1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2010-2019, NVIDIA CORPORATION.  All rights reserved.
4  */
5 
6 #include <log.h>
7 #include <asm/io.h>
8 #include <asm/arch/clock.h>
9 #include <asm/arch/gp_padctrl.h>
10 #include <asm/arch/pinmux.h>
11 #include <asm/arch/tegra.h>
12 #include <asm/arch-tegra/clk_rst.h>
13 #include <asm/arch-tegra/pmc.h>
14 #include <asm/arch-tegra/scu.h>
15 #include <linux/delay.h>
16 #include "cpu.h"
17 
get_num_cpus(void)18 int get_num_cpus(void)
19 {
20 	struct apb_misc_gp_ctlr *gp;
21 	uint rev;
22 	debug("%s entry\n", __func__);
23 
24 	gp = (struct apb_misc_gp_ctlr *)NV_PA_APB_MISC_GP_BASE;
25 	rev = (readl(&gp->hidrev) & HIDREV_CHIPID_MASK) >> HIDREV_CHIPID_SHIFT;
26 
27 	switch (rev) {
28 	case CHIPID_TEGRA20:
29 		return 2;
30 		break;
31 	case CHIPID_TEGRA30:
32 	case CHIPID_TEGRA114:
33 	case CHIPID_TEGRA124:
34 	case CHIPID_TEGRA210:
35 	default:
36 		return 4;
37 		break;
38 	}
39 }
40 
41 /*
42  * Timing tables for each SOC for all four oscillator options.
43  */
44 struct clk_pll_table tegra_pll_x_table[TEGRA_SOC_CNT][CLOCK_OSC_FREQ_COUNT] = {
45 	/*
46 	 * T20: 1 GHz
47 	 *
48 	 * Register   Field  Bits   Width
49 	 * ------------------------------
50 	 * PLLX_BASE  p      22:20    3
51 	 * PLLX_BASE  n      17: 8   10
52 	 * PLLX_BASE  m       4: 0    5
53 	 * PLLX_MISC  cpcon  11: 8    4
54 	 */
55 	{
56 		{ .n = 1000, .m = 13, .p = 0, .cpcon = 12 }, /* OSC: 13.0 MHz */
57 		{ .n =    0, .m =  0, .p = 0, .cpcon =  0 }, /* N/A */
58 		{ .n =    0, .m =  0, .p = 0, .cpcon =  0 }, /* N/A */
59 		{ .n =    0, .m =  0, .p = 0, .cpcon =  0 }, /* N/A */
60 		{ .n =  625, .m = 12, .p = 0, .cpcon =  8 }, /* OSC: 19.2 MHz */
61 		{ .n =    0, .m =  0, .p = 0, .cpcon =  0 }, /* N/A */
62 		{ .n =    0, .m =  0, .p = 0, .cpcon =  0 }, /* N/A */
63 		{ .n =    0, .m =  0, .p = 0, .cpcon =  0 }, /* N/A */
64 		{ .n = 1000, .m = 12, .p = 0, .cpcon = 12 }, /* OSC: 12.0 MHz */
65 		{ .n =    0, .m =  0, .p = 0, .cpcon =  0 }, /* N/A */
66 		{ .n =    0, .m =  0, .p = 0, .cpcon =  0 }, /* N/A */
67 		{ .n =    0, .m =  0, .p = 0, .cpcon =  0 }, /* N/A */
68 		{ .n = 1000, .m = 26, .p = 0, .cpcon = 12 }, /* OSC: 26.0 MHz */
69 	},
70 	/*
71 	 * T25: 1.2 GHz
72 	 *
73 	 * Register   Field  Bits   Width
74 	 * ------------------------------
75 	 * PLLX_BASE  p      22:20    3
76 	 * PLLX_BASE  n      17: 8   10
77 	 * PLLX_BASE  m       4: 0    5
78 	 * PLLX_MISC  cpcon  11: 8    4
79 	 */
80 	{
81 		{ .n = 923, .m = 10, .p = 0, .cpcon = 12 }, /* OSC: 13.0 MHz */
82 		{ .n =   0, .m =  0, .p = 0, .cpcon =  0 }, /* N/A */
83 		{ .n =   0, .m =  0, .p = 0, .cpcon =  0 }, /* N/A */
