1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3 * (C) Copyright 2008 Semihalf
4 *
5 * (C) Copyright 2000-2005
6 * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
7 ********************************************************************
8 * NOTE: This header file defines an interface to U-Boot. Including
9 * this (unmodified) header file in another file is considered normal
10 * use of U-Boot, and does *not* fall under the heading of "derived
11 * work".
12 ********************************************************************
13 */
14
15 #ifndef __IMAGE_H__
16 #define __IMAGE_H__
17
18 #include "compiler.h"
19 #include <asm/byteorder.h>
20 #include <stdbool.h>
21
22 /* Define this to avoid #ifdefs later on */
23 struct fdt_region;
24
25 #ifdef USE_HOSTCC
26 #include <sys/types.h>
27 #include <linux/kconfig.h>
28
29 #define IMAGE_INDENT_STRING ""
30
31 #else
32
33 #include <lmb.h>
34 #include <asm/u-boot.h>
35 #include <command.h>
36 #include <linker_lists.h>
37
38 #define IMAGE_INDENT_STRING " "
39
40 #endif /* USE_HOSTCC */
41
42 #include <hash.h>
43 #include <linux/libfdt.h>
44 #include <fdt_support.h>
45 #include <u-boot/hash-checksum.h>
46
47 extern ulong image_load_addr; /* Default Load Address */
48 extern ulong image_save_addr; /* Default Save Address */
49 extern ulong image_save_size; /* Default Save Size */
50 extern ulong image_load_offset; /* Default Load Address Offset */
51
52 /* An invalid size, meaning that the image size is not known */
53 #define IMAGE_SIZE_INVAL (-1UL)
54
55 enum ih_category {
56 IH_ARCH,
57 IH_COMP,
58 IH_OS,
59 IH_TYPE,
60 IH_PHASE,
61
62 IH_COUNT,
63 };
64
65 /*
66 * Operating System Codes
67 *
68 * The following are exposed to uImage header.
69 * New IDs *MUST* be appended at the end of the list and *NEVER*
70 * inserted for backward compatibility.
71 */
72 enum {
73 IH_OS_INVALID = 0, /* Invalid OS */
74 IH_OS_OPENBSD, /* OpenBSD */
75 IH_OS_NETBSD, /* NetBSD */
76 IH_OS_FREEBSD, /* FreeBSD */
77 IH_OS_4_4BSD, /* 4.4BSD */
78 IH_OS_LINUX, /* Linux */
79 IH_OS_SVR4, /* SVR4 */
80 IH_OS_ESIX, /* Esix */
81 IH_OS_SOLARIS, /* Solaris */
82 IH_OS_IRIX, /* Irix */
83 IH_OS_SCO, /* SCO */
84 IH_OS_DELL, /* Dell */
85 IH_OS_NCR, /* NCR */
86 IH_OS_LYNXOS, /* LynxOS */
87 IH_OS_VXWORKS, /* VxWorks */
88 IH_OS_PSOS, /* pSOS */
89 IH_OS_QNX, /* QNX */
90 IH_OS_U_BOOT, /* Firmware */
91 IH_OS_RTEMS, /* RTEMS */
92 IH_OS_ARTOS, /* ARTOS */
93 IH_OS_UNITY, /* Unity OS */
94 IH_OS_INTEGRITY, /* INTEGRITY */
95 IH_OS_OSE, /* OSE */
96 IH_OS_PLAN9, /* Plan 9 */
97 IH_OS_OPENRTOS, /* OpenRTOS */
98 IH_OS_ARM_TRUSTED_FIRMWARE, /* ARM Trusted Firmware */
99 IH_OS_TEE, /* Trusted Execution Environment */
100 IH_OS_OPENSBI, /* RISC-V OpenSBI */
101 IH_OS_EFI, /* EFI Firmware (e.g. GRUB2) */
102 IH_OS_ELF, /* ELF Image (e.g. seL4) */
103
104 IH_OS_COUNT,
105 };
106
107 /*
108 * CPU Architecture Codes (supported by Linux)
109 *
110 * The following are exposed to uImage header.
111 * New IDs *MUST* be appended at the end of the list and *NEVER*
112 * inserted for backward compatibility.
113 */
114 enum {
115 IH_ARCH_INVALID = 0, /* Invalid CPU */
116 IH_ARCH_ALPHA, /* Alpha */
117 IH_ARCH_ARM, /* ARM */
118 IH_ARCH_I386, /* Intel x86 */
119 IH_ARCH_IA64, /* IA64 */
120 IH_ARCH_MIPS, /* MIPS */
121 IH_ARCH_MIPS64, /* MIPS 64 Bit */
122 IH_ARCH_PPC, /* PowerPC */
123 IH_ARCH_S390, /* IBM S390 */
124 IH_ARCH_SH, /* SuperH */
125 IH_ARCH_SPARC, /* Sparc */
126 IH_ARCH_SPARC64, /* Sparc 64 Bit */
127 IH_ARCH_M68K, /* M68K */
128 IH_ARCH_NIOS, /* Nios-32 */
129 IH_ARCH_MICROBLAZE, /* MicroBlaze */
130 IH_ARCH_NIOS2, /* Nios-II */
131 IH_ARCH_BLACKFIN, /* Blackfin */
132 IH_ARCH_AVR32, /* AVR32 */
133 IH_ARCH_ST200, /* STMicroelectronics ST200 */
134 IH_ARCH_SANDBOX, /* Sandbox architecture (test only) */
135 IH_ARCH_NDS32, /* ANDES Technology - NDS32 */
136 IH_ARCH_OPENRISC, /* OpenRISC 1000 */
137 IH_ARCH_ARM64, /* ARM64 */
138 IH_ARCH_ARC, /* Synopsys DesignWare ARC */
139 IH_ARCH_X86_64, /* AMD x86_64, Intel and Via */
140 IH_ARCH_XTENSA, /* Xtensa */
141 IH_ARCH_RISCV, /* RISC-V */
142
143 IH_ARCH_COUNT,
144 };
145
146 /*
147 * Image Types
148 *
149 * "Standalone Programs" are directly runnable in the environment
150 * provided by U-Boot; it is expected that (if they behave
151 * well) you can continue to work in U-Boot after return from
152 * the Standalone Program.
153 * "OS Kernel Images" are usually images of some Embedded OS which
154 * will take over control completely. Usually these programs
155 * will install their own set of exception handlers, device
156 * drivers, set up the MMU, etc. - this means, that you cannot
157 * expect to re-enter U-Boot except by resetting the CPU.
158 * "RAMDisk Images" are more or less just data blocks, and their
159 * parameters (address, size) are passed to an OS kernel that is
160 * being started.
161 * "Multi-File Images" contain several images, typically an OS
162 * (Linux) kernel image and one or more data images like
163 * RAMDisks. This construct is useful for instance when you want
164 * to boot over the network using BOOTP etc., where the boot
165 * server provides just a single image file, but you want to get
166 * for instance an OS kernel and a RAMDisk image.
167 *
168 * "Multi-File Images" start with a list of image sizes, each
169 * image size (in bytes) specified by an "uint32_t" in network
170 * byte order. This list is terminated by an "(uint32_t)0".
171 * Immediately after the terminating 0 follow the images, one by
172 * one, all aligned on "uint32_t" boundaries (size rounded up to
173 * a multiple of 4 bytes - except for the last file).
174 *
175 * "Firmware Images" are binary images containing firmware (like
176 * U-Boot or FPGA images) which usually will be programmed to
177 * flash memory.
178 *
179 * "Script files" are command sequences that will be executed by
180 * U-Boot's command interpreter; this feature is especially
181 * useful when you configure U-Boot to use a real shell (hush)
182 * as command interpreter (=> Shell Scripts).
183 *
184 * The following are exposed to uImage header.
185 * New IDs *MUST* be appended at the end of the list and *NEVER*
186 * inserted for backward compatibility.
187 */
188 enum image_type_t {
189 IH_TYPE_INVALID = 0, /* Invalid Image */
190 IH_TYPE_STANDALONE, /* Standalone Program */
191 IH_TYPE_KERNEL, /* OS Kernel Image */
192 IH_TYPE_RAMDISK, /* RAMDisk Image */
193 IH_TYPE_MULTI, /* Multi-File Image */
194 IH_TYPE_FIRMWARE, /* Firmware Image */
195 IH_TYPE_SCRIPT, /* Script file */
196 IH_TYPE_FILESYSTEM, /* Filesystem Image (any type) */
197 IH_TYPE_FLATDT, /* Binary Flat Device Tree Blob */
198 IH_TYPE_KWBIMAGE, /* Kirkwood Boot Image */
199 IH_TYPE_IMXIMAGE, /* Freescale IMXBoot Image */
200 IH_TYPE_UBLIMAGE, /* Davinci UBL Image */
201 IH_TYPE_OMAPIMAGE, /* TI OMAP Config Header Image */
202 IH_TYPE_AISIMAGE, /* TI Davinci AIS Image */
203 /* OS Kernel Image, can run from any load address */
204 IH_TYPE_KERNEL_NOLOAD,
205 IH_TYPE_PBLIMAGE, /* Freescale PBL Boot Image */
206 IH_TYPE_MXSIMAGE, /* Freescale MXSBoot Image */
207 IH_TYPE_GPIMAGE, /* TI Keystone GPHeader Image */
208 IH_TYPE_ATMELIMAGE, /* ATMEL ROM bootable Image */
209 IH_TYPE_SOCFPGAIMAGE, /* Altera SOCFPGA CV/AV Preloader */
210 IH_TYPE_X86_SETUP, /* x86 setup.bin Image */
211 IH_TYPE_LPC32XXIMAGE, /* x86 setup.bin Image */
212 IH_TYPE_LOADABLE, /* A list of typeless images */
213 IH_TYPE_RKIMAGE, /* Rockchip Boot Image */
214 IH_TYPE_RKSD, /* Rockchip SD card */
215 IH_TYPE_RKSPI, /* Rockchip SPI image */
216 IH_TYPE_ZYNQIMAGE, /* Xilinx Zynq Boot Image */
217 IH_TYPE_ZYNQMPIMAGE, /* Xilinx ZynqMP Boot Image */
218 IH_TYPE_ZYNQMPBIF, /* Xilinx ZynqMP Boot Image (bif) */
219 IH_TYPE_FPGA, /* FPGA Image */
220 IH_TYPE_VYBRIDIMAGE, /* VYBRID .vyb Image */
221 IH_TYPE_TEE, /* Trusted Execution Environment OS Image */
222 IH_TYPE_FIRMWARE_IVT, /* Firmware Image with HABv4 IVT */
223 IH_TYPE_PMMC, /* TI Power Management Micro-Controller Firmware */
224 IH_TYPE_STM32IMAGE, /* STMicroelectronics STM32 Image */
225 IH_TYPE_SOCFPGAIMAGE_V1, /* Altera SOCFPGA A10 Preloader */
226 IH_TYPE_MTKIMAGE, /* MediaTek BootROM loadable Image */
227 IH_TYPE_IMX8MIMAGE, /* Freescale IMX8MBoot Image */
228 IH_TYPE_IMX8IMAGE, /* Freescale IMX8Boot Image */
229 IH_TYPE_COPRO, /* Coprocessor Image for remoteproc*/
230 IH_TYPE_SUNXI_EGON, /* Allwinner eGON Boot Image */
231 IH_TYPE_SUNXI_TOC0, /* Allwinner TOC0 Boot Image */
232 IH_TYPE_FDT_LEGACY, /* Binary Flat Device Tree Blob in a Legacy Image */
233 IH_TYPE_RENESAS_SPKG, /* Renesas SPKG image */
234 IH_TYPE_STARFIVE_SPL, /* StarFive SPL image */
235 IH_TYPE_TFA_BL31, /* TFA BL31 image */
236 IH_TYPE_STM32IMAGE_V2, /* STMicroelectronics STM32 Image V2.0 */
237
238 IH_TYPE_COUNT, /* Number of image types */
239 };
240
241 /*
242 * Compression Types
243 *
244 * The following are exposed to uImage header.
