1 /**
2 * @file
3 * This is the IPv4 packet segmentation and reassembly implementation.
4 *
5 */
6
7 /*
8 * Copyright (c) 2001-2004 Swedish Institute of Computer Science.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without modification,
12 * are permitted provided that the following conditions are met:
13 *
14 * 1. Redistributions of source code must retain the above copyright notice,
15 * this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright notice,
17 * this list of conditions and the following disclaimer in the documentation
18 * and/or other materials provided with the distribution.
19 * 3. The name of the author may not be used to endorse or promote products
20 * derived from this software without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
23 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
24 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
25 * SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
26 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
27 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
30 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
31 * OF SUCH DAMAGE.
32 *
33 * This file is part of the lwIP TCP/IP stack.
34 *
35 * Author: Jani Monoses <jani@iv.ro>
36 * Simon Goldschmidt
37 * original reassembly code by Adam Dunkels <adam@sics.se>
38 *
39 */
40
41 #include "lwip/opt.h"
42
43 #if LWIP_IPV4
44
45 #include "lwip/ip4_frag.h"
46 #include "lwip/def.h"
47 #include "lwip/inet_chksum.h"
48 #include "lwip/netif.h"
49 #include "lwip/stats.h"
50 #include "lwip/icmp.h"
51
52 #include <string.h>
53
54 #if IP_REASSEMBLY
55 /**
56 * The IP reassembly code currently has the following limitations:
57 * - IP header options are not supported
58 * - fragments must not overlap (e.g. due to different routes),
59 * currently, overlapping or duplicate fragments are thrown away
60 * if IP_REASS_CHECK_OVERLAP=1 (the default)!
61 *
62 * @todo: work with IP header options
63 */
64
65 /** Setting this to 0, you can turn off checking the fragments for overlapping
66 * regions. The code gets a little smaller. Only use this if you know that
67 * overlapping won't occur on your network! */
68 #ifndef IP_REASS_CHECK_OVERLAP
69 #define IP_REASS_CHECK_OVERLAP 1
70 #endif /* IP_REASS_CHECK_OVERLAP */
71
72 /** Set to 0 to prevent freeing the oldest datagram when the reassembly buffer is
73 * full (IP_REASS_MAX_PBUFS pbufs are enqueued). The code gets a little smaller.
74 * Datagrams will be freed by timeout only. Especially useful when MEMP_NUM_REASSDATA
75 * is set to 1, so one datagram can be reassembled at a time, only. */
76 #ifndef IP_REASS_FREE_OLDEST
77 #define IP_REASS_FREE_OLDEST 1
78 #endif /* IP_REASS_FREE_OLDEST */
79
80 #define IP_REASS_FLAG_LASTFRAG 0x01
81
82 #define IP_REASS_VALIDATE_TELEGRAM_FINISHED 1
83 #define IP_REASS_VALIDATE_PBUF_QUEUED 0
84 #define IP_REASS_VALIDATE_PBUF_DROPPED -1
85
86 /** This is a helper struct which holds the starting
87 * offset and the ending offset of this fragment to
88 * easily chain the fragments.
89 * It has the same packing requirements as the IP header, since it replaces
90 * the IP header in memory in incoming fragments (after copying it) to keep
91 * track of the various fragments. (-> If the IP header doesn't need packing,
92 * this struct doesn't need packing, too.)
93 */
94 #ifdef PACK_STRUCT_USE_INCLUDES
95 # include "arch/bpstruct.h"
96 #endif
97 PACK_STRUCT_BEGIN
98 struct ip_reass_helper {
99 PACK_STRUCT_FIELD(struct pbuf *next_pbuf);
100 PACK_STRUCT_FIELD(u16_t start);
101 PACK_STRUCT_FIELD(u16_t end);
102 } PACK_STRUCT_STRUCT;
103 PACK_STRUCT_END
104 #ifdef PACK_STRUCT_USE_INCLUDES
105 # include "arch/epstruct.h"
106 #endif
107
108 #define IP_ADDRESSES_AND_ID_MATCH(iphdrA, iphdrB) \
109 (ip4_addr_cmp(&(iphdrA)->src, &(iphdrB)->src) && \
110 ip4_addr_cmp(&(iphdrA)->dest, &(iphdrB)->dest) && \
111 IPH_ID(iphdrA) == IPH_ID(iphdrB)) ? 1 : 0
112
113 /* global variables */
114 static struct ip_reassdata *reassdatagrams;
115 static u16_t ip_reass_pbufcount;
116
117 /* function prototypes */
118 static void ip_reass_dequeue_datagram(struct ip_reassdata *ipr, struct ip_reassdata *prev);
119 static int ip_reass_free_complete_datagram(struct ip_reassdata *ipr, struct ip_reassdata *prev);
120
121 /**
122 * Reassembly timer base function
123 * for both NO_SYS == 0 and 1 (!).
