1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright 2008-2014 Freescale Semiconductor, Inc.
4  * Copyright 2021 NXP
5  */
6 
7 /*
8  * Generic driver for Freescale DDR/DDR2/DDR3 memory controller.
9  * Based on code from spd_sdram.c
10  * Author: James Yang [at freescale.com]
11  */
12 
13 #include <config.h>
14 #include <display_options.h>
15 #include <dm.h>
16 #include <i2c.h>
17 #include <fsl_ddr_sdram.h>
18 #include <fsl_ddr.h>
19 #include <init.h>
20 #include <log.h>
21 #include <asm/bitops.h>
22 
23 /*
24  * CFG_SYS_FSL_DDR_SDRAM_BASE_PHY is the physical address from the view
25  * of DDR controllers. It is the same as CFG_SYS_DDR_SDRAM_BASE for
26  * all Power SoCs. But it could be different for ARM SoCs. For example,
27  * fsl_lsch3 has a mapping mechanism to map DDR memory to ranges (in order) of
28  * 0x00_8000_0000 ~ 0x00_ffff_ffff
29  * 0x80_8000_0000 ~ 0xff_ffff_ffff
30  */
31 #ifndef CFG_SYS_FSL_DDR_SDRAM_BASE_PHY
32 #ifdef CONFIG_MPC83xx
33 #define CFG_SYS_FSL_DDR_SDRAM_BASE_PHY CFG_SYS_SDRAM_BASE
34 #else
35 #define CFG_SYS_FSL_DDR_SDRAM_BASE_PHY CFG_SYS_DDR_SDRAM_BASE
36 #endif
37 #endif
38 
39 #ifdef CONFIG_PPC
40 #include <asm/fsl_law.h>
41 
42 void fsl_ddr_set_lawbar(
43 		const common_timing_params_t *memctl_common_params,
44 		unsigned int memctl_interleaved,
45 		unsigned int ctrl_num);
46 #endif
47 
48 void fsl_ddr_set_intl3r(const unsigned int granule_size);
49 #if defined(SPD_EEPROM_ADDRESS) || \
50     defined(SPD_EEPROM_ADDRESS1) || defined(SPD_EEPROM_ADDRESS2) || \
51     defined(SPD_EEPROM_ADDRESS3) || defined(SPD_EEPROM_ADDRESS4)
52 #if (CONFIG_SYS_NUM_DDR_CTLRS == 1) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
53 u8 spd_i2c_addr[CONFIG_SYS_NUM_DDR_CTLRS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
54 	[0][0] = SPD_EEPROM_ADDRESS,
55 };
56 #elif (CONFIG_SYS_NUM_DDR_CTLRS == 1) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
57 u8 spd_i2c_addr[CONFIG_SYS_NUM_DDR_CTLRS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
58 	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
59 	[0][1] = SPD_EEPROM_ADDRESS2,	/* controller 1 */
60 };
61 #elif (CONFIG_SYS_NUM_DDR_CTLRS == 2) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
62 u8 spd_i2c_addr[CONFIG_SYS_NUM_DDR_CTLRS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
63 	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
64 	[1][0] = SPD_EEPROM_ADDRESS2,	/* controller 2 */
65 };
66 #elif (CONFIG_SYS_NUM_DDR_CTLRS == 2) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
67 u8 spd_i2c_addr[CONFIG_SYS_NUM_DDR_CTLRS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
68 	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
69 	[0][1] = SPD_EEPROM_ADDRESS2,	/* controller 1 */
70 	[1][0] = SPD_EEPROM_ADDRESS3,	/* controller 2 */
71 	[1][1] = SPD_EEPROM_ADDRESS4,	/* controller 2 */
72 };
73 #elif (CONFIG_SYS_NUM_DDR_CTLRS == 3) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
74 u8 spd_i2c_addr[CONFIG_SYS_NUM_DDR_CTLRS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
75 	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
76 	[1][0] = SPD_EEPROM_ADDRESS2,	/* controller 2 */
77 	[2][0] = SPD_EEPROM_ADDRESS3,	/* controller 3 */
78 };
79 #elif (CONFIG_SYS_NUM_DDR_CTLRS == 3) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
80 u8 spd_i2c_addr[CONFIG_SYS_NUM_DDR_CTLRS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
81 	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
82 	[0][1] = SPD_EEPROM_ADDRESS2,	/* controller 1 */
83 	[1][0] = SPD_EEPROM_ADDRESS3,	/* controller 2 */
84 	[1][1] = SPD_EEPROM_ADDRESS4,	/* controller 2 */
85 	[2][0] = SPD_EEPROM_ADDRESS5,	/* controller 3 */
86 	[2][1] = SPD_EEPROM_ADDRESS6,	/* controller 3 */
87 };
88 
89 #endif
90 
91 #if CONFIG_IS_ENABLED(DM_I2C)
92 #define DEV_TYPE struct udevice
93 #else
94 /* Local udevice */
95 struct ludevice {
96 	u8 chip;
97 };
98 
99 #define DEV_TYPE struct ludevice
100 
101 #endif
102 
103 #define SPD_SPA0_ADDRESS	0x36
104 #define SPD_SPA1_ADDRESS	0x37
105 
ddr_i2c_read(DEV_TYPE * dev,unsigned int addr,int alen,uint8_t * buf,int len)106 static int ddr_i2c_read(DEV_TYPE *dev, unsigned int addr,
107 			int alen, uint8_t *buf, int len)
108 {
109 	int ret;
110 
