1 /*
2 * Copyright (c) 2006-2023, RT-Thread Development Team
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 *
6 * Change Logs:
7 * Date Author Notes
8 * 2023-02-25 GuEe-GUI the first version
9 */
10
11 #include <rthw.h>
12 #include <rtthread.h>
13 #include <rtdevice.h>
14
15 #define DBG_TAG "dma.pool"
16 #define DBG_LVL DBG_INFO
17 #include <rtdbg.h>
18
19 #include <mm_aspace.h>
20 #include <dt-bindings/size.h>
21
22 static RT_DEFINE_SPINLOCK(dma_pools_lock);
23 static rt_list_t dma_pool_nodes = RT_LIST_OBJECT_INIT(dma_pool_nodes);
24
25 static struct rt_dma_pool *dma_pool_install(rt_region_t *region);
26
27 static void *dma_alloc(struct rt_device *dev, rt_size_t size,
28 rt_ubase_t *dma_handle, rt_ubase_t flags);
29 static void dma_free(struct rt_device *dev, rt_size_t size,
30 void *cpu_addr, rt_ubase_t dma_handle, rt_ubase_t flags);
31
region_pool_lock(void)32 rt_inline void region_pool_lock(void)
33 {
34 rt_hw_spin_lock(&dma_pools_lock.lock);
35 }
36
region_pool_unlock(void)37 rt_inline void region_pool_unlock(void)
38 {
39 rt_hw_spin_unlock(&dma_pools_lock.lock);
40 }
41
dma_map_coherent_sync_out_data(struct rt_device * dev,void * data,rt_size_t size,rt_ubase_t * dma_handle,rt_ubase_t flags)42 static rt_err_t dma_map_coherent_sync_out_data(struct rt_device *dev,
43 void *data, rt_size_t size, rt_ubase_t *dma_handle, rt_ubase_t flags)
44 {
45 if (dma_handle)
46 {
47 *dma_handle = (rt_ubase_t)rt_kmem_v2p(data);
48 }
49 rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, data, size);
50
51 return RT_EOK;
52 }
53
dma_map_coherent_sync_in_data(struct rt_device * dev,void * out_data,rt_size_t size,rt_ubase_t dma_handle,rt_ubase_t flags)54 static rt_err_t dma_map_coherent_sync_in_data(struct rt_device *dev,
55 void *out_data, rt_size_t size, rt_ubase_t dma_handle, rt_ubase_t flags)
56 {
57 rt_hw_cpu_dcache_ops(RT_HW_CACHE_INVALIDATE, out_data, size);
58
59 return RT_EOK;
60 }
61
62 static const struct rt_dma_map_ops dma_map_coherent_ops =
63 {
64 .sync_out_data = dma_map_coherent_sync_out_data,
65 .sync_in_data = dma_map_coherent_sync_in_data,
66 };
67
dma_map_nocoherent_sync_out_data(struct rt_device * dev,void * data,rt_size_t size,rt_ubase_t * dma_handle,rt_ubase_t flags)68 static rt_err_t dma_map_nocoherent_sync_out_data(struct rt_device *dev,
69 void *data, rt_size_t size, rt_ubase_t *dma_handle, rt_ubase_t flags)
70 {
71 if (dma_handle)
72 {
73 *dma_handle = (rt_ubase_t)rt_kmem_v2p(data);
74 }
75
76 return RT_EOK;
77 }
78
dma_map_nocoherent_sync_in_data(struct rt_device * dev,void * out_data,rt_size_t size,rt_ubase_t dma_handle,rt_ubase_t flags)79 static rt_err_t dma_map_nocoherent_sync_in_data(struct rt_device *dev,
80 void *out_data, rt_size_t size, rt_ubase_t dma_handle, rt_ubase_t flags)
81 {
82 return RT_EOK;
83 }
84
85 static const struct rt_dma_map_ops dma_map_nocoherent_ops =
86 {
87 .sync_out_data = dma_map_nocoherent_sync_out_data,