124 *
125 * Should be called every 1000 msec (defined by IP_TMR_INTERVAL).
126 */
127 void
ip_reass_tmr(void)128 ip_reass_tmr(void)
129 {
130 struct ip_reassdata *r, *prev = NULL;
131
132 r = reassdatagrams;
133 while (r != NULL) {
134 /* Decrement the timer. Once it reaches 0,
135 * clean up the incomplete fragment assembly */
136 if (r->timer > 0) {
137 r->timer--;
138 LWIP_DEBUGF(IP_REASS_DEBUG, ("ip_reass_tmr: timer dec %"U16_F"\n",(u16_t)r->timer));
139 prev = r;
140 r = r->next;
141 } else {
142 /* reassembly timed out */
143 struct ip_reassdata *tmp;
144 LWIP_DEBUGF(IP_REASS_DEBUG, ("ip_reass_tmr: timer timed out\n"));
145 tmp = r;
146 /* get the next pointer before freeing */
147 r = r->next;
148 /* free the helper struct and all enqueued pbufs */
149 ip_reass_free_complete_datagram(tmp, prev);
150 }
151 }
152 }
153
154 /**
155 * Free a datagram (struct ip_reassdata) and all its pbufs.
156 * Updates the total count of enqueued pbufs (ip_reass_pbufcount),
157 * SNMP counters and sends an ICMP time exceeded packet.
158 *
159 * @param ipr datagram to free
160 * @param prev the previous datagram in the linked list
161 * @return the number of pbufs freed
162 */
163 static int
ip_reass_free_complete_datagram(struct ip_reassdata * ipr,struct ip_reassdata * prev)164 ip_reass_free_complete_datagram(struct ip_reassdata *ipr, struct ip_reassdata *prev)
165 {
166 u16_t pbufs_freed = 0;
167 u16_t clen;
168 struct pbuf *p;
169 struct ip_reass_helper *iprh;
170
171 LWIP_ASSERT("prev != ipr", prev != ipr);
172 if (prev != NULL) {
173 LWIP_ASSERT("prev->next == ipr", prev->next == ipr);
174 }
175
176 MIB2_STATS_INC(mib2.ipreasmfails);
177 #if LWIP_ICMP
178 iprh = (struct ip_reass_helper *)ipr->p->payload;
179 if (iprh->start == 0) {
180 /* The first fragment was received, send ICMP time exceeded. */
181 /* First, de-queue the first pbuf from r->p. */
182 p = ipr->p;
183 ipr->p = iprh->next_pbuf;
184 /* Then, copy the original header into it. */
185 SMEMCPY(p->payload, &ipr->iphdr, IP_HLEN);
186 icmp_time_exceeded(p, ICMP_TE_FRAG);
187 clen = pbuf_clen(p);
188 LWIP_ASSERT("pbufs_freed + clen <= 0xffff", pbufs_freed + clen <= 0xffff);
189 pbufs_freed += clen;
190 pbuf_free(p);
191 }
192 #endif /* LWIP_ICMP */
193
194 /* First, free all received pbufs. The individual pbufs need to be released
195 separately as they have not yet been chained */
196 p = ipr->p;
197 while (p != NULL) {
198 struct pbuf *pcur;
199 iprh = (struct ip_reass_helper *)p->payload;
200 pcur = p;
201 /* get the next pointer before freeing */
202 p = iprh->next_pbuf;
203 clen = pbuf_clen(pcur);
204 LWIP_ASSERT("pbufs_freed + clen <= 0xffff", pbufs_freed + clen <= 0xffff);
205 pbufs_freed += clen;
206 pbuf_free(pcur);
207 }
208 /* Then, unchain the struct ip_reassdata from the list and free it. */
209 ip_reass_dequeue_datagram(ipr, prev);
210 LWIP_ASSERT("ip_reass_pbufcount >= clen", ip_reass_pbufcount >= pbufs_freed);
211 ip_reass_pbufcount -= pbufs_freed;
212
213 return pbufs_freed;
214 }
215
216 #if IP_REASS_FREE_OLDEST
217 /**
218 * Free the oldest datagram to make room for enqueueing new fragments.
219 * The datagram 'fraghdr' belongs to is not freed!
220 *
221 * @param fraghdr IP header of the current fragment
222 * @param pbufs_needed number of pbufs needed to enqueue
223 * (used for freeing other datagrams if not enough space)
224 * @return the number of pbufs freed
225 */
226 static int
ip_reass_remove_oldest_datagram(struct ip_hdr * fraghdr,int pbufs_needed)227 ip_reass_remove_oldest_datagram(struct ip_hdr *fraghdr, int pbufs_needed)
228 {
229 /* @todo Can't we simply remove the last datagram in the
230 * linked list behind reassdatagrams?