245 * New IDs *MUST* be appended at the end of the list and *NEVER*
246 * inserted for backward compatibility.
247 */
248 enum {
249 IH_COMP_NONE = 0, /* No Compression Used */
250 IH_COMP_GZIP, /* gzip Compression Used */
251 IH_COMP_BZIP2, /* bzip2 Compression Used */
252 IH_COMP_LZMA, /* lzma Compression Used */
253 IH_COMP_LZO, /* lzo Compression Used */
254 IH_COMP_LZ4, /* lz4 Compression Used */
255 IH_COMP_ZSTD, /* zstd Compression Used */
256
257 IH_COMP_COUNT,
258 };
259
260 /**
261 * Phases - images intended for particular U-Boot phases (SPL, etc.)
262 *
263 * @IH_PHASE_NONE: No phase information, can be loaded by any phase
264 * @IH_PHASE_U_BOOT: Only for U-Boot proper
265 * @IH_PHASE_SPL: Only for SPL
266 */
267 enum image_phase_t {
268 IH_PHASE_NONE = 0,
269 IH_PHASE_U_BOOT,
270 IH_PHASE_SPL,
271
272 IH_PHASE_COUNT,
273 };
274
275 #define IMAGE_PHASE_SHIFT 8
276 #define IMAGE_PHASE_MASK (0xff << IMAGE_PHASE_SHIFT)
277 #define IMAGE_TYPE_MASK 0xff
278
279 /**
280 * image_ph() - build a composite value combining and type
281 *
282 * @phase: Image phase value
283 * @type: Image type value
284 * Returns: Composite value containing both
285 */
image_ph(enum image_phase_t phase,enum image_type_t type)286 static inline int image_ph(enum image_phase_t phase, enum image_type_t type)
287 {
288 return type | (phase << IMAGE_PHASE_SHIFT);
289 }
290
291 /**
292 * image_ph_phase() - obtain the phase from a composite phase/type value
293 *
294 * @image_ph_type: Composite value to convert
295 * Returns: Phase value taken from the composite value
296 */
image_ph_phase(int image_ph_type)297 static inline int image_ph_phase(int image_ph_type)
298 {
299 return (image_ph_type & IMAGE_PHASE_MASK) >> IMAGE_PHASE_SHIFT;
300 }
301
302 /**
303 * image_ph_type() - obtain the type from a composite phase/type value
304 *
305 * @image_ph_type: Composite value to convert
306 * Returns: Type value taken from the composite value
307 */
image_ph_type(int image_ph_type)308 static inline int image_ph_type(int image_ph_type)
309 {
310 return image_ph_type & IMAGE_TYPE_MASK;
311 }
312
313 #define LZ4F_MAGIC 0x184D2204 /* LZ4 Magic Number */
314 #define IH_MAGIC 0x27051956 /* Image Magic Number */
315 #define IH_NMLEN 32 /* Image Name Length */
316
317 /* Reused from common.h */
318 #define ROUND(a, b) (((a) + (b) - 1) & ~((b) - 1))
319
320 /*
321 * Legacy format image header,
322 * all data in network byte order (aka natural aka bigendian).
323 */
324 struct legacy_img_hdr {
325 uint32_t ih_magic; /* Image Header Magic Number */
326 uint32_t ih_hcrc; /* Image Header CRC Checksum */
327 uint32_t ih_time; /* Image Creation Timestamp */
328 uint32_t ih_size; /* Image Data Size */
329 uint32_t ih_load; /* Data Load Address */
330 uint32_t ih_ep; /* Entry Point Address */
331 uint32_t ih_dcrc; /* Image Data CRC Checksum */
332 uint8_t ih_os; /* Operating System */
333 uint8_t ih_arch; /* CPU architecture */
334 uint8_t ih_type; /* Image Type */
335 uint8_t ih_comp; /* Compression Type */
336 uint8_t ih_name[IH_NMLEN]; /* Image Name */
337 };
338
339 struct image_info {
340 ulong start, end; /* start/end of blob */
341 ulong image_start, image_len; /* start of image within blob, len of image */
342 ulong load; /* load addr for the image */
343 uint8_t comp, type, os; /* compression, type of image, os type */
344 uint8_t arch; /* CPU architecture */
345 };
346
347 /*
348 * Legacy and FIT format headers used by do_bootm() and do_bootm_<os>()
349 * routines.
350 */
351 struct bootm_headers {
352 /*
353 * Legacy os image header, if it is a multi component image
354 * then boot_get_ramdisk() and get_fdt() will attempt to get
355 * data from second and third component accordingly.
356 */
357 struct legacy_img_hdr *legacy_hdr_os; /* image header pointer */
358 struct legacy_img_hdr legacy_hdr_os_copy; /* header copy */
359 ulong legacy_hdr_valid;
360
361 /*
362 * The fit_ members are only used with FIT, but it involves a lot of
363 * #ifdefs to avoid compiling that code. Since FIT is the standard
364 * format, even for SPL, this extra data size seems worth it.
365 */
366 const char *fit_uname_cfg; /* configuration node unit name */
367
368 void *fit_hdr_os; /* os FIT image header */
369 const char *fit_uname_os; /* os subimage node unit name */
370 int fit_noffset_os; /* os subimage node offset */
371
372 void *fit_hdr_rd; /* init ramdisk FIT image header */
373 const char *fit_uname_rd; /* init ramdisk subimage node unit name */
374 int fit_noffset_rd; /* init ramdisk subimage node offset */
375
376 void *fit_hdr_fdt; /* FDT blob FIT image header */
377 const char *fit_uname_fdt; /* FDT blob subimage node unit name */
378 int fit_noffset_fdt;/* FDT blob subimage node offset */
379
380 void *fit_hdr_setup; /* x86 setup FIT image header */
381 const char *fit_uname_setup; /* x86 setup subimage node name */
382 int fit_noffset_setup;/* x86 setup subimage node offset */
383
384 #ifndef USE_HOSTCC
385 struct image_info os; /* os image info */
386 ulong ep; /* entry point of OS */
387
388 ulong rd_start, rd_end;/* ramdisk start/end */
389
390 char *ft_addr; /* flat dev tree address */
391 ulong ft_len; /* length of flat device tree */
392
393 ulong initrd_start;
394 ulong initrd_end;
395 ulong cmdline_start;
396 ulong cmdline_end;
397 struct bd_info *kbd;
398 #endif
399
400 int verify; /* env_get("verify")[0] != 'n' */
401
402 #define BOOTM_STATE_START 0x00000001
403 #define BOOTM_STATE_FINDOS 0x00000002
404 #define BOOTM_STATE_FINDOTHER 0x00000004
405 #define BOOTM_STATE_LOADOS 0x00000008
406 #define BOOTM_STATE_RAMDISK 0x00000010
407 #define BOOTM_STATE_FDT 0x00000020
408 #define BOOTM_STATE_OS_CMDLINE 0x00000040
409 #define BOOTM_STATE_OS_BD_T 0x00000080
410 #define BOOTM_STATE_OS_PREP 0x00000100
411 #define BOOTM_STATE_OS_FAKE_GO 0x00000200 /* 'Almost' run the OS */
412 #define BOOTM_STATE_OS_GO 0x00000400
413 #define BOOTM_STATE_PRE_LOAD 0x00000800
414 #define BOOTM_STATE_MEASURE 0x00001000
415 int state;
416 };
417
418 extern struct bootm_headers images;
419
420 /*
421 * Some systems (for example LWMON) have very short watchdog periods;
422 * we must make sure to split long operations like memmove() or
423 * checksum calculations into reasonable chunks.
424 */
425 #ifndef CHUNKSZ
426 #define CHUNKSZ (64 * 1024)
427 #endif
428
429 #ifndef CHUNKSZ_CRC32
430 #define CHUNKSZ_CRC32 (64 * 1024)
431 #endif
432
433 #ifndef CHUNKSZ_MD5
434 #define CHUNKSZ_MD5 (64 * 1024)
435 #endif
436
437 #ifndef CHUNKSZ_SHA1
438 #define CHUNKSZ_SHA1 (64 * 1024)
439 #endif
440
441 #define uimage_to_cpu(x) be32_to_cpu(x)
442 #define cpu_to_uimage(x) cpu_to_be32(x)
443
444 /*
445 * Translation table for entries of a specific type; used by
446 * get_table_entry_id() and get_table_entry_name().
447 */
448 typedef struct table_entry {
449 int id;
450 char *sname; /* short (input) name to find table entry */
451 char *lname; /* long (output) name to print for messages */
452 } table_entry_t;
453
454 /*
455 * Compression type and magic number mapping table.
456 */
457 struct comp_magic_map {
458 int comp_id;
459 const char *name;
460 unsigned char magic[2];
461 };
462
463 /*
464 * get_table_entry_id() scans the translation table trying to find an
465 * entry that matches the given short name. If a matching entry is
466 * found, it's id is returned to the caller.
467 */
468 int get_table_entry_id(const table_entry_t *table,
469 const char *table_name, const char *name);
470 /*
471 * get_table_entry_name() scans the translation table trying to find
472 * an entry that matches the given id. If a matching entry is found,
473 * its long name is returned to the caller.
474 */
475 char *get_table_entry_name(const table_entry_t *table, char *msg, int id);
476
477 const char *genimg_get_os_name(uint8_t os);
478
479 /**
480 * genimg_get_os_short_name() - get the short name for an OS
481 *
482 * @param os OS (IH_OS_...)
483 * Return: OS short name, or "unknown" if unknown
484 */
485 const char *genimg_get_os_short_name(uint8_t comp);
486
487 const char *genimg_get_arch_name(uint8_t arch);
488
489 /**
490 * genimg_get_phase_name() - Get the friendly name for a phase
491 *
492 * @phase: Phase value to look up
493 * Returns: Friendly name for the phase (e.g. "U-Boot phase")
494 */
495 const char *genimg_get_phase_name(enum image_phase_t phase);
496
497 /**
498 * genimg_get_phase_id() - Convert a phase name to an ID
499 *
500 * @name: Name to convert (e.g. "u-boot")
501 * Returns: ID for that phase (e.g. IH_PHASE_U_BOOT)
502 */
503 int genimg_get_phase_id(const char *name);
504
505 /**
506 * genimg_get_arch_short_name() - get the short name for an architecture
507 *
508 * @param arch Architecture type (IH_ARCH_...)