88 .sync_in_data = dma_map_nocoherent_sync_in_data,
89 };
90
91 #ifdef RT_USING_OFW
ofw_addr_cpu2dma(struct rt_device * dev,rt_ubase_t addr)92 rt_inline rt_ubase_t ofw_addr_cpu2dma(struct rt_device *dev, rt_ubase_t addr)
93 {
94 return (rt_ubase_t)rt_ofw_translate_cpu2dma(dev->ofw_node, addr);
95 }
96
ofw_addr_dma2cpu(struct rt_device * dev,rt_ubase_t addr)97 rt_inline rt_ubase_t ofw_addr_dma2cpu(struct rt_device *dev, rt_ubase_t addr)
98 {
99 return (rt_ubase_t)rt_ofw_translate_dma2cpu(dev->ofw_node, addr);
100 }
101
ofw_dma_map_alloc(struct rt_device * dev,rt_size_t size,rt_ubase_t * dma_handle,rt_ubase_t flags)102 static void *ofw_dma_map_alloc(struct rt_device *dev, rt_size_t size,
103 rt_ubase_t *dma_handle, rt_ubase_t flags)
104 {
105 void *cpu_addr = dma_alloc(dev, size, dma_handle, flags);
106
107 if (cpu_addr && dma_handle)
108 {
109 *dma_handle = ofw_addr_cpu2dma(dev, *dma_handle);
110 }
111
112 return cpu_addr;
113 }
114
ofw_dma_map_free(struct rt_device * dev,rt_size_t size,void * cpu_addr,rt_ubase_t dma_handle,rt_ubase_t flags)115 static void ofw_dma_map_free(struct rt_device *dev, rt_size_t size,
116 void *cpu_addr, rt_ubase_t dma_handle, rt_ubase_t flags)
117 {
118 dma_handle = ofw_addr_dma2cpu(dev, dma_handle);
119
120 dma_free(dev, size, cpu_addr, dma_handle, flags);
121 }
122
ofw_dma_map_sync_out_data(struct rt_device * dev,void * data,rt_size_t size,rt_ubase_t * dma_handle,rt_ubase_t flags)123 static rt_err_t ofw_dma_map_sync_out_data(struct rt_device *dev,
124 void *data, rt_size_t size,
125 rt_ubase_t *dma_handle, rt_ubase_t flags)
126 {
127 rt_err_t err;
128
129 if (flags & RT_DMA_F_NOCACHE)
130 {
131 err = dma_map_nocoherent_sync_out_data(dev, data, size, dma_handle, flags);
132 }
133 else
134 {
135 err = dma_map_coherent_sync_out_data(dev, data, size, dma_handle, flags);
136 }
137
138 if (!err && dma_handle)
139 {
140 *dma_handle = ofw_addr_cpu2dma(dev, *dma_handle);
141 }
142
143 return err;
144 }
145
ofw_dma_map_sync_in_data(struct rt_device * dev,void * out_data,rt_size_t size,rt_ubase_t dma_handle,rt_ubase_t flags)146 static rt_err_t ofw_dma_map_sync_in_data(struct rt_device *dev,
147 void *out_data, rt_size_t size,
148 rt_ubase_t dma_handle, rt_ubase_t flags)
149 {
150 dma_handle = ofw_addr_dma2cpu(dev, dma_handle);
151
152 if (flags & RT_DMA_F_NOCACHE)
153 {
154 return dma_map_nocoherent_sync_in_data(dev, out_data, size, dma_handle, flags);
155 }
156
157 return dma_map_coherent_sync_in_data(dev, out_data, size, dma_handle, flags);
158 }
159
160 static const struct rt_dma_map_ops ofw_dma_map_ops =
161 {
162 .alloc = ofw_dma_map_alloc,
163 .free = ofw_dma_map_free,
164 .sync_out_data = ofw_dma_map_sync_out_data,
165 .sync_in_data = ofw_dma_map_sync_in_data,
166 };
167
ofw_device_dma_ops(struct rt_device * dev)168 static const struct rt_dma_map_ops *ofw_device_dma_ops(struct rt_device *dev)
169 {
170 rt_err_t err;
171 int region_nr = 0;
172 const fdt32_t *cell;