231 */
232 struct ip_reassdata *r, *oldest, *prev, *oldest_prev;
233 int pbufs_freed = 0, pbufs_freed_current;
234 int other_datagrams;
235
236 /* Free datagrams until being allowed to enqueue 'pbufs_needed' pbufs,
237 * but don't free the datagram that 'fraghdr' belongs to! */
238 do {
239 oldest = NULL;
240 prev = NULL;
241 oldest_prev = NULL;
242 other_datagrams = 0;
243 r = reassdatagrams;
244 while (r != NULL) {
245 if (!IP_ADDRESSES_AND_ID_MATCH(&r->iphdr, fraghdr)) {
246 /* Not the same datagram as fraghdr */
247 other_datagrams++;
248 if (oldest == NULL) {
249 oldest = r;
250 oldest_prev = prev;
251 } else if (r->timer <= oldest->timer) {
252 /* older than the previous oldest */
253 oldest = r;
254 oldest_prev = prev;
255 }
256 }
257 if (r->next != NULL) {
258 prev = r;
259 }
260 r = r->next;
261 }
262 if (oldest != NULL) {
263 pbufs_freed_current = ip_reass_free_complete_datagram(oldest, oldest_prev);
264 pbufs_freed += pbufs_freed_current;
265 }
266 } while ((pbufs_freed < pbufs_needed) && (other_datagrams > 1));
267 return pbufs_freed;
268 }
269 #endif /* IP_REASS_FREE_OLDEST */
270
271 /**
272 * Enqueues a new fragment into the fragment queue
273 * @param fraghdr points to the new fragments IP hdr
274 * @param clen number of pbufs needed to enqueue (used for freeing other datagrams if not enough space)
275 * @return A pointer to the queue location into which the fragment was enqueued
276 */
277 static struct ip_reassdata*
ip_reass_enqueue_new_datagram(struct ip_hdr * fraghdr,int clen)278 ip_reass_enqueue_new_datagram(struct ip_hdr *fraghdr, int clen)
279 {
280 struct ip_reassdata* ipr;
281 #if ! IP_REASS_FREE_OLDEST
282 LWIP_UNUSED_ARG(clen);
283 #endif
284
285 /* No matching previous fragment found, allocate a new reassdata struct */
286 ipr = (struct ip_reassdata *)memp_malloc(MEMP_REASSDATA);
287 if (ipr == NULL) {
288 #if IP_REASS_FREE_OLDEST
289 if (ip_reass_remove_oldest_datagram(fraghdr, clen) >= clen) {
290 ipr = (struct ip_reassdata *)memp_malloc(MEMP_REASSDATA);
291 }
292 if (ipr == NULL)
293 #endif /* IP_REASS_FREE_OLDEST */
294 {
295 IPFRAG_STATS_INC(ip_frag.memerr);
296 LWIP_DEBUGF(IP_REASS_DEBUG,("Failed to alloc reassdata struct\n"));
297 return NULL;
298 }
299 }
300 memset(ipr, 0, sizeof(struct ip_reassdata));
301 ipr->timer = IP_REASS_MAXAGE;
302
303 /* enqueue the new structure to the front of the list */
304 ipr->next = reassdatagrams;
305 reassdatagrams = ipr;
306 /* copy the ip header for later tests and input */
307 /* @todo: no ip options supported? */
308 SMEMCPY(&(ipr->iphdr), fraghdr, IP_HLEN);
309 return ipr;
310 }
311
312 /**
313 * Dequeues a datagram from the datagram queue. Doesn't deallocate the pbufs.
314 * @param ipr points to the queue entry to dequeue
315 */
316 static void
ip_reass_dequeue_datagram(struct ip_reassdata * ipr,struct ip_reassdata * prev)317 ip_reass_dequeue_datagram(struct ip_reassdata *ipr, struct ip_reassdata *prev)
318 {
319 /* dequeue the reass struct */
320 if (reassdatagrams == ipr) {
321 /* it was the first in the list */
322 reassdatagrams = ipr->next;
323 } else {
324 /* it wasn't the first, so it must have a valid 'prev' */
325 LWIP_ASSERT("sanity check linked list", prev != NULL);
326 prev->next = ipr->next;
327 }
328
329 /* now we can free the ip_reassdata struct */
330 memp_free(MEMP_REASSDATA, ipr);
331 }
332
333 /**
334 * Chain a new pbuf into the pbuf list that composes the datagram. The pbuf list
335 * will grow over time as new pbufs are rx.
336 * Also checks that the datagram passes basic continuity checks (if the last
337 * fragment was received at least once).
