1 /*
2  * <linux/usb/gadget.h>
3  *
4  * We call the USB code inside a Linux-based peripheral device a "gadget"
5  * driver, except for the hardware-specific bus glue.  One USB host can
6  * master many USB gadgets, but the gadgets are only slaved to one host.
7  *
8  *
9  * (C) Copyright 2002-2004 by David Brownell
10  * All Rights Reserved.
11  *
12  * This software is licensed under the GNU GPL version 2.
13  *
14  * Ported to U-Boot by: Thomas Smits <ts.smits@gmail.com> and
15  *                      Remy Bohmer <linux@bohmer.net>
16  */
17 
18 #ifndef __LINUX_USB_GADGET_H
19 #define __LINUX_USB_GADGET_H
20 
21 #include <errno.h>
22 #include <usb.h>
23 #include <linux/compat.h>
24 #include <linux/list.h>
25 
26 struct usb_ep;
27 
28 /**
29  * struct usb_request - describes one i/o request
30  * @buf: Buffer used for data.  Always provide this; some controllers
31  *	only use PIO, or don't use DMA for some endpoints.
32  * @dma: DMA address corresponding to 'buf'.  If you don't set this
33  *	field, and the usb controller needs one, it is responsible
34  *	for mapping and unmapping the buffer.
35  * @stream_id: The stream id, when USB3.0 bulk streams are being used
36  * @length: Length of that data
37  * @no_interrupt: If true, hints that no completion irq is needed.
38  *	Helpful sometimes with deep request queues that are handled
39  *	directly by DMA controllers.
40  * @zero: If true, when writing data, makes the last packet be "short"
41  *     by adding a zero length packet as needed;
42  * @short_not_ok: When reading data, makes short packets be
43  *     treated as errors (queue stops advancing till cleanup).
44  * @complete: Function called when request completes, so this request and
45  *	its buffer may be re-used.
46  *	Reads terminate with a short packet, or when the buffer fills,
47  *	whichever comes first.  When writes terminate, some data bytes
48  *	will usually still be in flight (often in a hardware fifo).
49  *	Errors (for reads or writes) stop the queue from advancing
50  *	until the completion function returns, so that any transfers
51  *	invalidated by the error may first be dequeued.
52  * @context: For use by the completion callback
53  * @list: For use by the gadget driver.
54  * @status: Reports completion code, zero or a negative errno.
55  *	Normally, faults block the transfer queue from advancing until
56  *	the completion callback returns.
57  *	Code "-ESHUTDOWN" indicates completion caused by device disconnect,
58  *	or when the driver disabled the endpoint.
59  * @actual: Reports bytes transferred to/from the buffer.  For reads (OUT
60  *	transfers) this may be less than the requested length.  If the
61  *	short_not_ok flag is set, short reads are treated as errors
62  *	even when status otherwise indicates successful completion.
63  *	Note that for writes (IN transfers) some data bytes may still
64  *	reside in a device-side FIFO when the request is reported as
65  *	complete.
66  *
67  * These are allocated/freed through the endpoint they're used with.  The
68  * hardware's driver can add extra per-request data to the memory it returns,
69  * which often avoids separate memory allocations (potential failures),
70  * later when the request is queued.
71  *
72  * Request flags affect request handling, such as whether a zero length
73  * packet is written (the "zero" flag), whether a short read should be
74  * treated as an error (blocking request queue advance, the "short_not_ok"
75  * flag), or hinting that an interrupt is not required (the "no_interrupt"
76  * flag, for use with deep request queues).
77  *
78  * Bulk endpoints can use any size buffers, and can also be used for interrupt
79  * transfers. interrupt-only endpoints can be much less functional.
80  *
81  * NOTE:  this is analagous to 'struct urb' on the host side, except that
82  * it's thinner and promotes more pre-allocation.