173 rt_phandle phandle;
174 rt_region_t region;
175 struct rt_ofw_prop *prop;
176 struct rt_dma_pool *dma_pool;
177 const struct rt_dma_map_ops *ops = RT_NULL;
178 struct rt_ofw_node *mem_np, *np = dev->ofw_node;
179
180 rt_ofw_foreach_prop_u32(np, "memory-region", prop, cell, phandle)
181 {
182 rt_uint64_t addr, size;
183
184 if (!(mem_np = rt_ofw_find_node_by_phandle(phandle)))
185 {
186 if (region_nr == 0)
187 {
188 return RT_NULL;
189 }
190
191 break;
192 }
193
194 if ((err = rt_ofw_get_address(mem_np, 0, &addr, &size)))
195 {
196 LOG_E("%s: Read '%s' error = %s", rt_ofw_node_full_name(mem_np),
197 "memory-region", rt_strerror(err));
198
199 rt_ofw_node_put(mem_np);
200 continue;
201 }
202
203 region.start = addr;
204 region.end = addr + size;
205 region.name = rt_dm_dev_get_name(dev);
206
207 rt_ofw_node_put(mem_np);
208
209 if (!(dma_pool = dma_pool_install(®ion)))
210 {
211 return RT_NULL;
212 }
213
214 if (rt_ofw_prop_read_bool(mem_np, "no-map"))
215 {
216 dma_pool->flags |= RT_DMA_F_NOMAP;
217 }
218
219 if (!rt_dma_device_is_coherent(dev))
220 {
221 dma_pool->flags |= RT_DMA_F_NOCACHE;
222 }
223
224 dma_pool->dev = dev;
225 ++region_nr;
226 }
227
228 if (region_nr)
229 {
230 ops = &ofw_dma_map_ops;
231 }
232
233 return ops;
234 }
235 #endif /* RT_USING_OFW */
236
device_dma_ops(struct rt_device * dev)237 static const struct rt_dma_map_ops *device_dma_ops(struct rt_device *dev)
238 {
239 const struct rt_dma_map_ops *ops = dev->dma_ops;
240
241 if (ops)
242 {
243 return ops;
244 }
245
246 #ifdef RT_USING_OFW
247 if (dev->ofw_node && (ops = ofw_device_dma_ops(dev)))
248 {
249 return ops;
250 }
251 #endif
252
253 if (rt_dma_device_is_coherent(dev))
254 {
255 ops = &dma_map_coherent_ops;
256 }
257 else
258 {
259 ops = &dma_map_nocoherent_ops;
260 }
261
262 dev->dma_ops = ops;
263
264 return ops;
265 }
266
dma_pool_alloc(struct rt_dma_pool * pool,rt_size_t size)267 static rt_ubase_t dma_pool_alloc(struct rt_dma_pool *pool, rt_size_t size)
268 {
269 rt_size_t bit, next_bit, end_bit, max_bits;
270
271 size = RT_DIV_ROUND_UP(size, ARCH_PAGE_SIZE);
272 max_bits = pool->bits - size;
273
274 rt_bitmap_for_each_clear_bit(pool->map, bit, max_bits)
275 {
276 end_bit = bit + size;
277
278 for (next_bit = bit + 1; next_bit < end_bit; ++next_bit)
279 {
280 if (rt_bitmap_test_bit(pool->map, next_bit))
281 {
282 bit = next_bit;
283 goto _next;
284 }
285 }
286
287 if (next_bit == end_bit)
288 {
289 while (next_bit --> bit)
290 {
291 rt_bitmap_set_bit(pool->map, next_bit);
292 }
293
294 return pool->start + bit * ARCH_PAGE_SIZE;
295 }
296 _next:
297 }
298
299 return RT_NULL;
300 }
301
dma_pool_free(struct rt_dma_pool * pool,rt_ubase_t offset,rt_size_t size)302 static void dma_pool_free(struct rt_dma_pool *pool, rt_ubase_t offset, rt_size_t size)
303 {
304 rt_size_t bit = (offset - pool->start) / ARCH_PAGE_SIZE, end_bit;
305
306 size = RT_DIV_ROUND_UP(size, ARCH_PAGE_SIZE);