338 * @param ipr points to the reassembly state
339 * @param new_p points to the pbuf for the current fragment
340 * @param is_last is 1 if this pbuf has MF==0 (ipr->flags not updated yet)
341 * @return see IP_REASS_VALIDATE_* defines
342 */
343 static int
ip_reass_chain_frag_into_datagram_and_validate(struct ip_reassdata * ipr,struct pbuf * new_p,int is_last)344 ip_reass_chain_frag_into_datagram_and_validate(struct ip_reassdata *ipr, struct pbuf *new_p, int is_last)
345 {
346 struct ip_reass_helper *iprh, *iprh_tmp, *iprh_prev=NULL;
347 struct pbuf *q;
348 u16_t offset, len;
349 struct ip_hdr *fraghdr;
350 int valid = 1;
351
352 /* Extract length and fragment offset from current fragment */
353 fraghdr = (struct ip_hdr*)new_p->payload;
354 len = lwip_ntohs(IPH_LEN(fraghdr)) - IPH_HL(fraghdr) * 4;
355 offset = (lwip_ntohs(IPH_OFFSET(fraghdr)) & IP_OFFMASK) * 8;
356
357 /* overwrite the fragment's ip header from the pbuf with our helper struct,
358 * and setup the embedded helper structure. */
359 /* make sure the struct ip_reass_helper fits into the IP header */
360 LWIP_ASSERT("sizeof(struct ip_reass_helper) <= IP_HLEN",
361 sizeof(struct ip_reass_helper) <= IP_HLEN);
362 iprh = (struct ip_reass_helper*)new_p->payload;
363 iprh->next_pbuf = NULL;
364 iprh->start = offset;
365 iprh->end = offset + len;
366
367 /* Iterate through until we either get to the end of the list (append),
368 * or we find one with a larger offset (insert). */
369 for (q = ipr->p; q != NULL;) {
370 iprh_tmp = (struct ip_reass_helper*)q->payload;
371 if (iprh->start < iprh_tmp->start) {
372 /* the new pbuf should be inserted before this */
373 iprh->next_pbuf = q;
374 if (iprh_prev != NULL) {
375 /* not the fragment with the lowest offset */
376 #if IP_REASS_CHECK_OVERLAP
377 if ((iprh->start < iprh_prev->end) || (iprh->end > iprh_tmp->start)) {
378 /* fragment overlaps with previous or following, throw away */
379 goto freepbuf;
380 }
381 #endif /* IP_REASS_CHECK_OVERLAP */
382 iprh_prev->next_pbuf = new_p;
383 if (iprh_prev->end != iprh->start) {
384 /* There is a fragment missing between the current
385 * and the previous fragment */
386 valid = 0;
387 }
388 } else {
389 #if IP_REASS_CHECK_OVERLAP
390 if (iprh->end > iprh_tmp->start) {
391 /* fragment overlaps with following, throw away */
392 goto freepbuf;
393 }
394 #endif /* IP_REASS_CHECK_OVERLAP */
395 /* fragment with the lowest offset */
396 ipr->p = new_p;
397 }
398 break;
399 } else if (iprh->start == iprh_tmp->start) {
400 /* received the same datagram twice: no need to keep the datagram */
401 goto freepbuf;
402 #if IP_REASS_CHECK_OVERLAP
403 } else if (iprh->start < iprh_tmp->end) {
404 /* overlap: no need to keep the new datagram */
405 goto freepbuf;
406 #endif /* IP_REASS_CHECK_OVERLAP */
407 } else {
408 /* Check if the fragments received so far have no holes. */
409 if (iprh_prev != NULL) {
410 if (iprh_prev->end != iprh_tmp->start) {
411 /* There is a fragment missing between the current
412 * and the previous fragment */
413 valid = 0;
414 }
415 }
416 }
417 q = iprh_tmp->next_pbuf;
418 iprh_prev = iprh_tmp;
419 }
420
421 /* If q is NULL, then we made it to the end of the list. Determine what to do now */
422 if (q == NULL) {
423 if (iprh_prev != NULL) {
424 /* this is (for now), the fragment with the highest offset:
425 * chain it to the last fragment */
426 #if IP_REASS_CHECK_OVERLAP
427 LWIP_ASSERT("check fragments don't overlap", iprh_prev->end <= iprh->start);
428 #endif /* IP_REASS_CHECK_OVERLAP */
429 iprh_prev->next_pbuf = new_p;
430 if (iprh_prev->end != iprh->start) {
431 valid = 0;
432 }
433 } else {
434 #if IP_REASS_CHECK_OVERLAP
435 LWIP_ASSERT("no previous fragment, this must be the first fragment!",
436 ipr->p == NULL);
437 #endif /* IP_REASS_CHECK_OVERLAP */