83  */
84 
85 struct usb_request {
86 	void			*buf;
87 	unsigned		length;
88 	dma_addr_t		dma;
89 
90 	unsigned		stream_id:16;
91 	unsigned		no_interrupt:1;
92 	unsigned		zero:1;
93 	unsigned		short_not_ok:1;
94 
95 	void			(*complete)(struct usb_ep *ep,
96 					struct usb_request *req);
97 	void			*context;
98 	struct list_head	list;
99 
100 	int			status;
101 	unsigned		actual;
102 };
103 
104 /*-------------------------------------------------------------------------*/
105 
106 /* endpoint-specific parts of the api to the usb controller hardware.
107  * unlike the urb model, (de)multiplexing layers are not required.
108  * (so this api could slash overhead if used on the host side...)
109  *
110  * note that device side usb controllers commonly differ in how many
111  * endpoints they support, as well as their capabilities.
112  */
113 struct usb_ep_ops {
114 	int (*enable) (struct usb_ep *ep,
115 		const struct usb_endpoint_descriptor *desc);
116 	int (*disable) (struct usb_ep *ep);
117 
118 	struct usb_request *(*alloc_request) (struct usb_ep *ep,
119 		gfp_t gfp_flags);
120 	void (*free_request) (struct usb_ep *ep, struct usb_request *req);
121 
122 	int (*queue) (struct usb_ep *ep, struct usb_request *req,
123 		gfp_t gfp_flags);
124 	int (*dequeue) (struct usb_ep *ep, struct usb_request *req);
125 
126 	int (*set_halt) (struct usb_ep *ep, int value);
127 	int (*set_wedge)(struct usb_ep *ep);
128 	int (*fifo_status) (struct usb_ep *ep);
129 	void (*fifo_flush) (struct usb_ep *ep);
130 };
131 
132 /**
133  * struct usb_ep_caps - endpoint capabilities description
134  * @type_control:Endpoint supports control type (reserved for ep0).
135  * @type_iso:Endpoint supports isochronous transfers.
136  * @type_bulk:Endpoint supports bulk transfers.
137  * @type_int:Endpoint supports interrupt transfers.
138  * @dir_in:Endpoint supports IN direction.
139  * @dir_out:Endpoint supports OUT direction.
140  */
141 struct usb_ep_caps {
142 	unsigned type_control:1;
143 	unsigned type_iso:1;
144 	unsigned type_bulk:1;
145 	unsigned type_int:1;
146 	unsigned dir_in:1;
147 	unsigned dir_out:1;
148 };
149 
150 /**
151  * struct usb_ep - device side representation of USB endpoint
152  * @name:identifier for the endpoint, such as "ep-a" or "ep9in-bulk"
153  * @ops: Function pointers used to access hardware-specific operations.
154  * @ep_list:the gadget's ep_list holds all of its endpoints
155  * @caps:The structure describing types and directions supported by endoint.
156  * @maxpacket:The maximum packet size used on this endpoint.  The initial
157  *	value can sometimes be reduced (hardware allowing), according to
158  *      the endpoint descriptor used to configure the endpoint.
159  * @maxpacket_limit:The maximum packet size value which can be handled by this
160  *	endpoint. It's set once by UDC driver when endpoint is initialized, and
161  *	should not be changed. Should not be confused with maxpacket.
162  * @max_streams: The maximum number of streams supported
163  *	by this EP (0 - 16, actual number is 2^n)
164  * @maxburst: the maximum number of bursts supported by this EP (for usb3)
165  * @driver_data:for use by the gadget driver.  all other fields are
166  *	read-only to gadget drivers.
167  * @desc: endpoint descriptor.  This pointer is set before the endpoint is
168  *	enabled and remains valid until the endpoint is disabled.
169  * @comp_desc: In case of SuperSpeed support, this is the endpoint companion
170  *	descriptor that is used to configure the endpoint
171  *
172  * the bus controller driver lists all the general purpose endpoints in
173  * gadget->ep_list.  the control endpoint (gadget->ep0) is not in that list,
174  * and is accessed only in response to a driver setup() callback.