509 * Return: architecture short name, or "unknown" if unknown
510 */
511 const char *genimg_get_arch_short_name(uint8_t arch);
512
513 const char *genimg_get_type_name(uint8_t type);
514
515 /**
516 * genimg_get_type_short_name() - get the short name for an image type
517 *
518 * @param type Image type (IH_TYPE_...)
519 * Return: image short name, or "unknown" if unknown
520 */
521 const char *genimg_get_type_short_name(uint8_t type);
522
523 const char *genimg_get_comp_name(uint8_t comp);
524
525 /**
526 * genimg_get_comp_short_name() - get the short name for a compression method
527 *
528 * @param comp compression method (IH_COMP_...)
529 * Return: compression method short name, or "unknown" if unknown
530 */
531 const char *genimg_get_comp_short_name(uint8_t comp);
532
533 /**
534 * genimg_get_cat_name() - Get the name of an item in a category
535 *
536 * @category: Category of item
537 * @id: Item ID
538 * Return: name of item, or "Unknown ..." if unknown
539 */
540 const char *genimg_get_cat_name(enum ih_category category, uint id);
541
542 /**
543 * genimg_get_cat_short_name() - Get the short name of an item in a category
544 *
545 * @category: Category of item
546 * @id: Item ID
547 * Return: short name of item, or "Unknown ..." if unknown
548 */
549 const char *genimg_get_cat_short_name(enum ih_category category, uint id);
550
551 /**
552 * genimg_get_cat_count() - Get the number of items in a category
553 *
554 * @category: Category to check
555 * Return: the number of items in the category (IH_xxx_COUNT)
556 */
557 int genimg_get_cat_count(enum ih_category category);
558
559 /**
560 * genimg_get_cat_desc() - Get the description of a category
561 *
562 * @category: Category to check
563 * Return: the description of a category, e.g. "architecture". This
564 * effectively converts the enum to a string.
565 */
566 const char *genimg_get_cat_desc(enum ih_category category);
567
568 /**
569 * genimg_cat_has_id() - Check whether a category has an item
570 *
571 * @category: Category to check
572 * @id: Item ID
573 * Return: true or false as to whether a category has an item
574 */
575 bool genimg_cat_has_id(enum ih_category category, uint id);
576
577 int genimg_get_os_id(const char *name);
578 int genimg_get_arch_id(const char *name);
579 int genimg_get_type_id(const char *name);
580 int genimg_get_comp_id(const char *name);
581 void genimg_print_size(uint32_t size);
582
583 #if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE) || defined(USE_HOSTCC)
584 #define IMAGE_ENABLE_TIMESTAMP 1
585 #else
586 #define IMAGE_ENABLE_TIMESTAMP 0
587 #endif
588 void genimg_print_time(time_t timestamp);
589
590 /* What to do with a image load address ('load = <> 'in the FIT) */
591 enum fit_load_op {
592 FIT_LOAD_IGNORED, /* Ignore load address */
593 FIT_LOAD_OPTIONAL, /* Can be provided, but optional */
594 FIT_LOAD_OPTIONAL_NON_ZERO, /* Optional, a value of 0 is ignored */
595 FIT_LOAD_REQUIRED, /* Must be provided */
596 };
597
598 int boot_get_setup(struct bootm_headers *images, uint8_t arch, ulong *setup_start,
599 ulong *setup_len);
600
601 /* Image format types, returned by _get_format() routine */
602 #define IMAGE_FORMAT_INVALID 0x00
603 #define IMAGE_FORMAT_LEGACY 0x01 /* legacy image_header based format */
604 #define IMAGE_FORMAT_FIT 0x02 /* new, libfdt based format */
605 #define IMAGE_FORMAT_ANDROID 0x03 /* Android boot image */
606
607 /**
608 * genimg_get_kernel_addr_fit() - Parse FIT specifier
609 *
610 * Get the real kernel start address from a string which is normally the first
611 * argv of bootm/bootz
612 *
613 * These cases are dealt with, based on the value of @img_addr:
614 * NULL: Returns image_load_addr, does not set last two args
615 * "<addr>": Returns address
616 *
617 * For FIT:
618 * "[<addr>]#<conf>": Returns address (or image_load_addr),
619 * sets fit_uname_config to config name
620 * "[<addr>]:<subimage>": Returns address (or image_load_addr) and sets
621 * fit_uname_kernel to the subimage name
622 *
623 * @img_addr: a string might contain real image address (or NULL)
624 * @fit_uname_config: Returns configuration unit name
625 * @fit_uname_kernel: Returns subimage name
626 *
627 * Returns: kernel start address
628 */
629 ulong genimg_get_kernel_addr_fit(const char *const img_addr,
630 const char **fit_uname_config,
631 const char **fit_uname_kernel);
632
633 ulong genimg_get_kernel_addr(char * const img_addr);
634 int genimg_get_format(const void *img_addr);
635 int genimg_has_config(struct bootm_headers *images);
636
637 /**
638 * boot_get_fpga() - Locate the FPGA image
639 *
640 * @images: Information about images being loaded
641 * Return 0 if OK, non-zero on failure
642 */
643 int boot_get_fpga(struct bootm_headers *images);
644
645 /**
646 * boot_get_ramdisk() - Locate the ramdisk
647 *
648 * @select: address or name of ramdisk to use, or NULL for default
649 * @images: pointer to the bootm images structure
650 * @arch: expected ramdisk architecture
651 * @rd_start: pointer to a ulong variable, will hold ramdisk start address
652 * @rd_end: pointer to a ulong variable, will hold ramdisk end
653 *
654 * boot_get_ramdisk() is responsible for finding a valid ramdisk image.
655 * Currently supported are the following ramdisk sources:
656 * - multicomponent kernel/ramdisk image,
657 * - commandline provided address of decicated ramdisk image.
658 *
659 * returns:
660 * 0, if ramdisk image was found and valid, or skiped
661 * rd_start and rd_end are set to ramdisk start/end addresses if
662 * ramdisk image is found and valid
663 *
664 * 1, if ramdisk image is found but corrupted, or invalid
665 * rd_start and rd_end are set to 0 if no ramdisk exists
666 */
667 int boot_get_ramdisk(char const *select, struct bootm_headers *images,
668 uint arch, ulong *rd_start, ulong *rd_end);
669
670 /**
671 * boot_get_loadable() - load a list of binaries to memory
672 *
673 * @images: pointer to the bootm images structure
674 *
675 * Takes the given FIT configuration, then looks for a field named
676 * "loadables", a list of elements in the FIT given as strings, e.g.:
677 * loadables = "linux_kernel", "fdt-2";
678 *
679 * Each string is parsed, loading the corresponding element from the FIT into
680 * memory. Once placed, no additional actions are taken.
681 *
682 * Return:
683 * 0, if only valid images or no images are found
684 * error code, if an error occurs during fit_image_load
685 */
686 int boot_get_loadable(struct bootm_headers *images);
687
688 int boot_get_setup_fit(struct bootm_headers *images, uint8_t arch,
689 ulong *setup_start, ulong *setup_len);
690
691 /**
692 * boot_get_fdt_fit() - load a DTB from a FIT file (applying overlays)
693 *
694 * This deals with all aspects of loading an DTB from a FIT.
695 * The correct base image based on configuration will be selected, and
696 * then any overlays specified will be applied (as present in fit_uname_configp).
697 *
698 * @param images Boot images structure
699 * @param addr Address of FIT in memory
700 * @param fit_unamep On entry this is the requested image name
701 * (e.g. "kernel") or NULL to use the default. On exit
702 * points to the selected image name
703 * @param fit_uname_configp On entry this is the requested configuration
704 * name (e.g. "conf-1") or NULL to use the default. On
705 * exit points to the selected configuration name.
706 * @param arch Expected architecture (IH_ARCH_...)
707 * @param datap Returns address of loaded image
708 * @param lenp Returns length of loaded image
709 *
710 * Return: node offset of base image, or -ve error code on error
711 */
712 int boot_get_fdt_fit(struct bootm_headers *images, ulong addr,
713 const char **fit_unamep, const char **fit_uname_configp,
714 int arch, ulong *datap, ulong *lenp);
715
716 /**
717 * fit_image_load() - load an image from a FIT
718 *
719 * This deals with all aspects of loading an image from a FIT, including
720 * selecting the right image based on configuration, verifying it, printing
721 * out progress messages, checking the type/arch/os and optionally copying it
722 * to the right load address.
723 *
724 * The property to look up is defined by image_type.
725 *
726 * @param images Boot images structure
727 * @param addr Address of FIT in memory
728 * @param fit_unamep On entry this is the requested image name
729 * (e.g. "kernel") or NULL to use the default. On exit
730 * points to the selected image name
731 * @param fit_uname_configp On entry this is the requested configuration
732 * name (e.g. "conf-1") or NULL to use the default. On
733 * exit points to the selected configuration name.
734 * @param arch Expected architecture (IH_ARCH_...)
735 * @param image_ph_type Required image type (IH_TYPE_...). If this is
736 * IH_TYPE_KERNEL then we allow IH_TYPE_KERNEL_NOLOAD
737 * also. If a phase is required, this is included also,
738 * see image_phase_and_type()
739 * @param bootstage_id ID of starting bootstage to use for progress updates.
740 * This will be added to the BOOTSTAGE_SUB values when
741 * calling bootstage_mark()
742 * @param load_op Decribes what to do with the load address
743 * @param datap Returns address of loaded image
744 * @param lenp Returns length of loaded image
745 * Return: node offset of image, or -ve error code on error:
746 * -ENOEXEC - unsupported architecture
747 * -ENOENT - could not find image / subimage
748 * -EACCES - hash, signature or decryptions failure
749 * -EBADF - invalid OS or image type, or cannot get image load-address
750 * -EXDEV - memory overwritten / overlap
751 * -NOEXEC - image decompression error, or invalid FDT
752 */
753 int fit_image_load(struct bootm_headers *images, ulong addr,
754 const char **fit_unamep, const char **fit_uname_configp,
755 int arch, int image_ph_type, int bootstage_id,
756 enum fit_load_op load_op, ulong *datap, ulong *lenp);
757
758 /**
759 * image_locate_script() - Locate the raw script in an image
760 *
761 * @buf: Address of image
762 * @size: Size of image in bytes
763 * @fit_uname: Node name of FIT image to read
764 * @confname: Node name of FIT config to read
765 * @datap: Returns pointer to raw script on success
766 * @lenp: Returns size of raw script on success
767 * @return 0 if OK, non-zero on error
768 */
769 int image_locate_script(void *buf, int size, const char *fit_uname,
770 const char *confname, char **datap, uint *lenp);
771
772 /**
773 * fit_get_node_from_config() - Look up an image a FIT by type
774 *
775 * This looks in the selected conf- node (images->fit_uname_cfg) for a
776 * particular image type (e.g. "kernel") and then finds the image that is
777 * referred to.
778 *
779 * For example, for something like:
780 *
781 * images {
782 * kernel {
783 * ...
784 * };
785 * };
786 * configurations {
787 * conf-1 {
788 * kernel = "kernel";
789 * };
790 * };
791 *
792 * the function will return the node offset of the kernel@1 node, assuming
793 * that conf-1 is the chosen configuration.