84 		{ .n =   0, .m =  0, .p = 0, .cpcon =  0 }, /* N/A */
85 		{ .n = 750, .m = 12, .p = 0, .cpcon =  8 }, /* OSC: 19.2 MHz */
86 		{ .n =   0, .m =  0, .p = 0, .cpcon =  0 }, /* N/A */
87 		{ .n =   0, .m =  0, .p = 0, .cpcon =  0 }, /* N/A */
88 		{ .n =   0, .m =  0, .p = 0, .cpcon =  0 }, /* N/A */
89 		{ .n = 600, .m =  6, .p = 0, .cpcon = 12 }, /* OSC: 12.0 MHz */
90 		{ .n =   0, .m =  0, .p = 0, .cpcon =  0 }, /* N/A */
91 		{ .n =   0, .m =  0, .p = 0, .cpcon =  0 }, /* N/A */
92 		{ .n =   0, .m =  0, .p = 0, .cpcon =  0 }, /* N/A */
93 		{ .n = 600, .m = 13, .p = 0, .cpcon = 12 }, /* OSC: 26.0 MHz */
94 	},
95 	/*
96 	 * T30: 600 MHz
97 	 *
98 	 * Register   Field  Bits   Width
99 	 * ------------------------------
100 	 * PLLX_BASE  p      22:20    3
101 	 * PLLX_BASE  n      17: 8   10
102 	 * PLLX_BASE  m       4: 0    5
103 	 * PLLX_MISC  cpcon  11: 8    4
104 	 */
105 	{
106 		{ .n = 600, .m = 13, .p = 0, .cpcon = 8 }, /* OSC: 13.0 MHz */
107 		{ .n = 600, .m = 13, .p = 0, .cpcon = 8 }, /* OSC: 16.8 MHz */
108 		{ .n =   0, .m =  0, .p = 0, .cpcon = 0 }, /* N/A */
109 		{ .n =   0, .m =  0, .p = 0, .cpcon = 0 }, /* N/A */
110 		{ .n = 500, .m = 16, .p = 0, .cpcon = 8 }, /* OSC: 19.2 MHz */
111 		{ .n = 500, .m = 16, .p = 0, .cpcon = 8 }, /* OSC: 38.4 MHz */
112 		{ .n =   0, .m =  0, .p = 0, .cpcon = 0 }, /* N/A */
113 		{ .n =   0, .m =  0, .p = 0, .cpcon = 0 }, /* N/A */
114 		{ .n = 600, .m = 12, .p = 0, .cpcon = 8 }, /* OSC: 12.0 MHz */
115 		{ .n = 600, .m = 12, .p = 0, .cpcon = 8 }, /* OSC: 48.0 MHz */
116 		{ .n =   0, .m =  0, .p = 0, .cpcon = 0 }, /* N/A */
117 		{ .n =   0, .m =  0, .p = 0, .cpcon = 0 }, /* N/A */
118 		{ .n = 600, .m = 26, .p = 0, .cpcon = 8 }, /* OSC: 26.0 MHz */
119 	},
120 	/*
121 	 * T114: 700 MHz
122 	 *
123 	 * Register   Field  Bits   Width
124 	 * ------------------------------
125 	 * PLLX_BASE  p      23:20    4
126 	 * PLLX_BASE  n      15: 8    8
127 	 * PLLX_BASE  m       7: 0    8
128 	 */
129 	{
130 		{ .n = 108, .m = 1, .p = 1 }, /* OSC: 13.0 MHz */
131 		{ .n = 108, .m = 1, .p = 1 }, /* OSC: 16.8 MHz */
132 		{ .n =   0, .m = 0, .p = 0 }, /* (N/A) */
133 		{ .n =   0, .m = 0, .p = 0 }, /* (N/A) */
134 		{ .n =  73, .m = 1, .p = 1 }, /* OSC: 19.2 MHz */
135 		{ .n =  73, .m = 1, .p = 1 }, /* OSC: 38.4 MHz */
136 		{ .n =   0, .m = 0, .p = 0 }, /* (N/A) */
137 		{ .n =   0, .m = 0, .p = 0 }, /* (N/A) */
138 		{ .n = 116, .m = 1, .p = 1 }, /* OSC: 12.0 MHz */
139 		{ .n = 116, .m = 1, .p = 1 }, /* OSC: 48.0 MHz */
140 		{ .n =   0, .m = 0, .p = 0 }, /* (N/A) */
141 		{ .n =   0, .m = 0, .p = 0 }, /* (N/A) */
142 		{ .n = 108, .m = 2, .p = 1 }, /* OSC: 26.0 MHz */
143 	},