438 /* this is the first fragment we ever received for this ip datagram */
439 ipr->p = new_p;
440 }
441 }
442
443 /* At this point, the validation part begins: */
444 /* If we already received the last fragment */
445 if (is_last || ((ipr->flags & IP_REASS_FLAG_LASTFRAG) != 0)) {
446 /* and had no holes so far */
447 if (valid) {
448 /* then check if the rest of the fragments is here */
449 /* Check if the queue starts with the first datagram */
450 if ((ipr->p == NULL) || (((struct ip_reass_helper*)ipr->p->payload)->start != 0)) {
451 valid = 0;
452 } else {
453 /* and check that there are no holes after this datagram */
454 iprh_prev = iprh;
455 q = iprh->next_pbuf;
456 while (q != NULL) {
457 iprh = (struct ip_reass_helper*)q->payload;
458 if (iprh_prev->end != iprh->start) {
459 valid = 0;
460 break;
461 }
462 iprh_prev = iprh;
463 q = iprh->next_pbuf;
464 }
465 /* if still valid, all fragments are received
466 * (because to the MF==0 already arrived */
467 if (valid) {
468 LWIP_ASSERT("sanity check", ipr->p != NULL);
469 LWIP_ASSERT("sanity check",
470 ((struct ip_reass_helper*)ipr->p->payload) != iprh);
471 LWIP_ASSERT("validate_datagram:next_pbuf!=NULL",
472 iprh->next_pbuf == NULL);
473 }
474 }
475 }
476 /* If valid is 0 here, there are some fragments missing in the middle
477 * (since MF == 0 has already arrived). Such datagrams simply time out if
478 * no more fragments are received... */
479 return valid ? IP_REASS_VALIDATE_TELEGRAM_FINISHED : IP_REASS_VALIDATE_PBUF_QUEUED;
480 }
481 /* If we come here, not all fragments were received, yet! */
482 return IP_REASS_VALIDATE_PBUF_QUEUED; /* not yet valid! */
483 #if IP_REASS_CHECK_OVERLAP
484 freepbuf:
485 ip_reass_pbufcount -= pbuf_clen(new_p);
486 pbuf_free(new_p);
487 return IP_REASS_VALIDATE_PBUF_DROPPED;
488 #endif /* IP_REASS_CHECK_OVERLAP */
489 }
490
491 /**
492 * Reassembles incoming IP fragments into an IP datagram.
493 *
494 * @param p points to a pbuf chain of the fragment
495 * @return NULL if reassembly is incomplete, ? otherwise
496 */
497 struct pbuf *
ip4_reass(struct pbuf * p)498 ip4_reass(struct pbuf *p)
499 {
500 struct pbuf *r;
501 struct ip_hdr *fraghdr;
502 struct ip_reassdata *ipr;
503 struct ip_reass_helper *iprh;
504 u16_t offset, len, clen;
505 int valid;
506 int is_last;
507
508 IPFRAG_STATS_INC(ip_frag.recv);
509 MIB2_STATS_INC(mib2.ipreasmreqds);
510
511 fraghdr = (struct ip_hdr*)p->payload;
512
513 if ((IPH_HL(fraghdr) * 4) != IP_HLEN) {
514 LWIP_DEBUGF(IP_REASS_DEBUG,("ip4_reass: IP options currently not supported!\n"));
515 IPFRAG_STATS_INC(ip_frag.err);
516 goto nullreturn;
517 }
518
519 offset = (lwip_ntohs(IPH_OFFSET(fraghdr)) & IP_OFFMASK) * 8;
520 len = lwip_ntohs(IPH_LEN(fraghdr)) - IPH_HL(fraghdr) * 4;
521
522 /* Check if we are allowed to enqueue more datagrams. */
523 clen = pbuf_clen(p);
524 if ((ip_reass_pbufcount + clen) > IP_REASS_MAX_PBUFS) {
525 #if IP_REASS_FREE_OLDEST
526 if (!ip_reass_remove_oldest_datagram(fraghdr, clen) ||
527 ((ip_reass_pbufcount + clen) > IP_REASS_MAX_PBUFS))
528 #endif /* IP_REASS_FREE_OLDEST */
529 {
530 /* No datagram could be freed and still too many pbufs enqueued */
531 LWIP_DEBUGF(IP_REASS_DEBUG,("ip4_reass: Overflow condition: pbufct=%d, clen=%d, MAX=%d\n",
532 ip_reass_pbufcount, clen, IP_REASS_MAX_PBUFS));
533 IPFRAG_STATS_INC(ip_frag.memerr);
534 /* @todo: send ICMP time exceeded here? */
535 /* drop this pbuf */
536 goto nullreturn;
537 }
538 }
539
540 /* Look for the datagram the fragment belongs to in the current datagram queue,
541 * remembering the previous in the queue for later dequeueing. */
542 for (ipr = reassdatagrams; ipr != NULL; ipr = ipr->next) {
543 /* Check if the incoming fragment matches the one currently present
544 in the reassembly buffer. If so, we proceed with copying the
545 fragment into the buffer. */