307 end_bit = bit + size;
308
309 for (; bit < end_bit; ++bit)
310 {
311 rt_bitmap_clear_bit(pool->map, bit);
312 }
313 }
314
dma_alloc(struct rt_device * dev,rt_size_t size,rt_ubase_t * dma_handle,rt_ubase_t flags)315 static void *dma_alloc(struct rt_device *dev, rt_size_t size,
316 rt_ubase_t *dma_handle, rt_ubase_t flags)
317 {
318 void *dma_buffer = RT_NULL;
319 struct rt_dma_pool *pool;
320
321 region_pool_lock();
322
323 rt_list_for_each_entry(pool, &dma_pool_nodes, list)
324 {
325 if (pool->flags & RT_DMA_F_DEVICE)
326 {
327 if (!(flags & RT_DMA_F_DEVICE) || pool->dev != dev)
328 {
329 continue;
330 }
331 }
332 else if ((flags & RT_DMA_F_DEVICE))
333 {
334 continue;
335 }
336
337 if ((flags & RT_DMA_F_NOMAP) && !((pool->flags & RT_DMA_F_NOMAP)))
338 {
339 continue;
340 }
341
342 if ((flags & RT_DMA_F_32BITS) && !((pool->flags & RT_DMA_F_32BITS)))
343 {
344 continue;
345 }
346
347 if ((flags & RT_DMA_F_LINEAR) && !((pool->flags & RT_DMA_F_LINEAR)))
348 {
349 continue;
350 }
351
352 *dma_handle = dma_pool_alloc(pool, size);
353
354 if (*dma_handle && !(flags & RT_DMA_F_NOMAP))
355 {
356 if (flags & RT_DMA_F_NOCACHE)
357 {
358 dma_buffer = rt_ioremap_nocache((void *)*dma_handle, size);
359 }
360 else
361 {
362 dma_buffer = rt_ioremap_cached((void *)*dma_handle, size);
363 }
364
365 if (!dma_buffer)
366 {
367 dma_pool_free(pool, *dma_handle, size);
368
369 continue;
370 }
371
372 break;
373 }
374 else if (*dma_handle)
375 {
376 dma_buffer = (void *)*dma_handle;
377
378 break;
379 }
380 }
381
382 region_pool_unlock();
383
384 return dma_buffer;
385 }
386
dma_free(struct rt_device * dev,rt_size_t size,void * cpu_addr,rt_ubase_t dma_handle,rt_ubase_t flags)387 static void dma_free(struct rt_device *dev, rt_size_t size,
388 void *cpu_addr, rt_ubase_t dma_handle, rt_ubase_t flags)
389 {
390 struct rt_dma_pool *pool;
391
392 region_pool_lock();
393
394 rt_list_for_each_entry(pool, &dma_pool_nodes, list)
395 {
396 if (dma_handle >= pool->region.start &&
397 dma_handle <= pool->region.end)
398 {
399 rt_iounmap(cpu_addr);
400
401 dma_pool_free(pool, dma_handle, size);
402
403 break;
404 }
405 }
406
407 region_pool_unlock();
408 }
409
rt_dma_alloc(struct rt_device * dev,rt_size_t size,rt_ubase_t * dma_handle,rt_ubase_t flags)410 void *rt_dma_alloc(struct rt_device *dev, rt_size_t size,
411 rt_ubase_t *dma_handle, rt_ubase_t flags)
412 {
413 void *dma_buffer = RT_NULL;
414 rt_ubase_t dma_handle_s = 0;
415 const struct rt_dma_map_ops *ops;
416
417 if (!dev || !size)
418 {
419 return RT_NULL;
420 }
421
422 ops = device_dma_ops(dev);
423
424 if (ops->alloc)
425 {
426 dma_buffer = ops->alloc(dev, size, &dma_handle_s, flags);
427 }
428 else
429 {
430 dma_buffer = dma_alloc(dev, size, &dma_handle_s, flags);
431 }
432
433 if (!dma_buffer)
434 {
435 return dma_buffer;
436 }
437
438 if (dma_handle)
439 {
440 *dma_handle = dma_handle_s;
441 }
442
443 return dma_buffer;
444 }
445