144 
145 	/*
146 	 * T124: 700 MHz
147 	 *
148 	 * Register   Field  Bits   Width
149 	 * ------------------------------
150 	 * PLLX_BASE  p      23:20    4
151 	 * PLLX_BASE  n      15: 8    8
152 	 * PLLX_BASE  m       7: 0    8
153 	 */
154 	{
155 		{ .n = 108, .m = 1, .p = 1 }, /* OSC: 13.0 MHz */
156 		{ .n = 108, .m = 1, .p = 1 }, /* OSC: 16.8 MHz */
157 		{ .n =   0, .m = 0, .p = 0 }, /* (N/A) */
158 		{ .n =   0, .m = 0, .p = 0 }, /* (N/A) */
159 		{ .n =  73, .m = 1, .p = 1 }, /* OSC: 19.2 MHz */
160 		{ .n =  73, .m = 1, .p = 1 }, /* OSC: 38.4 MHz */
161 		{ .n =   0, .m = 0, .p = 0 }, /* (N/A) */
162 		{ .n =   0, .m = 0, .p = 0 }, /* (N/A) */
163 		{ .n = 116, .m = 1, .p = 1 }, /* OSC: 12.0 MHz */
164 		{ .n = 116, .m = 1, .p = 1 }, /* OSC: 48.0 MHz */
165 		{ .n =   0, .m = 0, .p = 0 }, /* (N/A) */
166 		{ .n =   0, .m = 0, .p = 0 }, /* (N/A) */
167 		{ .n = 108, .m = 2, .p = 1 }, /* OSC: 26.0 MHz */
168 	},
169 
170 	/*
171 	 * T210: 700 MHz
172 	 *
173 	 * Register   Field  Bits   Width
174 	 * ------------------------------
175 	 * PLLX_BASE  p      24:20    5
176 	 * PLLX_BASE  n      15: 8    8
177 	 * PLLX_BASE  m       7: 0    8
178 	 */
179 	{
180 		{ .n = 108, .m = 1, .p = 1 }, /* OSC: 13.0 MHz = 702   MHz */
181 		{ .n = 108, .m = 1, .p = 1 }, /* OSC: 16.0 MHz = 702   MHz */
182 		{ .n =   0, .m = 0, .p = 0 }, /* (N/A) */
183 		{ .n =   0, .m = 0, .p = 0 }, /* (N/A) */
184 		{ .n =  73, .m = 1, .p = 1 }, /* OSC: 19.2 MHz = 700.8 MHz */
185 		{ .n =  36, .m = 1, .p = 1 }, /* OSC: 38.4 MHz = 691.2 MHz */
186 		{ .n =   0, .m = 0, .p = 0 }, /* (N/A) */
187 		{ .n =   0, .m = 0, .p = 0 }, /* (N/A) */
188 		{ .n = 116, .m = 1, .p = 1 }, /* OSC: 12.0 MHz = 696   MHz */
189 		{ .n =  58, .m = 2, .p = 1 }, /* OSC: 48.0 MHz = 696   MHz */
190 		{ .n =   0, .m = 0, .p = 0 }, /* (N/A) */
191 		{ .n =   0, .m = 0, .p = 0 }, /* (N/A) */
192 		{ .n = 108, .m = 2, .p = 1 }, /* OSC: 26.0 MHz = 702   MHz */
193 	},
194 };
195 
pllx_set_iddq(void)196 static inline void pllx_set_iddq(void)
197 {
198 #if defined(CONFIG_TEGRA124) || defined(CONFIG_TEGRA210)
199 	struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
200 	u32 reg;
201 	debug("%s entry\n", __func__);
202 
203 	/* Disable IDDQ */
204 	reg = readl(&clkrst->crc_pllx_misc3);
205 	reg &= ~PLLX_IDDQ_MASK;
206 	writel(reg, &clkrst->crc_pllx_misc3);
207 	udelay(2);
208 	debug("%s: IDDQ: PLLX IDDQ = 0x%08X\n", __func__,
209 	      readl(&clkrst->crc_pllx_misc3));
210 #endif
211 }
212 
pllx_set_rate(struct clk_pll_simple * pll,u32 divn,u32 divm,u32 divp,u32 cpcon)213 int pllx_set_rate(struct clk_pll_simple *pll , u32 divn, u32 divm,
214 		u32 divp, u32 cpcon)