546 if (IP_ADDRESSES_AND_ID_MATCH(&ipr->iphdr, fraghdr)) {
547 LWIP_DEBUGF(IP_REASS_DEBUG, ("ip4_reass: matching previous fragment ID=%"X16_F"\n",
548 lwip_ntohs(IPH_ID(fraghdr))));
549 IPFRAG_STATS_INC(ip_frag.cachehit);
550 break;
551 }
552 }
553
554 if (ipr == NULL) {
555 /* Enqueue a new datagram into the datagram queue */
556 ipr = ip_reass_enqueue_new_datagram(fraghdr, clen);
557 /* Bail if unable to enqueue */
558 if (ipr == NULL) {
559 goto nullreturn;
560 }
561 } else {
562 if (((lwip_ntohs(IPH_OFFSET(fraghdr)) & IP_OFFMASK) == 0) &&
563 ((lwip_ntohs(IPH_OFFSET(&ipr->iphdr)) & IP_OFFMASK) != 0)) {
564 /* ipr->iphdr is not the header from the first fragment, but fraghdr is
565 * -> copy fraghdr into ipr->iphdr since we want to have the header
566 * of the first fragment (for ICMP time exceeded and later, for copying
567 * all options, if supported)*/
568 SMEMCPY(&ipr->iphdr, fraghdr, IP_HLEN);
569 }
570 }
571
572 /* At this point, we have either created a new entry or pointing
573 * to an existing one */
574
575 /* check for 'no more fragments', and update queue entry*/
576 is_last = (IPH_OFFSET(fraghdr) & PP_NTOHS(IP_MF)) == 0;
577 if (is_last) {
578 u16_t datagram_len = (u16_t)(offset + len);
579 if ((datagram_len < offset) || (datagram_len > (0xFFFF - IP_HLEN))) {
580 /* u16_t overflow, cannot handle this */
581 goto nullreturn;
582 }
583 }
584 /* find the right place to insert this pbuf */
585 /* @todo: trim pbufs if fragments are overlapping */
586 valid = ip_reass_chain_frag_into_datagram_and_validate(ipr, p, is_last);
587 if (valid == IP_REASS_VALIDATE_PBUF_DROPPED) {
588 goto nullreturn;
589 }
590 /* if we come here, the pbuf has been enqueued */
591
592 /* Track the current number of pbufs current 'in-flight', in order to limit
593 the number of fragments that may be enqueued at any one time
594 (overflow checked by testing against IP_REASS_MAX_PBUFS) */
595 ip_reass_pbufcount = (u16_t)(ip_reass_pbufcount + clen);
596 if (is_last) {
597 u16_t datagram_len = (u16_t)(offset + len);
598 ipr->datagram_len = datagram_len;
599 ipr->flags |= IP_REASS_FLAG_LASTFRAG;
600 LWIP_DEBUGF(IP_REASS_DEBUG,
601 ("ip4_reass: last fragment seen, total len %"S16_F"\n",
602 ipr->datagram_len));
603 }
604
605 if (valid == IP_REASS_VALIDATE_TELEGRAM_FINISHED) {
606 struct ip_reassdata *ipr_prev;
607 /* the totally last fragment (flag more fragments = 0) was received at least
608 * once AND all fragments are received */
609 ipr->datagram_len += IP_HLEN;
610
611 /* save the second pbuf before copying the header over the pointer */
612 r = ((struct ip_reass_helper*)ipr->p->payload)->next_pbuf;
613
614 /* copy the original ip header back to the first pbuf */
615 fraghdr = (struct ip_hdr*)(ipr->p->payload);
616 SMEMCPY(fraghdr, &ipr->iphdr, IP_HLEN);
617 IPH_LEN_SET(fraghdr, lwip_htons(ipr->datagram_len));
618 IPH_OFFSET_SET(fraghdr, 0);
619 IPH_CHKSUM_SET(fraghdr, 0);
620 /* @todo: do we need to set/calculate the correct checksum? */
621 #if CHECKSUM_GEN_IP
622 IF__NETIF_CHECKSUM_ENABLED(ip_current_input_netif(), NETIF_CHECKSUM_GEN_IP) {
623 IPH_CHKSUM_SET(fraghdr, inet_chksum(fraghdr, IP_HLEN));
624 }
625 #endif /* CHECKSUM_GEN_IP */
626
627 p = ipr->p;
628
629 /* chain together the pbufs contained within the reass_data list. */
630 while (r != NULL) {
631 iprh = (struct ip_reass_helper*)r->payload;
632
633 /* hide the ip header for every succeeding fragment */
634 pbuf_header(r, -IP_HLEN);
635 pbuf_cat(p, r);
636 r = iprh->next_pbuf;
637 }
638
639 /* find the previous entry in the linked list */
640 if (ipr == reassdatagrams) {
641 ipr_prev = NULL;
642 } else {
643 for (ipr_prev = reassdatagrams; ipr_prev != NULL; ipr_prev = ipr_prev->next) {
644 if (ipr_prev->next == ipr) {
645 break;
646 }
647 }
648 }
649
650 /* release the sources allocate for the fragment queue entry */