175  */
176 struct usb_ep {
177 	void			*driver_data;
178 	const char		*name;
179 	const struct usb_ep_ops	*ops;
180 	struct list_head	ep_list;
181 	struct usb_ep_caps	caps;
182 	bool			enabled;
183 	unsigned		maxpacket:16;
184 	unsigned		maxpacket_limit:16;
185 	unsigned		max_streams:16;
186 	unsigned		maxburst:5;
187 	const struct usb_endpoint_descriptor	*desc;
188 	const struct usb_ss_ep_comp_descriptor	*comp_desc;
189 };
190 
191 /*-------------------------------------------------------------------------*/
192 
193 /**
194  * usb_ep_set_maxpacket_limit - set maximum packet size limit for endpoint
195  * @ep:the endpoint being configured
196  * @maxpacket_limit:value of maximum packet size limit
197  *
198  * This function shoud be used only in UDC drivers to initialize endpoint
199  * (usually in probe function).
200  */
usb_ep_set_maxpacket_limit(struct usb_ep * ep,unsigned maxpacket_limit)201 static inline void usb_ep_set_maxpacket_limit(struct usb_ep *ep,
202 					      unsigned maxpacket_limit)
203 {
204 	ep->maxpacket_limit = maxpacket_limit;
205 	ep->maxpacket = maxpacket_limit;
206 }
207 
208 /**
209  * usb_ep_enable - configure endpoint, making it usable
210  * @ep:the endpoint being configured.  may not be the endpoint named "ep0".
211  *	drivers discover endpoints through the ep_list of a usb_gadget.
212  * @desc:descriptor for desired behavior.  caller guarantees this pointer
213  *	remains valid until the endpoint is disabled; the data byte order
214  *	is little-endian (usb-standard).
215  *
216  * when configurations are set, or when interface settings change, the driver
217  * will enable or disable the relevant endpoints.  while it is enabled, an
218  * endpoint may be used for i/o until the driver receives a disconnect() from
219  * the host or until the endpoint is disabled.
220  *
221  * the ep0 implementation (which calls this routine) must ensure that the
222  * hardware capabilities of each endpoint match the descriptor provided
223  * for it.  for example, an endpoint named "ep2in-bulk" would be usable
224  * for interrupt transfers as well as bulk, but it likely couldn't be used
225  * for iso transfers or for endpoint 14.  some endpoints are fully
226  * configurable, with more generic names like "ep-a".  (remember that for
227  * USB, "in" means "towards the USB master".)
228  *
229  * returns zero, or a negative error code.
230  */
usb_ep_enable(struct usb_ep * ep,const struct usb_endpoint_descriptor * desc)231 static inline int usb_ep_enable(struct usb_ep *ep,
232 				const struct usb_endpoint_descriptor *desc)
233 {
234 	int ret;
235 
236 	if (ep->enabled)
237 		return 0;
238 
239 	ret = ep->ops->enable(ep, desc);
240 	if (ret)
241 		return ret;
242 
243 	ep->enabled = true;
244 
245 	return 0;
246 }
247 
248 /**
249  * usb_ep_disable - endpoint is no longer usable
250  * @ep:the endpoint being unconfigured.  may not be the endpoint named "ep0".
251  *
252  * no other task may be using this endpoint when this is called.
253  * any pending and uncompleted requests will complete with status
254  * indicating disconnect (-ESHUTDOWN) before this call returns.
255  * gadget drivers must call usb_ep_enable() again before queueing
256  * requests to the endpoint.
257  *
258  * returns zero, or a negative error code.
259  */
usb_ep_disable(struct usb_ep * ep)260 static inline int usb_ep_disable(struct usb_ep *ep)
261 {
262 	int ret;
263 
264 	if (!ep->enabled)
265 		return 0;
266 
267 	ret = ep->ops->disable(ep);
268 	if (ret)
269 		return ret;
270 
271 	ep->enabled = false;
272 
273 	return 0;
274 }
275 
276 /**
277  * usb_ep_alloc_request - allocate a request object to use with this endpoint
278  * @ep:the endpoint to be used with with the request
279  * @gfp_flags:GFP_* flags to use
280  *
281  * Request objects must be allocated with this call, since they normally
282  * need controller-specific setup and may even need endpoint-specific
283  * resources such as allocation of DMA descriptors.