215 {
216 	struct clk_pll_info *pllinfo = &tegra_pll_info_table[CLOCK_ID_XCPU];
217 	int chip = tegra_get_chip();
218 	u32 reg;
219 	debug("%s entry\n", __func__);
220 
221 	/* If PLLX is already enabled, just return */
222 	if (readl(&pll->pll_base) & PLL_ENABLE_MASK) {
223 		debug("%s: PLLX already enabled, returning\n", __func__);
224 		return 0;
225 	}
226 
227 	pllx_set_iddq();
228 
229 	/* Set BYPASS, m, n and p to PLLX_BASE */
230 	reg = PLL_BYPASS_MASK | (divm << pllinfo->m_shift);
231 	reg |= (divn << pllinfo->n_shift) | (divp << pllinfo->p_shift);
232 	writel(reg, &pll->pll_base);
233 
234 	/* Set cpcon to PLLX_MISC */
235 	if (chip == CHIPID_TEGRA20 || chip == CHIPID_TEGRA30)
236 		reg = (cpcon << pllinfo->kcp_shift);
237 	else
238 		reg = 0;
239 
240 	/*
241 	 * TODO(twarren@nvidia.com) Check which SoCs use DCCON
242 	 * and add to pllinfo table if needed!
243 	 */
244 	 /* Set dccon to PLLX_MISC if freq > 600MHz */
245 	if (divn > 600)
246 		reg |= (1 << PLL_DCCON_SHIFT);
247 	writel(reg, &pll->pll_misc);
248 
249 	/* Disable BYPASS */
250 	reg = readl(&pll->pll_base);
251 	reg &= ~PLL_BYPASS_MASK;
252 	writel(reg, &pll->pll_base);
253 	debug("%s: base = 0x%08X\n", __func__, reg);
254 
255 	/* Set lock_enable to PLLX_MISC if lock_ena is valid (i.e. 0-31) */
256 	reg = readl(&pll->pll_misc);
257 	if (pllinfo->lock_ena < 32)
258 		reg |= (1 << pllinfo->lock_ena);
259 	writel(reg, &pll->pll_misc);
260 	debug("%s: misc = 0x%08X\n", __func__, reg);
261 
262 	/* Enable PLLX last, once it's all configured */
263 	reg = readl(&pll->pll_base);
264 	reg |= PLL_ENABLE_MASK;
265 	writel(reg, &pll->pll_base);
266 	debug("%s: base final = 0x%08X\n", __func__, reg);
267 
268 	return 0;
269 }
270 
init_pllx(void)271 void init_pllx(void)
272 {
273 	struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
274 	struct clk_pll_simple *pll = &clkrst->crc_pll_simple[SIMPLE_PLLX];
275 	int soc_type, sku_info, chip_sku;
276 	enum clock_osc_freq osc;
277 	struct clk_pll_table *sel;
278 	debug("%s entry\n", __func__);
279 
280 	/* get SOC (chip) type */
281 	soc_type = tegra_get_chip();
282 	debug("%s: SoC = 0x%02X\n", __func__, soc_type);
283 
284 	/* get SKU info */
285 	sku_info = tegra_get_sku_info();
286 	debug("%s: SKU info byte = 0x%02X\n", __func__, sku_info);
287 
288 	/* get chip SKU, combo of the above info */
289 	chip_sku = tegra_get_chip_sku();
290 	debug("%s: Chip SKU = %d\n", __func__, chip_sku);
291 
292 	/* get osc freq */
293 	osc = clock_get_osc_freq();
294 	debug("%s: osc = %d\n", __func__, osc);
295 
296 	/* set pllx */
297 	sel = &tegra_pll_x_table[chip_sku][osc];
298 	pllx_set_rate(pll, sel->n, sel->m, sel->p, sel->cpcon);