794 *
795 * @param images Boot images structure
796 * @param prop_name Property name to look up (FIT_..._PROP)
797 * @param addr Address of FIT in memory
798 */
799 int fit_get_node_from_config(struct bootm_headers *images,
800 const char *prop_name, ulong addr);
801
802 /**
803 * boot_get_fdt() - locate FDT devicetree to use for booting
804 *
805 * @buf: Pointer to image
806 * @select: FDT to select (this is normally argv[2] of the bootm command)
807 * @arch: architecture (IH_ARCH_...)
808 * @images: pointer to the bootm images structure
809 * @of_flat_tree: pointer to a char* variable, will hold fdt start address
810 * @of_size: pointer to a ulong variable, will hold fdt length
811 *
812 * boot_get_fdt() is responsible for finding a valid flat device tree image.
813 * Currently supported are the following FDT sources:
814 * - multicomponent kernel/ramdisk/FDT image,
815 * - commandline provided address of decicated FDT image.
816 *
817 * Return:
818 * 0, if fdt image was found and valid, or skipped
819 * of_flat_tree and of_size are set to fdt start address and length if
820 * fdt image is found and valid
821 *
822 * 1, if fdt image is found but corrupted
823 * of_flat_tree and of_size are set to 0 if no fdt exists
824 */
825 int boot_get_fdt(void *buf, const char *select, uint arch,
826 struct bootm_headers *images, char **of_flat_tree,
827 ulong *of_size);
828
829 void boot_fdt_add_mem_rsv_regions(void *fdt_blob);
830 int boot_relocate_fdt(char **of_flat_tree, ulong *of_size);
831
832 int boot_ramdisk_high(ulong rd_data, ulong rd_len, ulong *initrd_start,
833 ulong *initrd_end);
834 int boot_get_cmdline(ulong *cmd_start, ulong *cmd_end);
835 int boot_get_kbd(struct bd_info **kbd);
836
837 /*******************************************************************/
838 /* Legacy format specific code (prefixed with image_) */
839 /*******************************************************************/
image_get_header_size(void)840 static inline uint32_t image_get_header_size(void)
841 {
842 return sizeof(struct legacy_img_hdr);
843 }
844
845 #define image_get_hdr_l(f) \
846 static inline uint32_t image_get_##f(const struct legacy_img_hdr *hdr) \
847 { \
848 return uimage_to_cpu(hdr->ih_##f); \
849 }
850 image_get_hdr_l(magic) /* image_get_magic */
image_get_hdr_l(hcrc)851 image_get_hdr_l(hcrc) /* image_get_hcrc */
852 image_get_hdr_l(time) /* image_get_time */
853 image_get_hdr_l(size) /* image_get_size */
854 image_get_hdr_l(load) /* image_get_load */
855 image_get_hdr_l(ep) /* image_get_ep */
856 image_get_hdr_l(dcrc) /* image_get_dcrc */
857
858 #define image_get_hdr_b(f) \
859 static inline uint8_t image_get_##f(const struct legacy_img_hdr *hdr) \
860 { \
861 return hdr->ih_##f; \
862 }
863 image_get_hdr_b(os) /* image_get_os */
864 image_get_hdr_b(arch) /* image_get_arch */
865 image_get_hdr_b(type) /* image_get_type */
866 image_get_hdr_b(comp) /* image_get_comp */
867
868 static inline char *image_get_name(const struct legacy_img_hdr *hdr)
869 {
870 return (char *)hdr->ih_name;
871 }
872
image_get_data_size(const struct legacy_img_hdr * hdr)873 static inline uint32_t image_get_data_size(const struct legacy_img_hdr *hdr)
874 {
875 return image_get_size(hdr);
876 }
877
878 /**
879 * image_get_data - get image payload start address
880 * @hdr: image header
881 *
882 * image_get_data() returns address of the image payload. For single
883 * component images it is image data start. For multi component
884 * images it points to the null terminated table of sub-images sizes.
885 *
886 * returns:
887 * image payload data start address
888 */
image_get_data(const struct legacy_img_hdr * hdr)889 static inline ulong image_get_data(const struct legacy_img_hdr *hdr)
890 {
891 return ((ulong)hdr + image_get_header_size());
892 }
893
image_get_image_size(const struct legacy_img_hdr * hdr)894 static inline uint32_t image_get_image_size(const struct legacy_img_hdr *hdr)
895 {
896 return (image_get_size(hdr) + image_get_header_size());
897 }
898
image_get_image_end(const struct legacy_img_hdr * hdr)899 static inline ulong image_get_image_end(const struct legacy_img_hdr *hdr)
900 {
901 return ((ulong)hdr + image_get_image_size(hdr));
902 }
903
904 #define image_set_hdr_l(f) \
905 static inline void image_set_##f(struct legacy_img_hdr *hdr, uint32_t val) \
906 { \
907 hdr->ih_##f = cpu_to_uimage(val); \
908 }
909 image_set_hdr_l(magic) /* image_set_magic */
image_set_hdr_l(hcrc)910 image_set_hdr_l(hcrc) /* image_set_hcrc */
911 image_set_hdr_l(time) /* image_set_time */
912 image_set_hdr_l(size) /* image_set_size */
913 image_set_hdr_l(load) /* image_set_load */
914 image_set_hdr_l(ep) /* image_set_ep */
915 image_set_hdr_l(dcrc) /* image_set_dcrc */
916
917 #define image_set_hdr_b(f) \
918 static inline void image_set_##f(struct legacy_img_hdr *hdr, uint8_t val) \
919 { \
920 hdr->ih_##f = val; \
921 }
922 image_set_hdr_b(os) /* image_set_os */
923 image_set_hdr_b(arch) /* image_set_arch */
924 image_set_hdr_b(type) /* image_set_type */
925 image_set_hdr_b(comp) /* image_set_comp */
926
927 static inline void image_set_name(struct legacy_img_hdr *hdr, const char *name)
928 {
929 /*
930 * This is equivalent to: strncpy(image_get_name(hdr), name, IH_NMLEN);
931 *
932 * Use the tortured code below to avoid a warning with gcc 12. We do not
933 * want to include a nul terminator if the name is of length IH_NMLEN
934 */
935 memcpy(image_get_name(hdr), name, strnlen(name, IH_NMLEN));
936 }
937
938 int image_check_hcrc(const struct legacy_img_hdr *hdr);
939 int image_check_dcrc(const struct legacy_img_hdr *hdr);
940 #ifndef USE_HOSTCC
941 phys_addr_t env_get_bootm_low(void);
942 phys_size_t env_get_bootm_size(void);
943 phys_size_t env_get_bootm_mapsize(void);
944 #endif
945 void memmove_wd(void *to, void *from, size_t len, ulong chunksz);
946
image_check_magic(const struct legacy_img_hdr * hdr)947 static inline int image_check_magic(const struct legacy_img_hdr *hdr)
948 {
949 return (image_get_magic(hdr) == IH_MAGIC);
950 }
951
image_check_type(const struct legacy_img_hdr * hdr,uint8_t type)952 static inline int image_check_type(const struct legacy_img_hdr *hdr, uint8_t type)
953 {
954 return (image_get_type(hdr) == type);
955 }
956
image_check_arch(const struct legacy_img_hdr * hdr,uint8_t arch)957 static inline int image_check_arch(const struct legacy_img_hdr *hdr, uint8_t arch)
958 {
959 /* Let's assume that sandbox can load any architecture */
960 if (!tools_build() && IS_ENABLED(CONFIG_SANDBOX))
961 return true;
962 return (image_get_arch(hdr) == arch) ||
963 (image_get_arch(hdr) == IH_ARCH_ARM && arch == IH_ARCH_ARM64);
964 }
965
image_check_os(const struct legacy_img_hdr * hdr,uint8_t os)966 static inline int image_check_os(const struct legacy_img_hdr *hdr, uint8_t os)
967 {
968 return (image_get_os(hdr) == os);
969 }
970
971 ulong image_multi_count(const struct legacy_img_hdr *hdr);
972 void image_multi_getimg(const struct legacy_img_hdr *hdr, ulong idx,
973 ulong *data, ulong *len);
974
975 void image_print_contents(const void *hdr);
976
977 #ifndef USE_HOSTCC
image_check_target_arch(const struct legacy_img_hdr * hdr)978 static inline int image_check_target_arch(const struct legacy_img_hdr *hdr)
979 {
980 #ifndef IH_ARCH_DEFAULT
981 # error "please define IH_ARCH_DEFAULT in your arch asm/u-boot.h"
982 #endif
983 return image_check_arch(hdr, IH_ARCH_DEFAULT);
984 }
985 #endif /* USE_HOSTCC */
986
987 /**
988 * image_decomp_type() - Find out compression type of an image
989 *
990 * @buf: Address in U-Boot memory where image is loaded.
991 * @len: Length of the compressed image.
992 * Return: compression type or IH_COMP_NONE if not compressed.
993 *
994 * Note: Only following compression types are supported now.
995 * lzo, lzma, gzip, bzip2
996 */
997 int image_decomp_type(const unsigned char *buf, ulong len);
998
999 /**
1000 * image_decomp() - decompress an image
1001 *
1002 * @comp: Compression algorithm that is used (IH_COMP_...)
1003 * @load: Destination load address in U-Boot memory
1004 * @image_start Image start address (where we are decompressing from)
1005 * @type: OS type (IH_OS_...)
1006 * @load_buf: Place to decompress to
1007 * @image_buf: Address to decompress from
1008 * @image_len: Number of bytes in @image_buf to decompress
1009 * @unc_len: Available space for decompression
1010 * Return: 0 if OK, -ve on error (BOOTM_ERR_...)
1011 */
1012 int image_decomp(int comp, ulong load, ulong image_start, int type,
1013 void *load_buf, void *image_buf, ulong image_len,
1014 uint unc_len, ulong *load_end);
1015
1016 /**
1017 * Set up properties in the FDT
1018 *
1019 * This sets up properties in the FDT that is to be passed to linux.
1020 *
1021 * @images: Images information
1022 * @blob: FDT to update
1023 * @lmb: Flag indicating use of lmb for reserving FDT memory region
1024 * Return: 0 if ok, <0 on failure
1025 */
1026 int image_setup_libfdt(struct bootm_headers *images, void *blob, bool lmb);
1027
1028 /**
1029 * Set up the FDT to use for booting a kernel
1030 *
1031 * This performs ramdisk setup, sets up the FDT if required, and adds
1032 * paramters to the FDT if libfdt is available.
1033 *
1034 * @param images Images information
1035 * Return: 0 if ok, <0 on failure
1036 */
1037 int image_setup_linux(struct bootm_headers *images);
1038
1039 /**
1040 * bootz_setup() - Extract stat and size of a Linux xImage
1041 *
1042 * @image: Address of image
1043 * @start: Returns start address of image
1044 * @end : Returns end address of image
1045 * Return: 0 if OK, 1 if the image was not recognised
1046 */
1047 int bootz_setup(ulong image, ulong *start, ulong *end);
1048
1049 /**
1050 * Return the correct start address and size of a Linux aarch64 Image.