284  * Requests may be submitted with usb_ep_queue(), and receive a single
285  * completion callback.  Free requests with usb_ep_free_request(), when
286  * they are no longer needed.
287  *
288  * Returns the request, or null if one could not be allocated.
289  */
usb_ep_alloc_request(struct usb_ep * ep,gfp_t gfp_flags)290 static inline struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
291 						       gfp_t gfp_flags)
292 {
293 	return ep->ops->alloc_request(ep, gfp_flags);
294 }
295 
296 /**
297  * usb_ep_free_request - frees a request object
298  * @ep:the endpoint associated with the request
299  * @req:the request being freed
300  *
301  * Reverses the effect of usb_ep_alloc_request().
302  * Caller guarantees the request is not queued, and that it will
303  * no longer be requeued (or otherwise used).
304  */
usb_ep_free_request(struct usb_ep * ep,struct usb_request * req)305 static inline void usb_ep_free_request(struct usb_ep *ep,
306 				       struct usb_request *req)
307 {
308 	ep->ops->free_request(ep, req);
309 }
310 
311 /**
312  * usb_ep_queue - queues (submits) an I/O request to an endpoint.
313  * @ep:the endpoint associated with the request
314  * @req:the request being submitted
315  * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't
316  *	pre-allocate all necessary memory with the request.
317  *
318  * This tells the device controller to perform the specified request through
319  * that endpoint (reading or writing a buffer).  When the request completes,
320  * including being canceled by usb_ep_dequeue(), the request's completion
321  * routine is called to return the request to the driver.  Any endpoint
322  * (except control endpoints like ep0) may have more than one transfer
323  * request queued; they complete in FIFO order.  Once a gadget driver
324  * submits a request, that request may not be examined or modified until it
325  * is given back to that driver through the completion callback.
326  *
327  * Each request is turned into one or more packets.  The controller driver
328  * never merges adjacent requests into the same packet.  OUT transfers
329  * will sometimes use data that's already buffered in the hardware.
330  * Drivers can rely on the fact that the first byte of the request's buffer
331  * always corresponds to the first byte of some USB packet, for both
332  * IN and OUT transfers.
333  *
334  * Bulk endpoints can queue any amount of data; the transfer is packetized
335  * automatically.  The last packet will be short if the request doesn't fill it
336  * out completely.  Zero length packets (ZLPs) should be avoided in portable
337  * protocols since not all usb hardware can successfully handle zero length
338  * packets.  (ZLPs may be explicitly written, and may be implicitly written if
339  * the request 'zero' flag is set.)  Bulk endpoints may also be used
340  * for interrupt transfers; but the reverse is not true, and some endpoints
341  * won't support every interrupt transfer.  (Such as 768 byte packets.)
342  *
343  * Interrupt-only endpoints are less functional than bulk endpoints, for
344  * example by not supporting queueing or not handling buffers that are
345  * larger than the endpoint's maxpacket size.  They may also treat data
346  * toggle differently.
347  *
348  * Control endpoints ... after getting a setup() callback, the driver queues
349  * one response (even if it would be zero length).  That enables the
350  * status ack, after transfering data as specified in the response.  Setup
351  * functions may return negative error codes to generate protocol stalls.
352  * (Note that some USB device controllers disallow protocol stall responses
353  * in some cases.)  When control responses are deferred (the response is
354  * written after the setup callback returns), then usb_ep_set_halt() may be
355  * used on ep0 to trigger protocol stalls.
356  *
357  * For periodic endpoints, like interrupt or isochronous ones, the usb host
358  * arranges to poll once per interval, and the gadget driver usually will
359  * have queued some data to transfer at that time.
360  *
361  * Returns zero, or a negative error code.  Endpoints that are not enabled
362  * report errors; errors will also be
363  * reported when the usb peripheral is disconnected.
364  */
usb_ep_queue(struct usb_ep * ep,struct usb_request * req,gfp_t gfp_flags)365 static inline int usb_ep_queue(struct usb_ep *ep,
366 			       struct usb_request *req, gfp_t gfp_flags)
367 {
368 	return ep->ops->queue(ep, req, gfp_flags);
369 }
370 
371 /**
372  * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint
373  * @ep:the endpoint associated with the request
374  * @req:the request being canceled
375  *
376  * if the request is still active on the endpoint, it is dequeued and its
377  * completion routine is called (with status -ECONNRESET); else a negative
378  * error code is returned.