299 }
300 
enable_cpu_clock(int enable)301 void enable_cpu_clock(int enable)
302 {
303 	struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
304 	u32 clk;
305 	debug("%s entry\n", __func__);
306 
307 	/*
308 	 * NOTE:
309 	 * Regardless of whether the request is to enable or disable the CPU
310 	 * clock, every processor in the CPU complex except the master (CPU 0)
311 	 * will have it's clock stopped because the AVP only talks to the
312 	 * master.
313 	 */
314 
315 	if (enable) {
316 		/* Initialize PLLX */
317 		init_pllx();
318 
319 		/* Wait until all clocks are stable */
320 		udelay(PLL_STABILIZATION_DELAY);
321 
322 		writel(CCLK_BURST_POLICY, &clkrst->crc_cclk_brst_pol);
323 		writel(SUPER_CCLK_DIVIDER, &clkrst->crc_super_cclk_div);
324 	}
325 
326 	/*
327 	 * Read the register containing the individual CPU clock enables and
328 	 * always stop the clocks to CPUs > 0.
329 	 */
330 	clk = readl(&clkrst->crc_clk_cpu_cmplx);
331 	clk |= 1 << CPU1_CLK_STP_SHIFT;
332 	if (get_num_cpus() == 4)
333 		clk |= (1 << CPU2_CLK_STP_SHIFT) + (1 << CPU3_CLK_STP_SHIFT);
334 
335 	/* Stop/Unstop the CPU clock */
336 	clk &= ~CPU0_CLK_STP_MASK;
337 	clk |= !enable << CPU0_CLK_STP_SHIFT;
338 	writel(clk, &clkrst->crc_clk_cpu_cmplx);
339 
340 	clock_enable(PERIPH_ID_CPU);
341 }
342 
is_cpu_powered(void)343 static int is_cpu_powered(void)
344 {
345 	return (tegra_pmc_readl(offsetof(struct pmc_ctlr,
346 				pmc_pwrgate_status)) & CPU_PWRED) ? 1 : 0;
347 }
348 
remove_cpu_io_clamps(void)349 static void remove_cpu_io_clamps(void)
350 {
351 	u32 reg;
352 	debug("%s entry\n", __func__);
353 
354 	/* Remove the clamps on the CPU I/O signals */
355 	reg = tegra_pmc_readl(offsetof(struct pmc_ctlr, pmc_remove_clamping));
356 	reg |= CPU_CLMP;
357 	tegra_pmc_writel(reg, offsetof(struct pmc_ctlr, pmc_remove_clamping));
358 
359 	/* Give I/O signals time to stabilize */
360 	udelay(IO_STABILIZATION_DELAY);
361 }
362 
powerup_cpu(void)363 void powerup_cpu(void)
364 {
365 	u32 reg;
366 	int timeout = IO_STABILIZATION_DELAY;
367 	debug("%s entry\n", __func__);
368 
369 	if (!is_cpu_powered()) {
370 		/* Toggle the CPU power state (OFF -> ON) */
371 		reg = tegra_pmc_readl(offsetof(struct pmc_ctlr,
372 				      pmc_pwrgate_toggle));
373 		reg &= PARTID_CP;
374 		reg |= START_CP;
375 		tegra_pmc_writel(reg,
376 				 offsetof(struct pmc_ctlr,
377 				 pmc_pwrgate_toggle));
378 
379 		/* Wait for the power to come up */
380 		while (!is_cpu_powered()) {
381 			if (timeout-- == 0)
382 				printf("CPU failed to power up!\n");
383 			else
384 				udelay(10);
385 		}
386 
387 		/*
388 		 * Remove the I/O clamps from CPU power partition.