111 #if CONFIG_IS_ENABLED(DM_I2C)
112 	ret = dm_i2c_read(dev, 0, buf, len);
113 #else
114 	ret = 0;
115 #endif
116 
117 	return ret;
118 }
119 
120 #ifdef CONFIG_SYS_FSL_DDR4
ddr_i2c_dummy_write(unsigned int chip_addr)121 static int ddr_i2c_dummy_write(unsigned int chip_addr)
122 {
123 	uint8_t buf = 0;
124 
125 #if CONFIG_IS_ENABLED(DM_I2C)
126 	struct udevice *dev;
127 	int ret;
128 
129 	ret = i2c_get_chip_for_busnum(CONFIG_SYS_SPD_BUS_NUM, chip_addr,
130 				      1, &dev);
131 	if (ret) {
132 		printf("%s: Cannot find udev for a bus %d\n", __func__,
133 		       CONFIG_SYS_SPD_BUS_NUM);
134 		return ret;
135 	}
136 
137 	return dm_i2c_write(dev, 0, &buf, 1);
138 #else
139 	return i2c_write(chip_addr, 0, 1, &buf, 1);
140 #endif
141 
142 	return 0;
143 }
144 #endif
145 
__get_spd(generic_spd_eeprom_t * spd,u8 i2c_address)146 static void __get_spd(generic_spd_eeprom_t *spd, u8 i2c_address)
147 {
148 	int ret;
149 	DEV_TYPE *dev;
150 
151 #if CONFIG_IS_ENABLED(DM_I2C)
152 	ret = i2c_get_chip_for_busnum(CONFIG_SYS_SPD_BUS_NUM, i2c_address,
153 				      1, &dev);
154 	if (ret) {
155 		printf("%s: Cannot find udev for a bus %d\n", __func__,
156 		       CONFIG_SYS_SPD_BUS_NUM);
157 		return;
158 	}
159 #else /* Non DM I2C support - will be removed */
160 	struct ludevice ldev = {
161 		.chip = i2c_address,
162 	};
163 	dev = &ldev;
164 
165 #endif
166 
167 #ifdef CONFIG_SYS_FSL_DDR4
168 	/*
169 	 * DDR4 SPD has 384 to 512 bytes
170 	 * To access the lower 256 bytes, we need to set EE page address to 0
171 	 * To access the upper 256 bytes, we need to set EE page address to 1
172 	 * See Jedec standar No. 21-C for detail
173 	 */
174 	ddr_i2c_dummy_write(SPD_SPA0_ADDRESS);
175 	ret = ddr_i2c_read(dev, 0, 1, (uchar *)spd, 256);
176 	if (!ret) {
177 		ddr_i2c_dummy_write(SPD_SPA1_ADDRESS);
178 		ret = ddr_i2c_read(dev, 0, 1, (uchar *)((ulong)spd + 256),
179 				   min(256,
180 				       (int)sizeof(generic_spd_eeprom_t)
181 				       - 256));
182 	}
183 
184 #else
185 	ret = ddr_i2c_read(dev, 0, 1, (uchar *)spd,
186 			   sizeof(generic_spd_eeprom_t));
187 #endif
188 
189 	if (ret) {
190 		if (i2c_address ==
191 #ifdef SPD_EEPROM_ADDRESS
192 				SPD_EEPROM_ADDRESS
193 #elif defined(SPD_EEPROM_ADDRESS1)
194 				SPD_EEPROM_ADDRESS1
195 #endif
196 				) {
197 			printf("DDR: failed to read SPD from address %u\n",
198 				i2c_address);
199 		} else {
200 			debug("DDR: failed to read SPD from address %u\n",
201 				i2c_address);
202 		}
203 		memset(spd, 0, sizeof(generic_spd_eeprom_t));
204 	}
205 }
206 
207 __attribute__((weak, alias("__get_spd")))
208 void get_spd(generic_spd_eeprom_t *spd, u8 i2c_address);
209 
210 /* This function allows boards to update SPD address */
update_spd_address(unsigned int ctrl_num,unsigned int slot,unsigned int * addr)211 __weak void update_spd_address(unsigned int ctrl_num,
212 			       unsigned int slot,
213 			       unsigned int *addr)
214 {
215 }
216 
fsl_ddr_get_spd(generic_spd_eeprom_t * ctrl_dimms_spd,unsigned int ctrl_num,unsigned int dimm_slots_per_ctrl)217 void fsl_ddr_get_spd(generic_spd_eeprom_t *ctrl_dimms_spd,
218 		      unsigned int ctrl_num, unsigned int dimm_slots_per_ctrl)
219 {
220 	unsigned int i;
221 	unsigned int i2c_address = 0;
222 
223 	if (ctrl_num >= CONFIG_SYS_NUM_DDR_CTLRS) {
224 		printf("%s unexpected ctrl_num = %u\n", __FUNCTION__, ctrl_num);
225 		return;
226 	}
227 
228 	for (i = 0; i < dimm_slots_per_ctrl; i++) {
229 		i2c_address = spd_i2c_addr[ctrl_num][i];
230 		update_spd_address(ctrl_num, i, &i2c_address);
231 		get_spd(&(ctrl_dimms_spd[i]), i2c_address);
232 	}
233 }
234 #else
fsl_ddr_get_spd(generic_spd_eeprom_t * ctrl_dimms_spd,unsigned int ctrl_num,unsigned int dimm_slots_per_ctrl)235 void fsl_ddr_get_spd(generic_spd_eeprom_t *ctrl_dimms_spd,
236 		      unsigned int ctrl_num, unsigned int dimm_slots_per_ctrl)
237 {
238 }
239 #endif /* SPD_EEPROM_ADDRESSx */
240 
241 /*
242  * ASSUMPTIONS:
243  *    - Same number of CONFIG_DIMM_SLOTS_PER_CTLR on each controller
244  *    - Same memory data bus width on all controllers
245  *
246  * NOTES:
247  *
248  * The memory controller and associated documentation use confusing
249  * terminology when referring to the orgranization of DRAM.