1051 *
1052 * @image: Address of image
1053 * @start: Returns start address of image
1054 * @size : Returns size image
1055 * @force_reloc: Ignore image->ep field, always place image to RAM start
1056 * Return: 0 if OK, 1 if the image was not recognised
1057 */
1058 int booti_setup(ulong image, ulong *relocated_addr, ulong *size,
1059 bool force_reloc);
1060
1061 /*******************************************************************/
1062 /* New uImage format specific code (prefixed with fit_) */
1063 /*******************************************************************/
1064
1065 #define FIT_IMAGES_PATH "/images"
1066 #define FIT_CONFS_PATH "/configurations"
1067
1068 /* hash/signature/key node */
1069 #define FIT_HASH_NODENAME "hash"
1070 #define FIT_ALGO_PROP "algo"
1071 #define FIT_VALUE_PROP "value"
1072 #define FIT_IGNORE_PROP "uboot-ignore"
1073 #define FIT_SIG_NODENAME "signature"
1074 #define FIT_KEY_REQUIRED "required"
1075 #define FIT_KEY_HINT "key-name-hint"
1076
1077 /* cipher node */
1078 #define FIT_CIPHER_NODENAME "cipher"
1079 #define FIT_ALGO_PROP "algo"
1080
1081 /* image node */
1082 #define FIT_DATA_PROP "data"
1083 #define FIT_DATA_POSITION_PROP "data-position"
1084 #define FIT_DATA_OFFSET_PROP "data-offset"
1085 #define FIT_DATA_SIZE_PROP "data-size"
1086 #define FIT_TIMESTAMP_PROP "timestamp"
1087 #define FIT_DESC_PROP "description"
1088 #define FIT_ARCH_PROP "arch"
1089 #define FIT_TYPE_PROP "type"
1090 #define FIT_OS_PROP "os"
1091 #define FIT_COMP_PROP "compression"
1092 #define FIT_ENTRY_PROP "entry"
1093 #define FIT_LOAD_PROP "load"
1094
1095 /* configuration node */
1096 #define FIT_KERNEL_PROP "kernel"
1097 #define FIT_RAMDISK_PROP "ramdisk"
1098 #define FIT_FDT_PROP "fdt"
1099 #define FIT_LOADABLE_PROP "loadables"
1100 #define FIT_DEFAULT_PROP "default"
1101 #define FIT_SETUP_PROP "setup"
1102 #define FIT_FPGA_PROP "fpga"
1103 #define FIT_FIRMWARE_PROP "firmware"
1104 #define FIT_STANDALONE_PROP "standalone"
1105 #define FIT_SCRIPT_PROP "script"
1106 #define FIT_PHASE_PROP "phase"
1107
1108 #define FIT_MAX_HASH_LEN HASH_MAX_DIGEST_SIZE
1109
1110 /* cmdline argument format parsing */
1111 int fit_parse_conf(const char *spec, ulong addr_curr,
1112 ulong *addr, const char **conf_name);
1113 int fit_parse_subimage(const char *spec, ulong addr_curr,
1114 ulong *addr, const char **image_name);
1115
1116 int fit_get_subimage_count(const void *fit, int images_noffset);
1117 void fit_print_contents(const void *fit);
1118 void fit_image_print(const void *fit, int noffset, const char *p);
1119
1120 /**
1121 * fit_get_end - get FIT image size
1122 * @fit: pointer to the FIT format image header
1123 *
1124 * returns:
1125 * size of the FIT image (blob) in memory
1126 */
fit_get_size(const void * fit)1127 static inline ulong fit_get_size(const void *fit)
1128 {
1129 return fdt_totalsize(fit);
1130 }
1131
1132 /**
1133 * fit_get_end - get FIT image end
1134 * @fit: pointer to the FIT format image header
1135 *
1136 * returns:
1137 * end address of the FIT image (blob) in memory
1138 */
1139 ulong fit_get_end(const void *fit);
1140
1141 /**
1142 * fit_get_name - get FIT node name
1143 * @fit: pointer to the FIT format image header
1144 *
1145 * returns:
1146 * NULL, on error
1147 * pointer to node name, on success
1148 */
fit_get_name(const void * fit_hdr,int noffset,int * len)1149 static inline const char *fit_get_name(const void *fit_hdr,
1150 int noffset, int *len)
1151 {
1152 return fdt_get_name(fit_hdr, noffset, len);
1153 }
1154
1155 int fit_get_desc(const void *fit, int noffset, char **desc);
1156 int fit_get_timestamp(const void *fit, int noffset, time_t *timestamp);
1157
1158 int fit_image_get_node(const void *fit, const char *image_uname);
1159 int fit_image_get_os(const void *fit, int noffset, uint8_t *os);
1160 int fit_image_get_arch(const void *fit, int noffset, uint8_t *arch);
1161 int fit_image_get_type(const void *fit, int noffset, uint8_t *type);
1162 int fit_image_get_comp(const void *fit, int noffset, uint8_t *comp);
1163 int fit_image_get_load(const void *fit, int noffset, ulong *load);
1164 int fit_image_get_entry(const void *fit, int noffset, ulong *entry);
1165 int fit_image_get_emb_data(const void *fit, int noffset, const void **data,
1166 size_t *size);
1167 int fit_image_get_data_offset(const void *fit, int noffset, int *data_offset);
1168 int fit_image_get_data_position(const void *fit, int noffset,
1169 int *data_position);
1170 int fit_image_get_data_size(const void *fit, int noffset, int *data_size);
1171 int fit_image_get_data_size_unciphered(const void *fit, int noffset,
1172 size_t *data_size);
1173 int fit_image_get_data(const void *fit, int noffset, const void **data,
1174 size_t *size);
1175
1176 /**
1177 * fit_image_get_phase() - Get the phase from a FIT image
1178 *
1179 * @fit: FIT to read from
1180 * @offset: offset node to read
1181 * @phasep: Returns phase, if any
1182 * Return: 0 if read OK and *phasep is value, -ENOENT if there was no phase
1183 * property in the node, other -ve value on other error
1184 */
1185 int fit_image_get_phase(const void *fit, int offset,
1186 enum image_phase_t *phasep);
1187
1188 /**
1189 * fit_get_data_node() - Get verified image data for an image
1190 * @fit: Pointer to the FIT format image header
1191 * @image_uname: The name of the image node
1192 * @data: A pointer which will be filled with the location of the image data
1193 * @size: A pointer which will be filled with the size of the image data
1194 *
1195 * This function looks up the location and size of an image specified by its
1196 * name. For example, if you had a FIT like::
1197 *
1198 * images {
1199 * my-firmware {
1200 * ...
1201 * };
1202 * };
1203 *
1204 * Then you could look up the data location and size of the my-firmware image
1205 * by calling this function with @image_uname set to "my-firmware". This
1206 * function also verifies the image data (if enabled) before returning. The
1207 * image description is printed out on success. @data and @size will not be
1208 * modified on faulure.
1209 *
1210 * Return:
1211 * * 0 on success
1212 * * -EINVAL if the image could not be verified
1213 * * -ENOENT if there was a problem getting the data/size
1214 * * Another negative error if there was a problem looking up the image node.
1215 */
1216 int fit_get_data_node(const void *fit, const char *image_uname,
1217 const void **data, size_t *size);
1218
1219 /**
1220 * fit_get_data_conf_prop() - Get verified image data for a property in /conf
1221 * @fit: Pointer to the FIT format image header
1222 * @prop_name: The name of the property in /conf referencing the image
1223 * @data: A pointer which will be filled with the location of the image data
1224 * @size: A pointer which will be filled with the size of the image data
1225 *
1226 * This function looks up the location and size of an image specified by a
1227 * property in /conf. For example, if you had a FIT like::
1228 *
1229 * images {
1230 * my-firmware {
1231 * ...
1232 * };
1233 * };
1234 *
1235 * configurations {
1236 * default = "conf-1";
1237 * conf-1 {
1238 * some-firmware = "my-firmware";
1239 * };
1240 * };
1241 *
1242 * Then you could look up the data location and size of the my-firmware image
1243 * by calling this function with @prop_name set to "some-firmware". This
1244 * function also verifies the image data (if enabled) before returning. The
1245 * image description is printed out on success. @data and @size will not be
1246 * modified on faulure.
1247 *
1248 * Return:
1249 * * 0 on success
1250 * * -EINVAL if the image could not be verified
1251 * * -ENOENT if there was a problem getting the data/size
1252 * * Another negative error if there was a problem looking up the configuration
1253 * or image node.
1254 */
1255 int fit_get_data_conf_prop(const void *fit, const char *prop_name,
1256 const void **data, size_t *size);
1257
1258 int fit_image_hash_get_algo(const void *fit, int noffset, const char **algo);
1259 int fit_image_hash_get_value(const void *fit, int noffset, uint8_t **value,
1260 int *value_len);
1261
1262 int fit_set_timestamp(void *fit, int noffset, time_t timestamp);
1263
1264 /**
1265 * fit_pre_load_data() - add public key to fdt blob
1266 *
1267 * Adds public key to the node pre load.
1268 *
1269 * @keydir: Directory containing keys
1270 * @keydest: FDT blob to write public key
1271 * @fit: Pointer to the FIT format image header
1272 *
1273 * returns:
1274 * 0, on success
1275 * < 0, on failure
1276 */
1277 int fit_pre_load_data(const char *keydir, void *keydest, void *fit);
1278
1279 int fit_cipher_data(const char *keydir, void *keydest, void *fit,
1280 const char *comment, int require_keys,
1281 const char *engine_id, const char *cmdname);
1282
1283 #define NODE_MAX_NAME_LEN 80
1284
1285 /**
1286 * struct image_summary - Provides information about signing info added
1287 *
1288 * @sig_offset: Offset of the node in the blob devicetree where the signature
1289 * was wriiten
1290 * @sig_path: Path to @sig_offset
1291 * @keydest_offset: Offset of the node in the keydest devicetree where the
1292 * public key was written (-1 if none)
1293 * @keydest_path: Path to @keydest_offset
1294 */
1295 struct image_summary {
1296 int sig_offset;
1297 char sig_path[NODE_MAX_NAME_LEN];
1298 int keydest_offset;
1299 char keydest_path[NODE_MAX_NAME_LEN];
1300 };
1301
1302 /**
1303 * fit_add_verification_data() - add verification data to FIT image nodes
1304 *
1305 * @keydir: Directory containing keys
1306 * @kwydest: FDT blob to write public key information to (NULL if none)
1307 * @fit: Pointer to the FIT format image header
1308 * @comment: Comment to add to signature nodes
1309 * @require_keys: Mark all keys as 'required'
1310 * @engine_id: Engine to use for signing
1311 * @cmdname: Command name used when reporting errors
1312 * @algo_name: Algorithm name, or NULL if to be read from FIT
1313 * @summary: Returns information about what data was written
1314 *
1315 * Adds hash values for all component images in the FIT blob.
1316 * Hashes are calculated for all component images which have hash subnodes
1317 * with algorithm property set to one of the supported hash algorithms.
1318 *
1319 * Also add signatures if signature nodes are present.