379  *
380  * note that some hardware can't clear out write fifos (to unlink the request
381  * at the head of the queue) except as part of disconnecting from usb.  such
382  * restrictions prevent drivers from supporting configuration changes,
383  * even to configuration zero (a "chapter 9" requirement).
384  */
usb_ep_dequeue(struct usb_ep * ep,struct usb_request * req)385 static inline int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
386 {
387 	return ep->ops->dequeue(ep, req);
388 }
389 
390 /**
391  * usb_ep_set_halt - sets the endpoint halt feature.
392  * @ep: the non-isochronous endpoint being stalled
393  *
394  * Use this to stall an endpoint, perhaps as an error report.
395  * Except for control endpoints,
396  * the endpoint stays halted (will not stream any data) until the host
397  * clears this feature; drivers may need to empty the endpoint's request
398  * queue first, to make sure no inappropriate transfers happen.
399  *
400  * Note that while an endpoint CLEAR_FEATURE will be invisible to the
401  * gadget driver, a SET_INTERFACE will not be.  To reset endpoints for the
402  * current altsetting, see usb_ep_clear_halt().  When switching altsettings,
403  * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints.
404  *
405  * Returns zero, or a negative error code.  On success, this call sets
406  * underlying hardware state that blocks data transfers.
407  * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any
408  * transfer requests are still queued, or if the controller hardware
409  * (usually a FIFO) still holds bytes that the host hasn't collected.
410  */
usb_ep_set_halt(struct usb_ep * ep)411 static inline int usb_ep_set_halt(struct usb_ep *ep)
412 {
413 	return ep->ops->set_halt(ep, 1);
414 }
415 
416 /**
417  * usb_ep_clear_halt - clears endpoint halt, and resets toggle
418  * @ep:the bulk or interrupt endpoint being reset
419  *
420  * Use this when responding to the standard usb "set interface" request,
421  * for endpoints that aren't reconfigured, after clearing any other state
422  * in the endpoint's i/o queue.
423  *
424  * Returns zero, or a negative error code.  On success, this call clears
425  * the underlying hardware state reflecting endpoint halt and data toggle.
426  * Note that some hardware can't support this request (like pxa2xx_udc),
427  * and accordingly can't correctly implement interface altsettings.
428  */
usb_ep_clear_halt(struct usb_ep * ep)429 static inline int usb_ep_clear_halt(struct usb_ep *ep)
430 {
431 	return ep->ops->set_halt(ep, 0);
432 }
433 
434 /**
435  * usb_ep_fifo_status - returns number of bytes in fifo, or error
436  * @ep: the endpoint whose fifo status is being checked.
437  *
438  * FIFO endpoints may have "unclaimed data" in them in certain cases,
439  * such as after aborted transfers.  Hosts may not have collected all
440  * the IN data written by the gadget driver (and reported by a request
441  * completion).  The gadget driver may not have collected all the data
442  * written OUT to it by the host.  Drivers that need precise handling for
443  * fault reporting or recovery may need to use this call.
444  *
445  * This returns the number of such bytes in the fifo, or a negative
446  * errno if the endpoint doesn't use a FIFO or doesn't support such
447  * precise handling.
448  */
usb_ep_fifo_status(struct usb_ep * ep)449 static inline int usb_ep_fifo_status(struct usb_ep *ep)
450 {
451 	if (ep->ops->fifo_status)
452 		return ep->ops->fifo_status(ep);
453 	else
454 		return -EOPNOTSUPP;
455 }
456 
457 /**
458  * usb_ep_fifo_flush - flushes contents of a fifo
459  * @ep: the endpoint whose fifo is being flushed.
460  *
461  * This call may be used to flush the "unclaimed data" that may exist in
462  * an endpoint fifo after abnormal transaction terminations.  The call
463  * must never be used except when endpoint is not being used for any
464  * protocol translation.