250  *
251  * Here is a terminology translation table:
252  *
253  * memory controller/documention  |industry   |this code  |signals
254  * -------------------------------|-----------|-----------|-----------------
255  * physical bank/bank		  |rank       |rank	  |chip select (CS)
256  * logical bank/sub-bank	  |bank       |bank	  |bank address (BA)
257  * page/row			  |row	      |page	  |row address
258  * ???				  |column     |column	  |column address
259  *
260  * The naming confusion is further exacerbated by the descriptions of the
261  * memory controller interleaving feature, where accesses are interleaved
262  * _BETWEEN_ two seperate memory controllers.  This is configured only in
263  * CS0_CONFIG[INTLV_CTL] of each memory controller.
264  *
265  * memory controller documentation | number of chip selects
266  *				   | per memory controller supported
267  * --------------------------------|-----------------------------------------
268  * cache line interleaving	   | 1 (CS0 only)
269  * page interleaving		   | 1 (CS0 only)
270  * bank interleaving		   | 1 (CS0 only)
271  * superbank interleraving	   | depends on bank (chip select)
272  *				   |   interleraving [rank interleaving]
273  *				   |   mode used on every memory controller
274  *
275  * Even further confusing is the existence of the interleaving feature
276  * _WITHIN_ each memory controller.  The feature is referred to in
277  * documentation as chip select interleaving or bank interleaving,
278  * although it is configured in the DDR_SDRAM_CFG field.
279  *
280  * Name of field		| documentation name	| this code
281  * -----------------------------|-----------------------|------------------
282  * DDR_SDRAM_CFG[BA_INTLV_CTL]	| Bank (chip select)	| rank interleaving
283  *				|  interleaving
284  */
285 
286 const char *step_string_tbl[] = {
287 	"STEP_GET_SPD",
288 	"STEP_COMPUTE_DIMM_PARMS",
289 	"STEP_COMPUTE_COMMON_PARMS",
290 	"STEP_GATHER_OPTS",
291 	"STEP_ASSIGN_ADDRESSES",
292 	"STEP_COMPUTE_REGS",
293 	"STEP_PROGRAM_REGS",
294 	"STEP_ALL"
295 };
296 
step_to_string(unsigned int step)297 const char * step_to_string(unsigned int step) {
298 
299 	unsigned int s = __ilog2(step);
300 
301 	if (s <= 31) {
302 		if ((1 << s) != step)
303 			return step_string_tbl[7];
304 	} else {
305 		if ((1 << (s - 32)) != step)
306 			return step_string_tbl[7];
307 	}
308 	if (s >= ARRAY_SIZE(step_string_tbl)) {
309 		printf("Error for the step in %s\n", __func__);
310 		s = 0;
311 	}
312 
313 	return step_string_tbl[s];
314 }
315 
__step_assign_addresses(fsl_ddr_info_t * pinfo,unsigned int dbw_cap_adj[])316 static unsigned long long __step_assign_addresses(fsl_ddr_info_t *pinfo,
317 			  unsigned int dbw_cap_adj[])
318 {
319 	unsigned int i, j;
320 	unsigned long long total_mem, current_mem_base, total_ctlr_mem;
321 	unsigned long long rank_density, ctlr_density = 0;
322 	unsigned int first_ctrl = pinfo->first_ctrl;
323 	unsigned int last_ctrl = first_ctrl + pinfo->num_ctrls - 1;
324 
325 	/*
326 	 * If a reduced data width is requested, but the SPD
327 	 * specifies a physically wider device, adjust the
328 	 * computed dimm capacities accordingly before
329 	 * assigning addresses.