rt_dma_free(struct rt_device * dev,rt_size_t size,void * cpu_addr,rt_ubase_t dma_handle,rt_ubase_t flags)446 void rt_dma_free(struct rt_device *dev, rt_size_t size,
447 void *cpu_addr, rt_ubase_t dma_handle, rt_ubase_t flags)
448 {
449 const struct rt_dma_map_ops *ops;
450
451 if (!dev || !size || !cpu_addr)
452 {
453 return;
454 }
455
456 ops = device_dma_ops(dev);
457
458 if (ops->free)
459 {
460 ops->free(dev, size, cpu_addr, dma_handle, flags);
461 }
462 else
463 {
464 dma_free(dev, size, cpu_addr, dma_handle, flags);
465 }
466 }
467
rt_dma_sync_out_data(struct rt_device * dev,void * data,rt_size_t size,rt_ubase_t * dma_handle,rt_ubase_t flags)468 rt_err_t rt_dma_sync_out_data(struct rt_device *dev, void *data, rt_size_t size,
469 rt_ubase_t *dma_handle, rt_ubase_t flags)
470 {
471 rt_err_t err;
472 rt_ubase_t dma_handle_s = 0;
473 const struct rt_dma_map_ops *ops;
474
475 if (!data || !size)
476 {
477 return -RT_EINVAL;
478 }
479
480 ops = device_dma_ops(dev);
481 err = ops->sync_out_data(dev, data, size, &dma_handle_s, flags);
482
483 if (dma_handle)
484 {
485 *dma_handle = dma_handle_s;
486 }
487
488 return err;
489 }
490
rt_dma_sync_in_data(struct rt_device * dev,void * out_data,rt_size_t size,rt_ubase_t dma_handle,rt_ubase_t flags)491 rt_err_t rt_dma_sync_in_data(struct rt_device *dev, void *out_data, rt_size_t size,
492 rt_ubase_t dma_handle, rt_ubase_t flags)
493 {
494 rt_err_t err;
495 const struct rt_dma_map_ops *ops;
496
497 if (!out_data || !size)
498 {
499 return -RT_EINVAL;
500 }
501
502 ops = device_dma_ops(dev);
503 err = ops->sync_in_data(dev, out_data, size, dma_handle, flags);
504
505 return err;
506 }
507
dma_pool_install(rt_region_t * region)508 static struct rt_dma_pool *dma_pool_install(rt_region_t *region)
509 {
510 rt_err_t err;
511 struct rt_dma_pool *pool;
512
513 if (!(pool = rt_calloc(1, sizeof(*pool))))
514 {
515 LOG_E("Install pool[%p, %p] error = %s",
516 region->start, region->end, rt_strerror(-RT_ENOMEM));
517
518 return RT_NULL;
519 }
520
521 rt_memcpy(&pool->region, region, sizeof(*region));
522
523 pool->flags |= RT_DMA_F_LINEAR;
524
525 if (region->end < 4UL * SIZE_GB)
526 {
527 pool->flags |= RT_DMA_F_32BITS;
528 }
529
530 pool->start = RT_ALIGN(pool->region.start, ARCH_PAGE_SIZE);
531 pool->bits = (pool->region.end - pool->start) / ARCH_PAGE_SIZE;
532
533 if (!pool->bits)
534 {
535 err = -RT_EINVAL;
536 goto _fail;
537 }
538
539 pool->map = rt_calloc(RT_BITMAP_LEN(pool->bits), sizeof(*pool->map));
540
541 if (!pool->map)
542 {
543 err = -RT_ENOMEM;
544 goto _fail;
545 }
546
547 rt_list_init(&pool->list);
548
549 region_pool_lock();
550 rt_list_insert_before(&dma_pool_nodes, &pool->list);
551 region_pool_unlock();
552
553 return pool;
554
555 _fail:
556 rt_free(pool);
557
558 LOG_E("Install pool[%p, %p] error = %s",
559 region->start, region->end, rt_strerror(err));
560
561 return RT_NULL;
562 }
563