465  */
usb_ep_fifo_flush(struct usb_ep * ep)466 static inline void usb_ep_fifo_flush(struct usb_ep *ep)
467 {
468 	if (ep->ops->fifo_flush)
469 		ep->ops->fifo_flush(ep);
470 }
471 
472 /*-------------------------------------------------------------------------*/
473 
474 struct usb_dcd_config_params {
475 	__u8  bU1devExitLat;	/* U1 Device exit Latency */
476 	__le16 bU2DevExitLat;	/* U2 Device exit Latency */
477 };
478 
479 struct usb_gadget;
480 struct usb_gadget_driver;
481 
482 /* the rest of the api to the controller hardware: device operations,
483  * which don't involve endpoints (or i/o).
484  */
485 struct usb_gadget_ops {
486 	int	(*get_frame)(struct usb_gadget *);
487 	int	(*wakeup)(struct usb_gadget *);
488 	int	(*set_selfpowered) (struct usb_gadget *, int is_selfpowered);
489 	int	(*vbus_session) (struct usb_gadget *, int is_active);
490 	int	(*vbus_draw) (struct usb_gadget *, unsigned mA);
491 	int	(*pullup) (struct usb_gadget *, int is_on);
492 	int	(*ioctl)(struct usb_gadget *,
493 				unsigned code, unsigned long param);
494 	void	(*get_config_params)(struct usb_dcd_config_params *);
495 	int	(*udc_start)(struct usb_gadget *,
496 			     struct usb_gadget_driver *);
497 	int	(*udc_stop)(struct usb_gadget *);
498 	struct usb_ep *(*match_ep)(struct usb_gadget *,
499 			struct usb_endpoint_descriptor *,
500 			struct usb_ss_ep_comp_descriptor *);
501 	int   (*ep_conf)(struct usb_gadget *,
502 			struct usb_ep *,
503 			struct usb_endpoint_descriptor *);
504 	void	(*udc_set_speed)(struct usb_gadget *gadget,
505 				 enum usb_device_speed);
506 };
507 
508 /**
509  * struct usb_gadget - represents a usb slave device
510  * @ops: Function pointers used to access hardware-specific operations.
511  * @ep0: Endpoint zero, used when reading or writing responses to
512  *	driver setup() requests
513  * @ep_list: List of other endpoints supported by the device.
514  * @speed: Speed of current connection to USB host.
515  * @max_speed: Maximal speed the UDC can handle.  UDC must support this
516  *      and all slower speeds.
517  * @is_dualspeed: true if the controller supports both high and full speed
518  *	operation.  If it does, the gadget driver must also support both.
519  * @is_otg: true if the USB device port uses a Mini-AB jack, so that the
520  *	gadget driver must provide a USB OTG descriptor.
521  * @is_a_peripheral: false unless is_otg, the "A" end of a USB cable
522  *	is in the Mini-AB jack, and HNP has been used to switch roles
523  *	so that the "A" device currently acts as A-Peripheral, not A-Host.
524  * @a_hnp_support: OTG device feature flag, indicating that the A-Host
525  *	supports HNP at this port.
526  * @a_alt_hnp_support: OTG device feature flag, indicating that the A-Host
527  *	only supports HNP on a different root port.
528  * @b_hnp_enable: OTG device feature flag, indicating that the A-Host
529  *	enabled HNP support.
530  * @name: Identifies the controller hardware type.  Used in diagnostics
531  *	and sometimes configuration.
532  * @dev: Driver model state for this abstract device.
533  * @quirk_ep_out_aligned_size: epout requires buffer size to be aligned to
534  *	MaxPacketSize.
535  *
536  * Gadgets have a mostly-portable "gadget driver" implementing device
537  * functions, handling all usb configurations and interfaces.  Gadget
538  * drivers talk to hardware-specific code indirectly, through ops vectors.
539  * That insulates the gadget driver from hardware details, and packages
540  * the hardware endpoints through generic i/o queues.  The "usb_gadget"
541  * and "usb_ep" interfaces provide that insulation from the hardware.