651 ip_reass_dequeue_datagram(ipr, ipr_prev);
652
653 /* and adjust the number of pbufs currently queued for reassembly. */
654 ip_reass_pbufcount -= pbuf_clen(p);
655
656 MIB2_STATS_INC(mib2.ipreasmoks);
657
658 /* Return the pbuf chain */
659 return p;
660 }
661 /* the datagram is not (yet?) reassembled completely */
662 LWIP_DEBUGF(IP_REASS_DEBUG,("ip_reass_pbufcount: %d out\n", ip_reass_pbufcount));
663 return NULL;
664
665 nullreturn:
666 LWIP_DEBUGF(IP_REASS_DEBUG,("ip4_reass: nullreturn\n"));
667 IPFRAG_STATS_INC(ip_frag.drop);
668 pbuf_free(p);
669 return NULL;
670 }
671 #endif /* IP_REASSEMBLY */
672
673 #if IP_FRAG
674 #if !LWIP_NETIF_TX_SINGLE_PBUF
675 /** Allocate a new struct pbuf_custom_ref */
676 static struct pbuf_custom_ref*
ip_frag_alloc_pbuf_custom_ref(void)677 ip_frag_alloc_pbuf_custom_ref(void)
678 {
679 return (struct pbuf_custom_ref*)memp_malloc(MEMP_FRAG_PBUF);
680 }
681
682 /** Free a struct pbuf_custom_ref */
683 static void
ip_frag_free_pbuf_custom_ref(struct pbuf_custom_ref * p)684 ip_frag_free_pbuf_custom_ref(struct pbuf_custom_ref* p)
685 {
686 LWIP_ASSERT("p != NULL", p != NULL);
687 memp_free(MEMP_FRAG_PBUF, p);
688 }
689
690 /** Free-callback function to free a 'struct pbuf_custom_ref', called by
691 * pbuf_free. */
692 static void
ipfrag_free_pbuf_custom(struct pbuf * p)693 ipfrag_free_pbuf_custom(struct pbuf *p)
694 {
695 struct pbuf_custom_ref *pcr = (struct pbuf_custom_ref*)p;
696 LWIP_ASSERT("pcr != NULL", pcr != NULL);
697 LWIP_ASSERT("pcr == p", (void*)pcr == (void*)p);
698 if (pcr->original != NULL) {
699 pbuf_free(pcr->original);
700 }
701 ip_frag_free_pbuf_custom_ref(pcr);
702 }
703 #endif /* !LWIP_NETIF_TX_SINGLE_PBUF */
704
705 /**
706 * Fragment an IP datagram if too large for the netif.
707 *
708 * Chop the datagram in MTU sized chunks and send them in order
709 * by pointing PBUF_REFs into p.
710 *
711 * @param p ip packet to send
712 * @param netif the netif on which to send
713 * @param dest destination ip address to which to send
714 *
715 * @return ERR_OK if sent successfully, err_t otherwise
716 */
717 err_t
ip4_frag(struct pbuf * p,struct netif * netif,const ip4_addr_t * dest)718 ip4_frag(struct pbuf *p, struct netif *netif, const ip4_addr_t *dest)
719 {
720 struct pbuf *rambuf;
721 #if !LWIP_NETIF_TX_SINGLE_PBUF
722 struct pbuf *newpbuf;
723 u16_t newpbuflen = 0;
724 u16_t left_to_copy;
725 #endif
726 struct ip_hdr *original_iphdr;
727 struct ip_hdr *iphdr;
728 const u16_t nfb = (netif->mtu - IP_HLEN) / 8;
729 u16_t left, fragsize;
730 u16_t ofo;
731 int last;
732 u16_t poff = IP_HLEN;
733 u16_t tmp;
734
735 original_iphdr = (struct ip_hdr *)p->payload;
736 iphdr = original_iphdr;
737 LWIP_ERROR("ip4_frag() does not support IP options", IPH_HL(iphdr) * 4 == IP_HLEN, return ERR_VAL);
738
739 /* Save original offset */
740 tmp = lwip_ntohs(IPH_OFFSET(iphdr));
741 ofo = tmp & IP_OFFMASK;
742 LWIP_ERROR("ip_frag(): MF already set", (tmp & IP_MF) == 0, return ERR_VAL);
743
744 left = p->tot_len - IP_HLEN;
745
746 while (left) {
747 /* Fill this fragment */
748 fragsize = LWIP_MIN(left, nfb * 8);
749
750 #if LWIP_NETIF_TX_SINGLE_PBUF
751 rambuf = pbuf_alloc(PBUF_IP, fragsize, PBUF_RAM);
752 if (rambuf == NULL) {
753 goto memerr;
754 }
755 LWIP_ASSERT("this needs a pbuf in one piece!",
756 (rambuf->len == rambuf->tot_len) && (rambuf->next == NULL));
757 poff += pbuf_copy_partial(p, rambuf->payload, fragsize, poff);
758 /* make room for the IP header */
759 if (pbuf_header(rambuf, IP_HLEN)) {
760 pbuf_free(rambuf);
761 goto memerr;
762 }
763 /* fill in the IP header */
764 SMEMCPY(rambuf->payload, original_iphdr, IP_HLEN);
765 iphdr = (struct ip_hdr*)rambuf->payload;
766 #else /* LWIP_NETIF_TX_SINGLE_PBUF */
767 /* When not using a static buffer, create a chain of pbufs.