1320 *
1321 * returns
1322 * 0, on success
1323 * libfdt error code, on failure
1324 */
1325 int fit_add_verification_data(const char *keydir, const char *keyfile,
1326 void *keydest, void *fit, const char *comment,
1327 int require_keys, const char *engine_id,
1328 const char *cmdname, const char *algo_name,
1329 struct image_summary *summary);
1330
1331 /**
1332 * fit_image_verify_with_data() - Verify an image with given data
1333 *
1334 * @fit: Pointer to the FIT format image header
1335 * @image_offset: Offset in @fit of image to verify
1336 * @key_blob: FDT containing public keys
1337 * @data: Image data to verify
1338 * @size: Size of image data
1339 */
1340 int fit_image_verify_with_data(const void *fit, int image_noffset,
1341 const void *key_blob, const void *data,
1342 size_t size);
1343
1344 int fit_image_verify(const void *fit, int noffset);
1345 #if CONFIG_IS_ENABLED(FIT_SIGNATURE)
1346 int fit_config_verify(const void *fit, int conf_noffset);
1347 #else
fit_config_verify(const void * fit,int conf_noffset)1348 static inline int fit_config_verify(const void *fit, int conf_noffset)
1349 {
1350 return 0;
1351 }
1352 #endif
1353 int fit_all_image_verify(const void *fit);
1354 int fit_config_decrypt(const void *fit, int conf_noffset);
1355 int fit_image_check_os(const void *fit, int noffset, uint8_t os);
1356 int fit_image_check_arch(const void *fit, int noffset, uint8_t arch);
1357 int fit_image_check_type(const void *fit, int noffset, uint8_t type);
1358 int fit_image_check_comp(const void *fit, int noffset, uint8_t comp);
1359
1360 /**
1361 * fit_check_format() - Check that the FIT is valid
1362 *
1363 * This performs various checks on the FIT to make sure it is suitable for
1364 * use, looking for mandatory properties, nodes, etc.
1365 *
1366 * If FIT_FULL_CHECK is enabled, it also runs it through libfdt to make
1367 * sure that there are no strange tags or broken nodes in the FIT.
1368 *
1369 * @fit: pointer to the FIT format image header
1370 * Return: 0 if OK, -ENOEXEC if not an FDT file, -EINVAL if the full FDT check
1371 * failed (e.g. due to bad structure), -ENOMSG if the description is
1372 * missing, -EBADMSG if the timestamp is missing, -ENOENT if the /images
1373 * path is missing
1374 */
1375 int fit_check_format(const void *fit, ulong size);
1376
1377 /**
1378 * fit_conf_find_compat() - find most compatible configuration
1379 * @fit: pointer to the FIT format image header
1380 * @fdt: pointer to the device tree to compare against
1381 *
1382 * Attempts to find the configuration whose fdt is the most compatible with the
1383 * passed in device tree
1384 *
1385 * Example::
1386 *
1387 * / o image-tree
1388 * |-o images
1389 * | |-o fdt-1
1390 * | |-o fdt-2
1391 * |
1392 * |-o configurations
1393 * |-o config-1
1394 * | |-fdt = fdt-1
1395 * |
1396 * |-o config-2
1397 * |-fdt = fdt-2
1398 *
1399 * / o U-Boot fdt
1400 * |-compatible = "foo,bar", "bim,bam"
1401 *
1402 * / o kernel fdt1
1403 * |-compatible = "foo,bar",
1404 *
1405 * / o kernel fdt2
1406 * |-compatible = "bim,bam", "baz,biz"
1407 *
1408 * Configuration 1 would be picked because the first string in U-Boot's
1409 * compatible list, "foo,bar", matches a compatible string in the root of fdt1.
1410 * "bim,bam" in fdt2 matches the second string which isn't as good as fdt1.
1411 *
1412 * As an optimization, the compatible property from the FDT's root node can be
1413 * copied into the configuration node in the FIT image. This is required to
1414 * match configurations with compressed FDTs.
1415 *
1416 * Returns: offset to the configuration to use if one was found, -EINVAL if
1417 * there a /configurations or /images node is missing, -ENOENT if no match was
1418 * found, -ENXIO if the FDT node has no compatible string
1419 */
1420 int fit_conf_find_compat(const void *fit, const void *fdt);
1421
1422 /**
1423 * fit_conf_get_node - get node offset for configuration of a given unit name
1424 * @fit: pointer to the FIT format image header
1425 * @conf_uname: configuration node unit name (NULL to use default)
1426 *
1427 * fit_conf_get_node() finds a configuration (within the '/configurations'
1428 * parent node) of a provided unit name. If configuration is found its node
1429 * offset is returned to the caller.
1430 *
1431 * When NULL is provided in second argument fit_conf_get_node() will search
1432 * for a default configuration node instead. Default configuration node unit
1433 * name is retrieved from FIT_DEFAULT_PROP property of the '/configurations'
1434 * node.
1435 *
1436 * returns:
1437 * configuration node offset when found (>=0)
1438 * negative number on failure (FDT_ERR_* code)
1439 */
1440 int fit_conf_get_node(const void *fit, const char *conf_uname);
1441
1442 int fit_conf_get_prop_node_count(const void *fit, int noffset,
1443 const char *prop_name);
1444 int fit_conf_get_prop_node_index(const void *fit, int noffset,
1445 const char *prop_name, int index);
1446
1447 /**
1448 * fit_conf_get_prop_node() - Get node refered to by a configuration
1449 * @fit: FIT to check
1450 * @noffset: Offset of conf@xxx node to check
1451 * @prop_name: Property to read from the conf node
1452 * @phase: Image phase to use, IH_PHASE_NONE for any
1453 *
1454 * The conf- nodes contain references to other nodes, using properties
1455 * like 'kernel = "kernel"'. Given such a property name (e.g. "kernel"),
1456 * return the offset of the node referred to (e.g. offset of node
1457 * "/images/kernel".
1458 */
1459 int fit_conf_get_prop_node(const void *fit, int noffset, const char *prop_name,
1460 enum image_phase_t phase);
1461
1462 int fit_check_ramdisk(const void *fit, int os_noffset,
1463 uint8_t arch, int verify);
1464
1465 int calculate_hash(const void *data, int data_len, const char *algo,
1466 uint8_t *value, int *value_len);
1467
1468 /*
1469 * At present we only support signing on the host, and verification on the
1470 * device
1471 */
1472 #if defined(USE_HOSTCC)
1473 # if CONFIG_IS_ENABLED(FIT_SIGNATURE)
1474 # define IMAGE_ENABLE_SIGN 1
1475 # define FIT_IMAGE_ENABLE_VERIFY 1
1476 # include <openssl/evp.h>
1477 # else
1478 # define IMAGE_ENABLE_SIGN 0
1479 # define FIT_IMAGE_ENABLE_VERIFY 0
1480 # endif
1481 #else
1482 # define IMAGE_ENABLE_SIGN 0
1483 # define FIT_IMAGE_ENABLE_VERIFY CONFIG_IS_ENABLED(FIT_SIGNATURE)
1484 #endif
1485
1486 #ifdef USE_HOSTCC
1487 void *image_get_host_blob(void);
1488 void image_set_host_blob(void *host_blob);
1489 # define gd_fdt_blob() image_get_host_blob()
1490 #else
1491 # define gd_fdt_blob() (gd->fdt_blob)
1492 #endif
1493
1494 /*
1495 * Information passed to the signing routines
1496 *
1497 * Either 'keydir', 'keyname', or 'keyfile' can be NULL. However, either
1498 * 'keyfile', or both 'keydir' and 'keyname' should have valid values. If
1499 * neither are valid, some operations might fail with EINVAL.
1500 */
1501 struct image_sign_info {
1502 const char *keydir; /* Directory conaining keys */
1503 const char *keyname; /* Name of key to use */
1504 const char *keyfile; /* Filename of private or public key */
1505 const void *fit; /* Pointer to FIT blob */
1506 int node_offset; /* Offset of signature node */
1507 const char *name; /* Algorithm name */
1508 struct checksum_algo *checksum; /* Checksum algorithm information */
1509 struct padding_algo *padding; /* Padding algorithm information */
1510 struct crypto_algo *crypto; /* Crypto algorithm information */
1511 const void *fdt_blob; /* FDT containing public keys */
1512 int required_keynode; /* Node offset of key to use: -1=any */
1513 const char *require_keys; /* Value for 'required' property */
1514 const char *engine_id; /* Engine to use for signing */
1515 /*
1516 * Note: the following two fields are always valid even w/o
1517 * RSA_VERIFY_WITH_PKEY in order to make sure this structure is
1518 * the same on target and host. Otherwise, vboot test may fail.
1519 */
1520 const void *key; /* Pointer to public key in DER */
1521 int keylen; /* Length of public key */
1522 };
1523
1524 /* A part of an image, used for hashing */
1525 struct image_region {
1526 const void *data;
1527 int size;
1528 };
1529
1530 struct checksum_algo {
1531 const char *name;
1532 const int checksum_len;
1533 const int der_len;
1534 const uint8_t *der_prefix;
1535 #if IMAGE_ENABLE_SIGN
1536 const EVP_MD *(*calculate_sign)(void);
1537 #endif
1538 int (*calculate)(const char *name,
1539 const struct image_region *region,
1540 int region_count, uint8_t *checksum);
1541 };
1542
1543 struct crypto_algo {
1544 const char *name; /* Name of algorithm */
1545 const int key_len;
1546
1547 /**
1548 * sign() - calculate and return signature for given input data
1549 *
1550 * @info: Specifies key and FIT information
1551 * @data: Pointer to the input data
1552 * @data_len: Data length
1553 * @sigp: Set to an allocated buffer holding the signature
1554 * @sig_len: Set to length of the calculated hash
1555 *
1556 * This computes input data signature according to selected algorithm.
1557 * Resulting signature value is placed in an allocated buffer, the
1558 * pointer is returned as *sigp. The length of the calculated
1559 * signature is returned via the sig_len pointer argument. The caller
1560 * should free *sigp.
1561 *
1562 * @return: 0, on success, -ve on error
1563 */
1564 int (*sign)(struct image_sign_info *info,
1565 const struct image_region region[],
1566 int region_count, uint8_t **sigp, uint *sig_len);
1567
1568 /**
1569 * add_verify_data() - Add verification information to FDT
1570 *
1571 * Add public key information to the FDT node, suitable for
1572 * verification at run-time. The information added depends on the
1573 * algorithm being used.