542  *
543  * Except for the driver data, all fields in this structure are
544  * read-only to the gadget driver.  That driver data is part of the
545  * "driver model" infrastructure in 2.6 (and later) kernels, and for
546  * earlier systems is grouped in a similar structure that's not known
547  * to the rest of the kernel.
548  *
549  * Values of the three OTG device feature flags are updated before the
550  * setup() call corresponding to USB_REQ_SET_CONFIGURATION, and before
551  * driver suspend() calls.  They are valid only when is_otg, and when the
552  * device is acting as a B-Peripheral (so is_a_peripheral is false).
553  */
554 struct usb_gadget {
555 	/* readonly to gadget driver */
556 	const struct usb_gadget_ops	*ops;
557 	struct usb_ep			*ep0;
558 	struct list_head		ep_list;	/* of usb_ep */
559 	enum usb_device_speed		speed;
560 	enum usb_device_speed		max_speed;
561 	enum usb_device_state		state;
562 	unsigned			is_dualspeed:1;
563 	unsigned			is_otg:1;
564 	unsigned			is_a_peripheral:1;
565 	unsigned			b_hnp_enable:1;
566 	unsigned			a_hnp_support:1;
567 	unsigned			a_alt_hnp_support:1;
568 	const char			*name;
569 	struct device			dev;
570 	unsigned			quirk_ep_out_aligned_size:1;
571 };
572 
set_gadget_data(struct usb_gadget * gadget,void * data)573 static inline void set_gadget_data(struct usb_gadget *gadget, void *data)
574 {
575 	gadget->dev.driver_data = data;
576 }
577 
get_gadget_data(struct usb_gadget * gadget)578 static inline void *get_gadget_data(struct usb_gadget *gadget)
579 {
580 	return gadget->dev.driver_data;
581 }
582 
dev_to_usb_gadget(struct device * dev)583 static inline struct usb_gadget *dev_to_usb_gadget(struct device *dev)
584 {
585 	return container_of(dev, struct usb_gadget, dev);
586 }
587 
588 /* iterates the non-control endpoints; 'tmp' is a struct usb_ep pointer */
589 #define gadget_for_each_ep(tmp, gadget) \
590 	list_for_each_entry(tmp, &(gadget)->ep_list, ep_list)
591 
592 /**
593  * gadget_is_dualspeed - return true iff the hardware handles high speed
594  * @g: controller that might support both high and full speeds
595  */
gadget_is_dualspeed(struct usb_gadget * g)596 static inline int gadget_is_dualspeed(struct usb_gadget *g)
597 {
598 #ifdef CONFIG_USB_GADGET_DUALSPEED
599 	/* runtime test would check "g->is_dualspeed" ... that might be
600 	 * useful to work around hardware bugs, but is mostly pointless
601 	 */
602 	return 1;
603 #else
604 	return 0;
605 #endif
606 }
607 
608 /**
609  * gadget_is_otg - return true iff the hardware is OTG-ready
610  * @g: controller that might have a Mini-AB connector
611  *
612  * This is a runtime test, since kernels with a USB-OTG stack sometimes
613  * run on boards which only have a Mini-B (or Mini-A) connector.
614  */
gadget_is_otg(struct usb_gadget * g)615 static inline int gadget_is_otg(struct usb_gadget *g)
616 {
617 #ifdef CONFIG_USB_OTG
618 	return g->is_otg;
619 #else
620 	return 0;
621 #endif
622 }
623 
624 /**
625  * gadget_is_superspeed() - return true if the hardware handles superspeed
626  * @g: controller that might support superspeed
627  */
gadget_is_superspeed(struct usb_gadget * g)628 static inline int gadget_is_superspeed(struct usb_gadget *g)
629 {
630 	return g->max_speed >= USB_SPEED_SUPER;
631 }
632 
633 /**
634  * usb_gadget_frame_number - returns the current frame number
635  * @gadget: controller that reports the frame number
636  *
637  * Returns the usb frame number, normally eleven bits from a SOF packet,
638  * or negative errno if this device doesn't support this capability.