330 	 */
331 	for (i = first_ctrl; i <= last_ctrl; i++) {
332 		unsigned int found = 0;
333 
334 		switch (pinfo->memctl_opts[i].data_bus_width) {
335 		case 2:
336 			/* 16-bit */
337 			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
338 				unsigned int dw;
339 				if (!pinfo->dimm_params[i][j].n_ranks)
340 					continue;
341 				dw = pinfo->dimm_params[i][j].primary_sdram_width;
342 				if ((dw == 72 || dw == 64)) {
343 					dbw_cap_adj[i] = 2;
344 					break;
345 				} else if ((dw == 40 || dw == 32)) {
346 					dbw_cap_adj[i] = 1;
347 					break;
348 				}
349 			}
350 			break;
351 
352 		case 1:
353 			/* 32-bit */
354 			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
355 				unsigned int dw;
356 				dw = pinfo->dimm_params[i][j].data_width;
357 				if (pinfo->dimm_params[i][j].n_ranks
358 				    && (dw == 72 || dw == 64)) {
359 					/*
360 					 * FIXME: can't really do it
361 					 * like this because this just
362 					 * further reduces the memory
363 					 */
364 					found = 1;
365 					break;
366 				}
367 			}
368 			if (found) {
369 				dbw_cap_adj[i] = 1;
370 			}
371 			break;
372 
373 		case 0:
374 			/* 64-bit */
375 			break;
376 
377 		default:
378 			printf("unexpected data bus width "
379 				"specified controller %u\n", i);
380 			return 1;
381 		}
382 		debug("dbw_cap_adj[%d]=%d\n", i, dbw_cap_adj[i]);
383 	}
384 
385 	current_mem_base = pinfo->mem_base;
386 	total_mem = 0;
387 	if (pinfo->memctl_opts[first_ctrl].memctl_interleaving) {
388 		rank_density = pinfo->dimm_params[first_ctrl][0].rank_density >>
389 					dbw_cap_adj[first_ctrl];
390 		switch (pinfo->memctl_opts[first_ctrl].ba_intlv_ctl &
391 					FSL_DDR_CS0_CS1_CS2_CS3) {
392 		case FSL_DDR_CS0_CS1_CS2_CS3:
393 			ctlr_density = 4 * rank_density;
394 			break;
395 		case FSL_DDR_CS0_CS1:
396 		case FSL_DDR_CS0_CS1_AND_CS2_CS3:
397 			ctlr_density = 2 * rank_density;
398 			break;
399 		case FSL_DDR_CS2_CS3:
400 		default:
401 			ctlr_density = rank_density;
402 			break;
403 		}
404 		debug("rank density is 0x%llx, ctlr density is 0x%llx\n",
405 			rank_density, ctlr_density);
406 		for (i = first_ctrl; i <= last_ctrl; i++) {
407 			if (pinfo->memctl_opts[i].memctl_interleaving) {
408 				switch (pinfo->memctl_opts[i].memctl_interleaving_mode) {
409 				case FSL_DDR_256B_INTERLEAVING:
410 				case FSL_DDR_CACHE_LINE_INTERLEAVING:
411 				case FSL_DDR_PAGE_INTERLEAVING:
412 				case FSL_DDR_BANK_INTERLEAVING:
413 				case FSL_DDR_SUPERBANK_INTERLEAVING:
414 					total_ctlr_mem = 2 * ctlr_density;
415 					break;
416 				case FSL_DDR_3WAY_1KB_INTERLEAVING:
417 				case FSL_DDR_3WAY_4KB_INTERLEAVING:
418 				case FSL_DDR_3WAY_8KB_INTERLEAVING:
419 					total_ctlr_mem = 3 * ctlr_density;
420 					break;
421 				case FSL_DDR_4WAY_1KB_INTERLEAVING:
422 				case FSL_DDR_4WAY_4KB_INTERLEAVING:
423 				case FSL_DDR_4WAY_8KB_INTERLEAVING:
424 					total_ctlr_mem = 4 * ctlr_density;
425 					break;
426 				default:
427 					panic("Unknown interleaving mode");
428 				}
429 				pinfo->common_timing_params[i].base_address =
430 							current_mem_base;
431 				pinfo->common_timing_params[i].total_mem =
432 							total_ctlr_mem;
433 				total_mem = current_mem_base + total_ctlr_mem;
434 				debug("ctrl %d base 0x%llx\n", i, current_mem_base);
435 				debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
436 			} else {
437 				/* when 3rd controller not interleaved */
438 				current_mem_base = total_mem;
439 				total_ctlr_mem = 0;
440 				pinfo->common_timing_params[i].base_address =
441 							current_mem_base;
442 				for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
443 					unsigned long long cap =
444 						pinfo->dimm_params[i][j].capacity >> dbw_cap_adj[i];
445 					pinfo->dimm_params[i][j].base_address =
446 						current_mem_base;
447 					debug("ctrl %d dimm %d base 0x%llx\n", i, j, current_mem_base);
448 					current_mem_base += cap;
449 					total_ctlr_mem += cap;
450 				}
451 				debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
452 				pinfo->common_timing_params[i].total_mem =
453 							total_ctlr_mem;
454 				total_mem += total_ctlr_mem;
455 			}
456 		}
457 	} else {
458 		/*
459 		 * Simple linear assignment if memory
460 		 * controllers are not interleaved.