rt_dma_pool_install(rt_region_t * region)564 struct rt_dma_pool *rt_dma_pool_install(rt_region_t *region)
565 {
566 struct rt_dma_pool *pool;
567
568 if (!region)
569 {
570 return RT_NULL;
571 }
572
573 if ((pool = dma_pool_install(region)))
574 {
575 region = &pool->region;
576
577 LOG_I("%s: Reserved %u.%u MiB at %p",
578 region->name,
579 (region->end - region->start) / SIZE_MB,
580 (region->end - region->start) / SIZE_KB & (SIZE_KB - 1),
581 region->start);
582 }
583
584 return pool;
585 }
586
rt_dma_pool_extract(rt_region_t * region_list,rt_size_t list_len,rt_size_t cma_size,rt_size_t coherent_pool_size)587 rt_err_t rt_dma_pool_extract(rt_region_t *region_list, rt_size_t list_len,
588 rt_size_t cma_size, rt_size_t coherent_pool_size)
589 {
590 struct rt_dma_pool *pool;
591 rt_region_t *region = region_list, *region_high = RT_NULL, cma, coherent_pool;
592
593 if (!region_list || !list_len || cma_size < coherent_pool_size)
594 {
595 return -RT_EINVAL;
596 }
597
598 for (rt_size_t i = 0; i < list_len; ++i, ++region)
599 {
600 if (!region->name)
601 {
602 continue;
603 }
604
605 /* Always use low address in 4G */
606 if (region->end - region->start >= cma_size)
607 {
608 if ((rt_ssize_t)((4UL * SIZE_GB) - region->start) < cma_size)
609 {
610 region_high = region;
611 continue;
612 }
613
614 goto _found;
615 }
616 }
617
618 if (region_high)
619 {
620 region = region_high;
621 LOG_W("No available DMA zone in 4G");
622
623 goto _found;
624 }
625
626 return -RT_EEMPTY;
627
628 _found:
629 if (region->end - region->start != cma_size)
630 {
631 cma.start = region->start;
632 cma.end = cma.start + cma_size;
633
634 /* Update input region */
635 region->start += cma_size;
636 }
637 else
638 {
639 rt_memcpy(&cma, region, sizeof(cma));
640 }
641
642 coherent_pool.name = "coherent-pool";
643 coherent_pool.start = cma.start;
644 coherent_pool.end = coherent_pool.start + coherent_pool_size;
645
646 cma.name = "cma";
647 cma.start += coherent_pool_size;
648
649 if (!(pool = rt_dma_pool_install(&coherent_pool)))
650 {
651 return -RT_ENOMEM;
652 }
653
654 /* Use: CMA > coherent-pool */
655 if (!(pool = rt_dma_pool_install(&cma)))
656 {
657 return -RT_ENOMEM;
658 }
659
660 return RT_EOK;
661 }
662
663 #if defined(RT_USING_CONSOLE) && defined(RT_USING_MSH)
list_dma_pool(int argc,char ** argv)664 static int list_dma_pool(int argc, char**argv)
665 {
666 int count = 0;
667 rt_region_t *region;
668 struct rt_dma_pool *pool;
669
670 rt_kprintf("%-*.s Region\n", RT_NAME_MAX, "Name");
671
672 region_pool_lock();
673
674 rt_list_for_each_entry(pool, &dma_pool_nodes, list)
675 {
676 region = &pool->region;
677
678 rt_kprintf("%-*.s [%p, %p]\n", RT_NAME_MAX, region->name,
679 region->start, region->end);
680
681 ++count;
682 }
683
684 rt_kprintf("%d DMA memory found\n", count);
685
686 region_pool_unlock();
687
688 return 0;
689 }
690 MSH_CMD_EXPORT(list_dma_pool, dump all dma memory pool);
691 #endif /* RT_USING_CONSOLE && RT_USING_MSH */
692