768 * The first will be a PBUF_RAM holding the link and IP header.
769 * The rest will be PBUF_REFs mirroring the pbuf chain to be fragged,
770 * but limited to the size of an mtu.
771 */
772 rambuf = pbuf_alloc(PBUF_LINK, IP_HLEN, PBUF_RAM);
773 if (rambuf == NULL) {
774 goto memerr;
775 }
776 LWIP_ASSERT("this needs a pbuf in one piece!",
777 (p->len >= (IP_HLEN)));
778 SMEMCPY(rambuf->payload, original_iphdr, IP_HLEN);
779 iphdr = (struct ip_hdr *)rambuf->payload;
780
781 left_to_copy = fragsize;
782 while (left_to_copy) {
783 struct pbuf_custom_ref *pcr;
784 u16_t plen = p->len - poff;
785 newpbuflen = LWIP_MIN(left_to_copy, plen);
786 /* Is this pbuf already empty? */
787 if (!newpbuflen) {
788 poff = 0;
789 p = p->next;
790 continue;
791 }
792 pcr = ip_frag_alloc_pbuf_custom_ref();
793 if (pcr == NULL) {
794 pbuf_free(rambuf);
795 goto memerr;
796 }
797 /* Mirror this pbuf, although we might not need all of it. */
798 newpbuf = pbuf_alloced_custom(PBUF_RAW, newpbuflen, PBUF_REF, &pcr->pc,
799 (u8_t*)p->payload + poff, newpbuflen);
800 if (newpbuf == NULL) {
801 ip_frag_free_pbuf_custom_ref(pcr);
802 pbuf_free(rambuf);
803 goto memerr;
804 }
805 pbuf_ref(p);
806 pcr->original = p;
807 pcr->pc.custom_free_function = ipfrag_free_pbuf_custom;
808
809 /* Add it to end of rambuf's chain, but using pbuf_cat, not pbuf_chain
810 * so that it is removed when pbuf_dechain is later called on rambuf.
811 */
812 pbuf_cat(rambuf, newpbuf);
813 left_to_copy -= newpbuflen;
814 if (left_to_copy) {
815 poff = 0;
816 p = p->next;
817 }
818 }
819 poff += newpbuflen;
820 #endif /* LWIP_NETIF_TX_SINGLE_PBUF */
821
822 /* Correct header */
823 last = (left <= netif->mtu - IP_HLEN);
824
825 /* Set new offset and MF flag */
826 tmp = (IP_OFFMASK & (ofo));
827 if (!last) {
828 tmp = tmp | IP_MF;
829 }
830 IPH_OFFSET_SET(iphdr, lwip_htons(tmp));
831 IPH_LEN_SET(iphdr, lwip_htons(fragsize + IP_HLEN));
832 IPH_CHKSUM_SET(iphdr, 0);
833 #if CHECKSUM_GEN_IP
834 IF__NETIF_CHECKSUM_ENABLED(netif, NETIF_CHECKSUM_GEN_IP) {
835 IPH_CHKSUM_SET(iphdr, inet_chksum(iphdr, IP_HLEN));
836 }
837 #endif /* CHECKSUM_GEN_IP */
838
839 /* No need for separate header pbuf - we allowed room for it in rambuf
840 * when allocated.
841 */
842 netif->output(netif, rambuf, dest);
843 IPFRAG_STATS_INC(ip_frag.xmit);
844
845 /* Unfortunately we can't reuse rambuf - the hardware may still be
846 * using the buffer. Instead we free it (and the ensuing chain) and
847 * recreate it next time round the loop. If we're lucky the hardware
848 * will have already sent the packet, the free will really free, and
849 * there will be zero memory penalty.
850 */
851
852 pbuf_free(rambuf);
853 left -= fragsize;
854 ofo += nfb;
855 }
856 MIB2_STATS_INC(mib2.ipfragoks);
857 return ERR_OK;
858 memerr:
859 MIB2_STATS_INC(mib2.ipfragfails);
860 return ERR_MEM;
861 }
862 #endif /* IP_FRAG */
863
864 #endif /* LWIP_IPV4 */
865