461 		 */
462 		for (i = first_ctrl; i <= last_ctrl; i++) {
463 			total_ctlr_mem = 0;
464 			pinfo->common_timing_params[i].base_address =
465 						current_mem_base;
466 			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
467 				/* Compute DIMM base addresses. */
468 				unsigned long long cap =
469 					pinfo->dimm_params[i][j].capacity >> dbw_cap_adj[i];
470 				pinfo->dimm_params[i][j].base_address =
471 					current_mem_base;
472 				debug("ctrl %d dimm %d base 0x%llx\n", i, j, current_mem_base);
473 				current_mem_base += cap;
474 				total_ctlr_mem += cap;
475 			}
476 			debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
477 			pinfo->common_timing_params[i].total_mem =
478 							total_ctlr_mem;
479 			total_mem += total_ctlr_mem;
480 		}
481 	}
482 	debug("Total mem by %s is 0x%llx\n", __func__, total_mem);
483 
484 	return total_mem;
485 }
486 
487 /* Use weak function to allow board file to override the address assignment */
488 __attribute__((weak, alias("__step_assign_addresses")))
489 unsigned long long step_assign_addresses(fsl_ddr_info_t *pinfo,
490 			  unsigned int dbw_cap_adj[]);
491 
492 unsigned long long
fsl_ddr_compute(fsl_ddr_info_t * pinfo,unsigned int start_step,unsigned int size_only)493 fsl_ddr_compute(fsl_ddr_info_t *pinfo, unsigned int start_step,
494 				       unsigned int size_only)
495 {
496 	unsigned int i, j;
497 	unsigned long long total_mem = 0;
498 	int assert_reset = 0;
499 	unsigned int first_ctrl =  pinfo->first_ctrl;
500 	unsigned int last_ctrl = first_ctrl + pinfo->num_ctrls - 1;
501 	__maybe_unused int retval;
502 	__maybe_unused bool goodspd = false;
503 	__maybe_unused int dimm_slots_per_ctrl = pinfo->dimm_slots_per_ctrl;
504 
505 	fsl_ddr_cfg_regs_t *ddr_reg = pinfo->fsl_ddr_config_reg;
506 	common_timing_params_t *timing_params = pinfo->common_timing_params;
507 	if (pinfo->board_need_mem_reset)
508 		assert_reset = pinfo->board_need_mem_reset();
509 
510 	/* data bus width capacity adjust shift amount */
511 	unsigned int dbw_capacity_adjust[CONFIG_SYS_NUM_DDR_CTLRS];
512 
513 	for (i = first_ctrl; i <= last_ctrl; i++)
514 		dbw_capacity_adjust[i] = 0;
515 
516 	debug("starting at step %u (%s)\n",
517 	      start_step, step_to_string(start_step));
518 
519 	switch (start_step) {
520 	case STEP_GET_SPD:
521 #if defined(CONFIG_DDR_SPD) || defined(CONFIG_SPD_EEPROM)
522 		/* STEP 1:  Gather all DIMM SPD data */
523 		for (i = first_ctrl; i <= last_ctrl; i++) {
524 			fsl_ddr_get_spd(pinfo->spd_installed_dimms[i], i,
525 					dimm_slots_per_ctrl);
526 		}
527 
528 	case STEP_COMPUTE_DIMM_PARMS:
529 		/* STEP 2:  Compute DIMM parameters from SPD data */
530 
531 		for (i = first_ctrl; i <= last_ctrl; i++) {
532 			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
533 				generic_spd_eeprom_t *spd =
534 					&(pinfo->spd_installed_dimms[i][j]);
535 				dimm_params_t *pdimm =
536 					&(pinfo->dimm_params[i][j]);
537 				retval = compute_dimm_parameters(
538 							i, spd, pdimm, j);
539 #ifdef CONFIG_SYS_DDR_RAW_TIMING
540 				if (!j && retval) {
541 					printf("SPD error on controller %d! "
542 					"Trying fallback to raw timing "
543 					"calculation\n", i);
544 					retval = fsl_ddr_get_dimm_params(pdimm,
545 									 i, j);
546 				}
547 #else
548 				if (retval == 2) {
549 					printf("Error: compute_dimm_parameters"
550 					" non-zero returned FATAL value "
551 					"for memctl=%u dimm=%u\n", i, j);
552 					return 0;
553 				}
554 #endif
555 				if (retval) {
556 					debug("Warning: compute_dimm_parameters"
557 					" non-zero return value for memctl=%u "
558 					"dimm=%u\n", i, j);
559 				} else {
560 					goodspd = true;
561 				}
562 			}
563 		}
564 		if (!goodspd) {
565 			/*
566 			 * No valid SPD found
567 			 * Throw an error if this is for main memory, i.e.
568 			 * first_ctrl == 0. Otherwise, siliently return 0
569 			 * as the memory size.
570 			 */
571 			if (first_ctrl == 0)
572 				printf("Error: No valid SPD detected.\n");
573 
574 			return 0;
575 		}
576 #elif defined(CONFIG_SYS_DDR_RAW_TIMING)
577 	case STEP_COMPUTE_DIMM_PARMS:
578 		for (i = first_ctrl; i <= last_ctrl; i++) {
579 			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
580 				dimm_params_t *pdimm =
581 					&(pinfo->dimm_params[i][j]);
582 				fsl_ddr_get_dimm_params(pdimm, i, j);
583 			}
584 		}
585 		debug("Filling dimm parameters from board specific file\n");
586 #endif
587 	case STEP_COMPUTE_COMMON_PARMS:
588 		/*
589 		 * STEP 3: Compute a common set of timing parameters
590 		 * suitable for all of the DIMMs on each memory controller
591 		 */
592 		for (i = first_ctrl; i <= last_ctrl; i++) {
593 			debug("Computing lowest common DIMM"
594 				" parameters for memctl=%u\n", i);
595 			compute_lowest_common_dimm_parameters
596 				(i,
597 				 pinfo->dimm_params[i],
598 				 &timing_params[i],
599 				 CONFIG_DIMM_SLOTS_PER_CTLR);
600 		}
601 
602 	case STEP_GATHER_OPTS:
603 		/* STEP 4:  Gather configuration requirements from user */
604 		for (i = first_ctrl; i <= last_ctrl; i++) {
605 			debug("Reloading memory controller "
606 				"configuration options for memctl=%u\n", i);
607 			/*
608 			 * This "reloads" the memory controller options
609 			 * to defaults.  If the user "edits" an option,
610 			 * next_step points to the step after this,
611 			 * which is currently STEP_ASSIGN_ADDRESSES.