389 		 * Recommended only on a Warm boot, if the CPU partition gets
390 		 * power gated. Shouldn't cause any harm when called after a
391 		 * cold boot according to HW, probably just redundant.
392 		 */
393 		remove_cpu_io_clamps();
394 	}
395 }
396 
reset_A9_cpu(int reset)397 void reset_A9_cpu(int reset)
398 {
399 	/*
400 	* NOTE:  Regardless of whether the request is to hold the CPU in reset
401 	*        or take it out of reset, every processor in the CPU complex
402 	*        except the master (CPU 0) will be held in reset because the
403 	*        AVP only talks to the master. The AVP does not know that there
404 	*        are multiple processors in the CPU complex.
405 	*/
406 	int mask = crc_rst_cpu | crc_rst_de | crc_rst_debug;
407 	int num_cpus = get_num_cpus();
408 	int cpu;
409 
410 	debug("%s entry\n", __func__);
411 	/* Hold CPUs 1 onwards in reset, and CPU 0 if asked */
412 	for (cpu = 1; cpu < num_cpus; cpu++)
413 		reset_cmplx_set_enable(cpu, mask, 1);
414 	reset_cmplx_set_enable(0, mask, reset);
415 
416 	/* Enable/Disable master CPU reset */
417 	reset_set_enable(PERIPH_ID_CPU, reset);
418 }
419 
clock_enable_coresight(int enable)420 void clock_enable_coresight(int enable)
421 {
422 	u32 rst, src = 2;
423 
424 	debug("%s entry\n", __func__);
425 	clock_set_enable(PERIPH_ID_CORESIGHT, enable);
426 	reset_set_enable(PERIPH_ID_CORESIGHT, !enable);
427 
428 	if (enable) {
429 		/*
430 		 * Put CoreSight on PLLP_OUT0 and divide it down as per
431 		 * PLLP base frequency based on SoC type (T20/T30+).
432 		 * Clock divider request would setup CSITE clock as 144MHz
433 		 * for PLLP base 216MHz and 204MHz for PLLP base 408MHz
434 		 */
435 		src = CLK_DIVIDER(NVBL_PLLP_KHZ, CSITE_KHZ);
436 		clock_ll_set_source_divisor(PERIPH_ID_CSI, 0, src);
437 
438 		/* Unlock the CPU CoreSight interfaces */
439 		rst = CORESIGHT_UNLOCK;
440 		writel(rst, CSITE_CPU_DBG0_LAR);
441 		writel(rst, CSITE_CPU_DBG1_LAR);
442 		if (get_num_cpus() == 4) {
443 			writel(rst, CSITE_CPU_DBG2_LAR);
444 			writel(rst, CSITE_CPU_DBG3_LAR);
445 		}
446 	}
447 }
448 
halt_avp(void)449 void halt_avp(void)
450 {
451 	debug("%s entry\n", __func__);
452 
453 	for (;;) {
454 		writel(HALT_COP_EVENT_JTAG | (FLOW_MODE_STOP << 29),
455 		       FLOW_CTLR_HALT_COP_EVENTS);
456 	}
457 }
458