1574 *
1575 * @info: Specifies key and FIT information
1576 * @keydest: Destination FDT blob for public key data
1577 * @return: node offset within the FDT blob where the data was written,
1578 * or -ve on error
1579 */
1580 int (*add_verify_data)(struct image_sign_info *info, void *keydest);
1581
1582 /**
1583 * verify() - Verify a signature against some data
1584 *
1585 * @info: Specifies key and FIT information
1586 * @data: Pointer to the input data
1587 * @data_len: Data length
1588 * @sig: Signature
1589 * @sig_len: Number of bytes in signature
1590 * @return 0 if verified, -ve on error
1591 */
1592 int (*verify)(struct image_sign_info *info,
1593 const struct image_region region[], int region_count,
1594 uint8_t *sig, uint sig_len);
1595 };
1596
1597 /* Declare a new U-Boot crypto algorithm handler */
1598 #define U_BOOT_CRYPTO_ALGO(__name) \
1599 ll_entry_declare(struct crypto_algo, __name, cryptos)
1600
1601 struct padding_algo {
1602 const char *name;
1603 int (*verify)(struct image_sign_info *info,
1604 const uint8_t *pad, int pad_len,
1605 const uint8_t *hash, int hash_len);
1606 };
1607
1608 /* Declare a new U-Boot padding algorithm handler */
1609 #define U_BOOT_PADDING_ALGO(__name) \
1610 ll_entry_declare(struct padding_algo, __name, paddings)
1611
1612 /**
1613 * image_get_checksum_algo() - Look up a checksum algorithm
1614 *
1615 * @param full_name Name of algorithm in the form "checksum,crypto"
1616 * Return: pointer to algorithm information, or NULL if not found
1617 */
1618 struct checksum_algo *image_get_checksum_algo(const char *full_name);
1619
1620 /**
1621 * image_get_crypto_algo() - Look up a cryptosystem algorithm
1622 *
1623 * @param full_name Name of algorithm in the form "checksum,crypto"
1624 * Return: pointer to algorithm information, or NULL if not found
1625 */
1626 struct crypto_algo *image_get_crypto_algo(const char *full_name);
1627
1628 /**
1629 * image_get_padding_algo() - Look up a padding algorithm
1630 *
1631 * @param name Name of padding algorithm
1632 * Return: pointer to algorithm information, or NULL if not found
1633 */
1634 struct padding_algo *image_get_padding_algo(const char *name);
1635
1636 #define IMAGE_PRE_LOAD_SIG_MAGIC 0x55425348
1637 #define IMAGE_PRE_LOAD_SIG_OFFSET_MAGIC 0
1638 #define IMAGE_PRE_LOAD_SIG_OFFSET_IMG_LEN 4
1639 #define IMAGE_PRE_LOAD_SIG_OFFSET_SIG 8
1640
1641 #define IMAGE_PRE_LOAD_PATH "/image/pre-load/sig"
1642 #define IMAGE_PRE_LOAD_PROP_ALGO_NAME "algo-name"
1643 #define IMAGE_PRE_LOAD_PROP_PADDING_NAME "padding-name"
1644 #define IMAGE_PRE_LOAD_PROP_SIG_SIZE "signature-size"
1645 #define IMAGE_PRE_LOAD_PROP_PUBLIC_KEY "public-key"
1646 #define IMAGE_PRE_LOAD_PROP_MANDATORY "mandatory"
1647
1648 /*
1649 * Information in the device-tree about the signature in the header
1650 */
1651 struct image_sig_info {
1652 char *algo_name; /* Name of the algo (eg: sha256,rsa2048) */
1653 char *padding_name; /* Name of the padding */
1654 uint8_t *key; /* Public signature key */
1655 int key_len; /* Length of the public key */
1656 uint32_t sig_size; /* size of the signature (in the header) */
1657 int mandatory; /* Set if the signature is mandatory */
1658
1659 struct image_sign_info sig_info; /* Signature info */
1660 };
1661
1662 /*
1663 * Header of the signature header
1664 */
1665 struct sig_header_s {
1666 uint32_t magic;
1667 uint32_t version;
1668 uint32_t header_size;
1669 uint32_t image_size;
1670 uint32_t offset_img_sig;
1671 uint32_t flags;
1672 uint32_t reserved0;
1673 uint32_t reserved1;
1674 uint8_t sha256_img_sig[SHA256_SUM_LEN];
1675 };
1676
1677 #define SIG_HEADER_LEN (sizeof(struct sig_header_s))
1678
1679 /**
1680 * image_pre_load() - Manage pre load header
1681 *
1682 * Manage the pre-load header before launching the image.
1683 * It checks the signature of the image. It also set the
1684 * variable image_load_offset to skip this header before
1685 * launching the image.
1686 *
1687 * @param addr Address of the image
1688 * @return: 0 on success, -ve on error
1689 */
1690 int image_pre_load(ulong addr);
1691
1692 #if defined(USE_HOSTCC) && CONFIG_IS_ENABLED(LIBCRYPTO)
1693 /**
1694 * rsa_verify_openssl() - Verify a signature against some data with openssl API
1695 *
1696 * Verify a RSA PKCS1.5/PSS signature against an expected hash.
1697 *
1698 * @info: Specifies the key and algorithms
1699 * @region: Pointer to the input data
1700 * @region_count: Number of region
1701 * @sig: Signature
1702 * @sig_len: Number of bytes in the signature
1703 * Return: 0 if verified, -ve on error
1704 */
1705 int rsa_verify_openssl(struct image_sign_info *info,
1706 const struct image_region region[], int region_count,
1707 uint8_t *sig, uint sig_len);
1708 #endif
1709
1710 /**
1711 * fit_image_verify_required_sigs() - Verify signatures marked as 'required'
1712 *
1713 * @fit: FIT to check
1714 * @image_noffset: Offset of image node to check
1715 * @data: Image data to check
1716 * @size: Size of image data
1717 * @key_blob: FDT containing public keys
1718 * @no_sigsp: Returns 1 if no signatures were required, and
1719 * therefore nothing was checked. The caller may wish
1720 * to fall back to other mechanisms, or refuse to
1721 * boot.
1722 * Return: 0 if all verified ok, <0 on error
1723 */
1724 int fit_image_verify_required_sigs(const void *fit, int image_noffset,
1725 const char *data, size_t size, const void *key_blob,
1726 int *no_sigsp);
1727
1728 /**
1729 * fit_image_check_sig() - Check a single image signature node
1730 *
1731 * @fit: FIT to check
1732 * @noffset: Offset of signature node to check
1733 * @data: Image data to check
1734 * @size: Size of image data
1735 * @keyblob: Key blob to check (typically the control FDT)
1736 * @required_keynode: Offset in the keyblob of the required key node,
1737 * if any. If this is given, then the image wil not
1738 * pass verification unless that key is used. If this is
1739 * -1 then any signature will do.
1740 * @err_msgp: In the event of an error, this will be pointed to a
1741 * help error string to display to the user.
1742 * Return: 0 if all verified ok, <0 on error
1743 */
1744 int fit_image_check_sig(const void *fit, int noffset, const void *data,
1745 size_t size, const void *key_blob, int required_keynode,
1746 char **err_msgp);
1747
1748 int fit_image_decrypt_data(const void *fit,
1749 int image_noffset, int cipher_noffset,
1750 const void *data, size_t size,
1751 void **data_unciphered, size_t *size_unciphered);
1752
1753 /**
1754 * fit_region_make_list() - Make a list of regions to hash
1755 *
1756 * Given a list of FIT regions (offset, size) provided by libfdt, create
1757 * a list of regions (void *, size) for use by the signature creationg
1758 * and verification code.
1759 *
1760 * @fit: FIT image to process
1761 * @fdt_regions: Regions as returned by libfdt
1762 * @count: Number of regions returned by libfdt
1763 * @region: Place to put list of regions (NULL to allocate it)
1764 * Return: pointer to list of regions, or NULL if out of memory
1765 */
1766 struct image_region *fit_region_make_list(const void *fit,
1767 struct fdt_region *fdt_regions, int count,
1768 struct image_region *region);
1769
fit_image_check_target_arch(const void * fdt,int node)1770 static inline int fit_image_check_target_arch(const void *fdt, int node)
1771 {
1772 #ifndef USE_HOSTCC
1773 return fit_image_check_arch(fdt, node, IH_ARCH_DEFAULT);
1774 #else
1775 return 0;
1776 #endif
1777 }
1778
1779 /*
1780 * At present we only support ciphering on the host, and unciphering on the
1781 * device
1782 */
1783 #if defined(USE_HOSTCC)
1784 # if defined(CONFIG_FIT_CIPHER)
1785 # define IMAGE_ENABLE_ENCRYPT 1
1786 # define IMAGE_ENABLE_DECRYPT 1
1787 # include <openssl/evp.h>
1788 # else
1789 # define IMAGE_ENABLE_ENCRYPT 0
1790 # define IMAGE_ENABLE_DECRYPT 0
1791 # endif
1792 #else
1793 # define IMAGE_ENABLE_ENCRYPT 0
1794 # define IMAGE_ENABLE_DECRYPT CONFIG_IS_ENABLED(FIT_CIPHER)
1795 #endif
1796
1797 /* Information passed to the ciphering routines */
1798 struct image_cipher_info {
1799 const char *keydir; /* Directory containing keys */
1800 const char *keyname; /* Name of key to use */
1801 const char *ivname; /* Name of IV to use */
1802 const void *fit; /* Pointer to FIT blob */
1803 int node_noffset; /* Offset of the cipher node */
1804 const char *name; /* Algorithm name */
1805 struct cipher_algo *cipher; /* Cipher algorithm information */
1806 const void *fdt_blob; /* FDT containing key and IV */
1807 const void *key; /* Value of the key */
1808 const void *iv; /* Value of the IV */
1809 size_t size_unciphered; /* Size of the unciphered data */
1810 };
1811
1812 struct cipher_algo {
1813 const char *name; /* Name of algorithm */
1814 int key_len; /* Length of the key */
1815 int iv_len; /* Length of the IV */
1816
1817 #if IMAGE_ENABLE_ENCRYPT
1818 const EVP_CIPHER * (*calculate_type)(void);
1819 #endif
1820
1821 int (*encrypt)(struct image_cipher_info *info,
1822 const unsigned char *data, int data_len,
1823 unsigned char **cipher, int *cipher_len);
1824
1825 /**
1826 * add_cipher_data() - Add cipher data to the FIT and device tree
1827 *
1828 * This is used to add the ciphered data to the FIT and other cipher
1829 * related information (key and initialization vector) to a device tree.
1830 *
1831 * @info: Pointer to image cipher information.
1832 * @keydest: Pointer to a device tree where the key and IV can be
1833 * stored. keydest can be NULL when the key is retrieved at
1834 * runtime by another mean.
1835 * @fit: Pointer to the FIT image.
1836 * @node_noffset: Offset where the cipher information are stored in the
1837 * FIT.
1838 * return: 0 on success, a negative error code otherwise.
1839 */
1840 int (*add_cipher_data)(struct image_cipher_info *info,
1841 void *keydest, void *fit, int node_noffset);
1842
1843 int (*decrypt)(struct image_cipher_info *info,
1844 const void *cipher, size_t cipher_len,
1845 void **data, size_t *data_len);
1846 };
1847
1848 int fit_image_cipher_get_algo(const void *fit, int noffset, char **algo);
1849
1850 struct cipher_algo *image_get_cipher_algo(const char *full_name);
1851 struct andr_image_data;
1852
1853 /**
1854 * android_image_get_bootimg_size() - Extract size of Android boot image
1855 *
1856 * This is used to extract the size of an Android boot image
1857 * from boot image header.
1858 *
1859 * @hdr: Pointer to boot image header
1860 * @boot_img_size: On exit returns the size in bytes of the boot image
1861 * Return: true if succeeded, false otherwise
1862 */
1863 bool android_image_get_bootimg_size(const void *hdr, u32 *boot_img_size);
1864
1865 /**
1866 * android_image_get_vendor_bootimg_size() - Extract size of Android vendor-boot image
1867 *
1868 * This is used to extract the size of an Android vendor-boot image
1869 * from vendor-boot image header.