612 			 */
613 			populate_memctl_options(
614 					&timing_params[i],
615 					&pinfo->memctl_opts[i],
616 					pinfo->dimm_params[i], i);
617 			/*
618 			 * For RDIMMs, JEDEC spec requires clocks to be stable
619 			 * before reset signal is deasserted. For the boards
620 			 * using fixed parameters, this function should be
621 			 * be called from board init file.
622 			 */
623 			if (timing_params[i].all_dimms_registered)
624 				assert_reset = 1;
625 		}
626 		if (assert_reset && !size_only) {
627 			if (pinfo->board_mem_reset) {
628 				debug("Asserting mem reset\n");
629 				pinfo->board_mem_reset();
630 			} else {
631 				debug("Asserting mem reset missing\n");
632 			}
633 		}
634 
635 	case STEP_ASSIGN_ADDRESSES:
636 		/* STEP 5:  Assign addresses to chip selects */
637 		check_interleaving_options(pinfo);
638 		total_mem = step_assign_addresses(pinfo, dbw_capacity_adjust);
639 		debug("Total mem %llu assigned\n", total_mem);
640 
641 	case STEP_COMPUTE_REGS:
642 		/* STEP 6:  compute controller register values */
643 		debug("FSL Memory ctrl register computation\n");
644 		for (i = first_ctrl; i <= last_ctrl; i++) {
645 			if (timing_params[i].ndimms_present == 0) {
646 				memset(&ddr_reg[i], 0,
647 					sizeof(fsl_ddr_cfg_regs_t));
648 				continue;
649 			}
650 
651 			compute_fsl_memctl_config_regs
652 				(i,
653 				 &pinfo->memctl_opts[i],
654 				 &ddr_reg[i], &timing_params[i],
655 				 pinfo->dimm_params[i],
656 				 dbw_capacity_adjust[i],
657 				 size_only);
658 		}
659 
660 	default:
661 		break;
662 	}
663 
664 	{
665 		/*
666 		 * Compute the amount of memory available just by
667 		 * looking for the highest valid CSn_BNDS value.
668 		 * This allows us to also experiment with using
669 		 * only CS0 when using dual-rank DIMMs.
670 		 */
671 		unsigned int max_end = 0;
672 
673 		for (i = first_ctrl; i <= last_ctrl; i++) {
674 			for (j = 0; j < CONFIG_CHIP_SELECTS_PER_CTRL; j++) {
675 				fsl_ddr_cfg_regs_t *reg = &ddr_reg[i];
676 				if (reg->cs[j].config & 0x80000000) {
677 					unsigned int end;
678 					/*
679 					 * 0xfffffff is a special value we put
680 					 * for unused bnds
681 					 */
682 					if (reg->cs[j].bnds == 0xffffffff)
683 						continue;
684 					end = reg->cs[j].bnds & 0xffff;
685 					if (end > max_end) {
686 						max_end = end;
687 					}
688 				}
689 			}
690 		}
691 
692 		total_mem = 1 + (((unsigned long long)max_end << 24ULL) |
693 			    0xFFFFFFULL) - pinfo->mem_base;
694 	}
695 
696 	return total_mem;
697 }
698 
__fsl_ddr_sdram(fsl_ddr_info_t * pinfo)699 phys_size_t __fsl_ddr_sdram(fsl_ddr_info_t *pinfo)
700 {
701 	unsigned int i, first_ctrl, last_ctrl;
702 #ifdef CONFIG_PPC
703 	unsigned int law_memctl = LAW_TRGT_IF_DDR_1;
704 #endif
705 	unsigned long long total_memory;
706 	int deassert_reset = 0;
707 
708 	first_ctrl = pinfo->first_ctrl;
709 	last_ctrl = first_ctrl + pinfo->num_ctrls - 1;
710 
711 	/* Compute it once normally. */
712 #ifdef CONFIG_FSL_DDR_INTERACTIVE
713 	if (tstc() && (getchar() == 'd')) {	/* we got a key press of 'd' */
714 		total_memory = fsl_ddr_interactive(pinfo, 0);
715 	} else if (fsl_ddr_interactive_env_var_exists()) {
716 		total_memory = fsl_ddr_interactive(pinfo, 1);
717 	} else
718 #endif
719 		total_memory = fsl_ddr_compute(pinfo, STEP_GET_SPD, 0);
720 
721 	/* setup 3-way interleaving before enabling DDRC */
722 	switch (pinfo->memctl_opts[first_ctrl].memctl_interleaving_mode) {
723 	case FSL_DDR_3WAY_1KB_INTERLEAVING:
724 	case FSL_DDR_3WAY_4KB_INTERLEAVING:
725 	case FSL_DDR_3WAY_8KB_INTERLEAVING:
726 		fsl_ddr_set_intl3r(
727 			pinfo->memctl_opts[first_ctrl].
