSCTL_ALTCLK_LFIOSC - use the low-frequency internal oscillator as
3763 //! the alternate clock source.
3764 //!
3765 //! \b Example: Select the Hibernate module RTC clock as the alternate clock
3766 //! source.
3767 //!
3768 //! \verbatim
3769 //!
3770 //! //
3771 //! // Select the Hibernate module RTC clock as the alternate clock source.
3772 //! //
3773 //! SysCtlAltClkConfig(SYSCTL_ALTCLK_RTCOSC);
3774 //! \endverbatim
3775 //!
3776 //! \note The availability of the alternate peripheral clock varies with the
3777 //! Tiva part in use. Please consult the data sheet for the part you are
3778 //! using to determine which interrupt sources are available.
3779 //!
3780 //! \return None.
3781 //
3782 //*****************************************************************************
3783 void
SysCtlAltClkConfig(uint32_t ui32Config)3784 SysCtlAltClkConfig(uint32_t ui32Config)
3785 {
3786 //
3787 // Set the requested configuration and divisor.
3788 //
3789 HWREG(SYSCTL_ALTCLKCFG) = ui32Config;
3790 }
3791
3792 //*****************************************************************************
3793 //
3794 // Close the Doxygen group.
3795 //! @}
3796 //
3797 //*****************************************************************************
3798