1870 *
1871 * @hdr: Pointer to vendor-boot image header
1872 * @vendor_boot_img_size: On exit returns the size in bytes of the vendor-boot image
1873 * Return: true if succeeded, false otherwise
1874 */
1875 bool android_image_get_vendor_bootimg_size(const void *hdr, u32 *vendor_boot_img_size);
1876
1877 /**
1878 * android_image_get_data() - Parse Android boot images
1879 *
1880 * This is used to parse boot and vendor-boot header into
1881 * andr_image_data generic structure.
1882 *
1883 * @boot_hdr: Pointer to boot image header
1884 * @vendor_boot_hdr: Pointer to vendor boot image header
1885 * @data: Pointer to generic boot format structure
1886 * Return: true if succeeded, false otherwise
1887 */
1888 bool android_image_get_data(const void *boot_hdr, const void *vendor_boot_hdr,
1889 struct andr_image_data *data);
1890
1891 struct andr_boot_img_hdr_v0;
1892
1893 /**
1894 * android_image_get_kernel() - Processes kernel part of Android boot images
1895 *
1896 * This function returns the os image's start address and length. Also,
1897 * it appends the kernel command line to the bootargs env variable.
1898 *
1899 * @hdr: Pointer to image header, which is at the start
1900 * of the image.
1901 * @vendor_boot_img : Pointer to vendor boot image header
1902 * @verify: Checksum verification flag. Currently unimplemented.
1903 * @os_data: Pointer to a ulong variable, will hold os data start
1904 * address.
1905 * @os_len: Pointer to a ulong variable, will hold os data length.
1906 * Return: Zero, os start address and length on success,
1907 * otherwise on failure.
1908 */
1909 int android_image_get_kernel(const void *hdr,
1910 const void *vendor_boot_img, int verify,
1911 ulong *os_data, ulong *os_len);
1912
1913 /**
1914 * android_image_get_ramdisk() - Extracts the ramdisk load address and its size
1915 *
1916 * This extracts the load address of the ramdisk and its size
1917 *
1918 * @hdr: Pointer to image header
1919 * @vendor_boot_img : Pointer to vendor boot image header
1920 * @rd_data: Pointer to a ulong variable, will hold ramdisk address
1921 * @rd_len: Pointer to a ulong variable, will hold ramdisk length
1922 * Return: 0 if OK, -ENOPKG if no ramdisk, -EINVAL if invalid image
1923 */
1924 int android_image_get_ramdisk(const void *hdr, const void *vendor_boot_img,
1925 ulong *rd_data, ulong *rd_len);
1926
1927 /**
1928 * android_image_get_second() - Extracts the secondary bootloader address
1929 * and its size
1930 *
1931 * This extracts the address of the secondary bootloader and its size
1932 *
1933 * @hdr: Pointer to image header
1934 * @second_data: Pointer to a ulong variable, will hold secondary bootloader address
1935 * @second_len : Pointer to a ulong variable, will hold secondary bootloader length
1936 * Return: 0 if succeeded, -1 if secondary bootloader size is 0
1937 */
1938 int android_image_get_second(const void *hdr, ulong *second_data, ulong *second_len);
1939 bool android_image_get_dtbo(ulong hdr_addr, ulong *addr, u32 *size);
1940
1941 /**
1942 * android_image_get_dtb_by_index() - Get address and size of blob in DTB area.
1943 * @hdr_addr: Boot image header address
1944 * @vendor_boot_img: Pointer to vendor boot image header, which is at the start of the image.
1945 * @index: Index of desired DTB in DTB area (starting from 0)
1946 * @addr: If not NULL, will contain address to specified DTB
1947 * @size: If not NULL, will contain size of specified DTB
1948 *
1949 * Get the address and size of DTB blob by its index in DTB area of Android
1950 * Boot Image in RAM.
1951 *
1952 * Return: true on success or false on error.
1953 */
1954 bool android_image_get_dtb_by_index(ulong hdr_addr, ulong vendor_boot_img,
1955 u32 index, ulong *addr, u32 *size);
1956
1957 /**
1958 * android_image_get_end() - Get the end of Android boot image
1959 *
1960 * This returns the end address of Android boot image address
1961 *
1962 * @hdr: Pointer to image header
1963 * @vendor_boot_img : Pointer to vendor boot image header
1964 * Return: The end address of Android boot image
1965 */
1966 ulong android_image_get_end(const struct andr_boot_img_hdr_v0 *hdr,
1967 const void *vendor_boot_img);
1968
1969 /**
1970 * android_image_get_kload() - Get the kernel load address
1971 *
1972 * This returns the kernel load address. The load address is extracted
1973 * from the boot image header or the "kernel_addr_r" environment variable
1974 *
1975 * @hdr: Pointer to image header
1976 * @vendor_boot_img : Pointer to vendor boot image header
1977 * Return: The kernel load address
1978 */
1979 ulong android_image_get_kload(const void *hdr,
1980 const void *vendor_boot_img);
1981
1982 /**
1983 * android_image_get_kcomp() - Get kernel compression type
1984 *
1985 * This gets the kernel compression type from the boot image header
1986 *
1987 * @hdr: Pointer to image header
1988 * @vendor_boot_img : Pointer to vendor boot image header
1989 * Return: Kernel compression type
1990 */
1991 ulong android_image_get_kcomp(const void *hdr,
1992 const void *vendor_boot_img);
1993
1994 /**
1995 * android_print_contents() - Prints out the contents of the Android format image
1996 *
1997 * This formats a multi line Android image contents description.
1998 * The routine prints out Android image properties
1999 *
2000 * @hdr: Pointer to the Android format image header
2001 * Return: no returned results
2002 */
2003 void android_print_contents(const struct andr_boot_img_hdr_v0 *hdr);
2004 bool android_image_print_dtb_contents(ulong hdr_addr);
2005
2006 /**
2007 * is_android_boot_image_header() - Check the magic of boot image
2008 *
2009 * This checks the header of Android boot image and verifies the
2010 * magic is "ANDROID!"
2011 *
2012 * @hdr: Pointer to boot image
2013 * Return: non-zero if the magic is correct, zero otherwise
2014 */
2015 bool is_android_boot_image_header(const void *hdr);
2016
2017 /**
2018 * is_android_vendor_boot_image_header() - Check the magic of vendor boot image
2019 *
2020 * This checks the header of Android vendor boot image and verifies the magic
2021 * is "VNDRBOOT"
2022 *
2023 * @vendor_boot_img: Pointer to boot image
2024 * Return: non-zero if the magic is correct, zero otherwise
2025 */
2026 bool is_android_vendor_boot_image_header(const void *vendor_boot_img);
2027
2028 /**
2029 * get_abootimg_addr() - Get Android boot image address
2030 *
2031 * Return: Android boot image address
2032 */
2033 ulong get_abootimg_addr(void);
2034
2035 /**
2036 * set_abootimg_addr() - Set Android boot image address
2037 *
2038 * Return: no returned results
2039 */
2040 void set_abootimg_addr(ulong addr);
2041
2042 /**
2043 * get_ainit_bootimg_addr() - Get Android init boot image address
2044 *
2045 * Return: Android init boot image address
2046 */
2047 ulong get_ainit_bootimg_addr(void);
2048
2049 /**
2050 * get_avendor_bootimg_addr() - Get Android vendor boot image address
2051 *
2052 * Return: Android vendor boot image address
2053 */
2054 ulong get_avendor_bootimg_addr(void);
2055
2056 /**
2057 * set_abootimg_addr() - Set Android vendor boot image address
2058 *
2059 * Return: no returned results
2060 */
2061 void set_avendor_bootimg_addr(ulong addr);
2062
2063 /**
2064 * board_fit_config_name_match() - Check for a matching board name
2065 *
2066 * This is used when SPL loads a FIT containing multiple device tree files
2067 * and wants to work out which one to use. The description of each one is
2068 * passed to this function. The description comes from the 'description' field
2069 * in each (FDT) image node.
2070 *
2071 * @name: Device tree description
2072 * Return: 0 if this device tree should be used, non-zero to try the next
2073 */
2074 int board_fit_config_name_match(const char *name);
2075
2076 /**
2077 * board_fit_image_post_process() - Do any post-process on FIT binary data
2078 *
2079 * This is used to do any sort of image manipulation, verification, decryption
2080 * etc. in a platform or board specific way. Obviously, anything done here would
2081 * need to be comprehended in how the images were prepared before being injected
2082 * into the FIT creation (i.e. the binary blobs would have been pre-processed
2083 * before being added to the FIT image).
2084 *
2085 * @fit: pointer to fit image
2086 * @node: offset of image node
2087 * @image: pointer to the image start pointer
2088 * @size: pointer to the image size
2089 * Return: no return value (failure should be handled internally)
2090 */
2091 void board_fit_image_post_process(const void *fit, int node, void **p_image,
2092 size_t *p_size);
2093
2094 #define FDT_ERROR ((ulong)(-1))
2095
2096 ulong fdt_getprop_u32(const void *fdt, int node, const char *prop);
2097
2098 /**
2099 * fit_find_config_node() - Find the node for the best DTB in a FIT image
2100 *
2101 * A FIT image contains one or more DTBs. This function parses the
2102 * configurations described in the FIT images and returns the node of
2103 * the first matching DTB. To check if a DTB matches a board, this function
2104 * calls board_fit_config_name_match(). If no matching DTB is found, it returns
2105 * the node described by the default configuration if it exists.
2106 *
2107 * @fdt: pointer to flat device tree
2108 * Return: the node if found, -ve otherwise
2109 */
2110 int fit_find_config_node(const void *fdt);
2111
2112 /**
2113 * Mapping of image types to function handlers to be invoked on the associated
2114 * loaded images
2115 *
2116 * @type: Type of image, I.E. IH_TYPE_*
2117 * @handler: Function to call on loaded image
2118 */
2119 struct fit_loadable_tbl {
2120 int type;
2121 /**
2122 * handler() - Process a loaded image
2123 *
2124 * @data: Pointer to start of loaded image data
2125 * @size: Size of loaded image data
2126 */
2127 void (*handler)(ulong data, size_t size);
2128 };
2129
2130 /*
2131 * Define a FIT loadable image type handler
2132 *
2133 * _type is a valid uimage_type ID as defined in the "Image Type" enum above
2134 * _handler is the handler function to call after this image type is loaded
2135 */
2136 #define U_BOOT_FIT_LOADABLE_HANDLER(_type, _handler) \
2137 ll_entry_declare(struct fit_loadable_tbl, _type, fit_loadable) = { \
2138 .type = _type, \
2139 .handler = _handler, \
2140 }
2141
2142 /**
2143 * fit_update - update storage with FIT image
2144 * @fit: Pointer to FIT image
2145 *
2146 * Update firmware on storage using FIT image as input.
2147 * The storage area to be update will be identified by the name
2148 * in FIT and matching it to "dfu_alt_info" variable.
2149 *
2150 * Return: 0 on success, non-zero otherwise
2151 */
2152 int fit_update(const void *fit);
2153
2154 #endif /* __IMAGE_H__ */
2155