728 			memctl_interleaving_mode);
729 		break;
730 	default:
731 		break;
732 	}
733 
734 	/*
735 	 * Program configuration registers.
736 	 * JEDEC specs requires clocks to be stable before deasserting reset
737 	 * for RDIMMs. Clocks start after chip select is enabled and clock
738 	 * control register is set. During step 1, all controllers have their
739 	 * registers set but not enabled. Step 2 proceeds after deasserting
740 	 * reset through board FPGA or GPIO.
741 	 * For non-registered DIMMs, initialization can go through but it is
742 	 * also OK to follow the same flow.
743 	 */
744 	if (pinfo->board_need_mem_reset)
745 		deassert_reset = pinfo->board_need_mem_reset();
746 	for (i = first_ctrl; i <= last_ctrl; i++) {
747 		if (pinfo->common_timing_params[i].all_dimms_registered)
748 			deassert_reset = 1;
749 	}
750 	for (i = first_ctrl; i <= last_ctrl; i++) {
751 		debug("Programming controller %u\n", i);
752 		if (pinfo->common_timing_params[i].ndimms_present == 0) {
753 			debug("No dimms present on controller %u; "
754 					"skipping programming\n", i);
755 			continue;
756 		}
757 		/*
758 		 * The following call with step = 1 returns before enabling
759 		 * the controller. It has to finish with step = 2 later.
760 		 */
761 		fsl_ddr_set_memctl_regs(&(pinfo->fsl_ddr_config_reg[i]), i,
762 					deassert_reset ? 1 : 0);
763 	}
764 	if (deassert_reset) {
765 		/* Use board FPGA or GPIO to deassert reset signal */
766 		if (pinfo->board_mem_de_reset) {
767 			debug("Deasserting mem reset\n");
768 			pinfo->board_mem_de_reset();
769 		} else {
770 			debug("Deasserting mem reset missing\n");
771 		}
772 		for (i = first_ctrl; i <= last_ctrl; i++) {
773 			/* Call with step = 2 to continue initialization */
774 			fsl_ddr_set_memctl_regs(&(pinfo->fsl_ddr_config_reg[i]),
775 						i, 2);
776 		}
777 	}
778 
779 #ifdef CONFIG_FSL_DDR_SYNC_REFRESH
780 	fsl_ddr_sync_memctl_refresh(first_ctrl, last_ctrl);
781 #endif
782 
783 #ifdef CONFIG_PPC
784 	/* program LAWs */
785 	for (i = first_ctrl; i <= last_ctrl; i++) {
786 		if (pinfo->memctl_opts[i].memctl_interleaving) {
787 			switch (pinfo->memctl_opts[i].
788 				memctl_interleaving_mode) {
789 			case FSL_DDR_CACHE_LINE_INTERLEAVING:
790 			case FSL_DDR_PAGE_INTERLEAVING:
791 			case FSL_DDR_BANK_INTERLEAVING:
792 			case FSL_DDR_SUPERBANK_INTERLEAVING:
793 				if (i % 2)
794 					break;
795 				if (i == 0) {
796 					law_memctl = LAW_TRGT_IF_DDR_INTRLV;
797 					fsl_ddr_set_lawbar(
798 						&pinfo->common_timing_params[i],
799 						law_memctl, i);
800 				}
801 #if CONFIG_SYS_NUM_DDR_CTLRS > 3
802 				else if (i == 2) {
803 					law_memctl = LAW_TRGT_IF_DDR_INTLV_34;
804 					fsl_ddr_set_lawbar(
805 						&pinfo->common_timing_params[i],
806 						law_memctl, i);
807 				}
808 #endif
809 				break;
810 			case FSL_DDR_3WAY_1KB_INTERLEAVING:
811 			case FSL_DDR_3WAY_4KB_INTERLEAVING:
812 			case FSL_DDR_3WAY_8KB_INTERLEAVING:
813 				law_memctl = LAW_TRGT_IF_DDR_INTLV_123;
814 				if (i == 0) {
815 					fsl_ddr_set_lawbar(
816 						&pinfo->common_timing_params[i],
817 						law_memctl, i);
818 				}
819 				break;
820 			case FSL_DDR_4WAY_1KB_INTERLEAVING:
821 			case FSL_DDR_4WAY_4KB_INTERLEAVING:
822 			case FSL_DDR_4WAY_8KB_INTERLEAVING:
823 				law_memctl = LAW_TRGT_IF_DDR_INTLV_1234;
824 				if (i == 0)
825 					fsl_ddr_set_lawbar(
826 						&pinfo->common_timing_params[i],
827 						law_memctl, i);
828 				/* place holder for future 4-way interleaving */
829 				break;
830 			default:
831 				break;
832 			}
833 		} else {
834 			switch (i) {
835 			case 0:
836 				law_memctl = LAW_TRGT_IF_DDR_1;
837 				break;
838 			case 1:
839 				law_memctl = LAW_TRGT_IF_DDR_2;
840 				break;
841 			case 2:
842 				law_memctl = LAW_TRGT_IF_DDR_3;
843 				break;
844 			case 3:
845 				law_memctl = LAW_TRGT_IF_DDR_4;
846 				break;
847 			default:
848 				break;
849 			}
850 			fsl_ddr_set_lawbar(&pinfo->common_timing_params[i],
851 					   law_memctl, i);
852 		}
853 	}
854 #endif
855 
856 	debug("total_memory by %s = %llu\n", __func__, total_memory);
857 
858 #if !defined(CONFIG_PHYS_64BIT)
859 	/*
860 	 * Show warning about big DDR moodules. But avoid warning for 4 GB DDR
861 	 * modules when U-Boot supports RAM of maximal size 4 GB - 1 byte.
862 	 */
863 	if ((first_ctrl == 0) && (total_memory - 1 > (phys_size_t)~0ULL)) {
864 		puts("Detected ");
865 		print_size(total_memory, " of memory\n");
866 #ifndef CONFIG_XPL_BUILD
867 		puts("       "); /* re-align to match init_dram print */
868 #endif
869 		puts("This U-Boot only supports <= ");
870 		print_size((unsigned long long)((phys_size_t)~0ULL)+1, " of DDR\n");
871 #ifndef CONFIG_XPL_BUILD
872 		puts("       "); /* re-align to match init_dram print */
873 #endif
874 		puts("You could rebuild it with CONFIG_PHYS_64BIT\n");
875 #ifndef CONFIG_XPL_BUILD
876 		puts("       "); /* re-align to match init_dram print */
877 #endif
878 	}
879 #endif
880 
881 	/* Ensure that total_memory does not overflow on return */
882 	if (total_memory > (phys_size_t)~0ULL)
883 		total_memory = (phys_size_t)~0ULL;
884 
885 	return total_memory;
886 }
887 
888 /*
889  * fsl_ddr_sdram(void) -- this is the main function to be
890  * called by dram_init() in the board file.
891  *
892  * It returns amount of memory configured in bytes.
893  */
fsl_ddr_sdram(void)894 phys_size_t fsl_ddr_sdram(void)
895 {
896 	fsl_ddr_info_t info;
897 
898 	/* Reset info structure. */
899 	memset(&info, 0, sizeof(fsl_ddr_info_t));
900 	info.mem_base = CFG_SYS_FSL_DDR_SDRAM_BASE_PHY;
901 	info.first_ctrl = 0;
902 	info.num_ctrls = CONFIG_SYS_FSL_DDR_MAIN_NUM_CTRLS;
903 	info.dimm_slots_per_ctrl = CONFIG_DIMM_SLOTS_PER_CTLR;
904 	info.board_need_mem_reset = board_need_mem_reset;
905 	info.board_mem_reset = board_assert_mem_reset;
906 	info.board_mem_de_reset = board_deassert_mem_reset;
907 	remove_unused_controllers(&info);
908 
909 	return __fsl_ddr_sdram(&info);
910 }
911 
912 #ifdef CONFIG_SYS_FSL_OTHER_DDR_NUM_CTRLS
fsl_other_ddr_sdram(unsigned long long base,unsigned int first_ctrl,unsigned int num_ctrls,unsigned int dimm_slots_per_ctrl,int (* board_need_reset)(void),void (* board_reset)(void),void (* board_de_reset)(void))913 phys_size_t fsl_other_ddr_sdram(unsigned long long base,
914 				unsigned int first_ctrl,
915 				unsigned int num_ctrls,
916 				unsigned int dimm_slots_per_ctrl,
917 				int (*board_need_reset)(void),
918 				void (*board_reset)(void),
919 				void (*board_de_reset)(void))
920 {
921 	fsl_ddr_info_t info;
922 
923 	/* Reset info structure. */
924 	memset(&info, 0, sizeof(fsl_ddr_info_t));
925 	info.mem_base = base;
926 	info.first_ctrl = first_ctrl;
927 	info.num_ctrls = num_ctrls;
928 	info.dimm_slots_per_ctrl = dimm_slots_per_ctrl;
929 	info.board_need_mem_reset = board_need_reset;
930 	info.board_mem_reset = board_reset;
931 	info.board_mem_de_reset = board_de_reset;
932 
933 	return __fsl_ddr_sdram(&info);
934 }
935 #endif
936 
937 /*
938  * fsl_ddr_sdram_size(first_ctrl, last_intlv) - This function only returns the
939  * size of the total memory without setting ddr control registers.
940  */
941 phys_size_t
fsl_ddr_sdram_size(void)942 fsl_ddr_sdram_size(void)
943 {
944 	fsl_ddr_info_t  info;
945 	unsigned long long total_memory = 0;
946 
947 	memset(&info, 0 , sizeof(fsl_ddr_info_t));
948 	info.mem_base = CFG_SYS_FSL_DDR_SDRAM_BASE_PHY;
949 	info.first_ctrl = 0;
950 	info.num_ctrls = CONFIG_SYS_FSL_DDR_MAIN_NUM_CTRLS;
951 	info.dimm_slots_per_ctrl = CONFIG_DIMM_SLOTS_PER_CTLR;
952 	info.board_need_mem_reset = NULL;
953 	remove_unused_controllers(&info);
954 
955 	/* Compute it once normally. */
956 	total_memory = fsl_ddr_compute(&info, STEP_GET_SPD, 1);
957 
958 	/* Ensure that total_memory does not overflow on return */
959 	if (total_memory > (phys_size_t)~0ULL)
960 		total_memory = (phys_size_t)~0ULL;
961 
962 	return total_memory;
963 }
964