639  */
usb_gadget_frame_number(struct usb_gadget * gadget)640 static inline int usb_gadget_frame_number(struct usb_gadget *gadget)
641 {
642 	return gadget->ops->get_frame(gadget);
643 }
644 
645 /**
646  * usb_gadget_wakeup - tries to wake up the host connected to this gadget
647  * @gadget: controller used to wake up the host
648  *
649  * Returns zero on success, else negative error code if the hardware
650  * doesn't support such attempts, or its support has not been enabled
651  * by the usb host.  Drivers must return device descriptors that report
652  * their ability to support this, or hosts won't enable it.
653  *
654  * This may also try to use SRP to wake the host and start enumeration,
655  * even if OTG isn't otherwise in use.  OTG devices may also start
656  * remote wakeup even when hosts don't explicitly enable it.
657  */
usb_gadget_wakeup(struct usb_gadget * gadget)658 static inline int usb_gadget_wakeup(struct usb_gadget *gadget)
659 {
660 	if (!gadget->ops->wakeup)
661 		return -EOPNOTSUPP;
662 	return gadget->ops->wakeup(gadget);
663 }
664 
665 /**
666  * usb_gadget_set_selfpowered - sets the device selfpowered feature.
667  * @gadget:the device being declared as self-powered
668  *
669  * this affects the device status reported by the hardware driver
670  * to reflect that it now has a local power supply.
671  *
672  * returns zero on success, else negative errno.
673  */
usb_gadget_set_selfpowered(struct usb_gadget * gadget)674 static inline int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
675 {
676 	if (!gadget->ops->set_selfpowered)
677 		return -EOPNOTSUPP;
678 	return gadget->ops->set_selfpowered(gadget, 1);
679 }
680 
681 /**
682  * usb_gadget_clear_selfpowered - clear the device selfpowered feature.
683  * @gadget:the device being declared as bus-powered
684  *
685  * this affects the device status reported by the hardware driver.
686  * some hardware may not support bus-powered operation, in which
687  * case this feature's value can never change.
688  *
689  * returns zero on success, else negative errno.
690  */
usb_gadget_clear_selfpowered(struct usb_gadget * gadget)691 static inline int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
692 {
693 	if (!gadget->ops->set_selfpowered)
694 		return -EOPNOTSUPP;
695 	return gadget->ops->set_selfpowered(gadget, 0);
696 }
697 
698 /**
699  * usb_gadget_vbus_connect - Notify controller that VBUS is powered
700  * @gadget:The device which now has VBUS power.
701  *
702  * This call is used by a driver for an external transceiver (or GPIO)
703  * that detects a VBUS power session starting.  Common responses include
704  * resuming the controller, activating the D+ (or D-) pullup to let the
705  * host detect that a USB device is attached, and starting to draw power
706  * (8mA or possibly more, especially after SET_CONFIGURATION).
707  *
708  * Returns zero on success, else negative errno.
709  */
usb_gadget_vbus_connect(struct usb_gadget * gadget)710 static inline int usb_gadget_vbus_connect(struct usb_gadget *gadget)
711 {
712 	if (!gadget->ops->vbus_session)
713 		return -EOPNOTSUPP;
714 	return gadget->ops->vbus_session(gadget, 1);
715 }
716 
717 /**
718  * usb_gadget_vbus_draw - constrain controller's VBUS power usage
719  * @gadget:The device whose VBUS usage is being described
720  * @mA:How much current to draw, in milliAmperes.  This should be twice
721  *	the value listed in the configuration descriptor bMaxPower field.
722  *
723  * This call is used by gadget drivers during SET_CONFIGURATION calls,
724  * reporting how much power the device may consume.  For example, this
725  * could affect how quickly batteries are recharged.
726  *
727  * Returns zero on success, else negative errno.
728  */
usb_gadget_vbus_draw(struct usb_gadget * gadget,unsigned mA)729 static inline int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
730 {
731 	if (!gadget->ops->vbus_draw)
732 		return -EOPNOTSUPP;
733 	return gadget->ops->vbus_draw(gadget, mA);
734 }
735 
736 /**
737  * usb_gadget_vbus_disconnect - notify controller about VBUS session end
738  * @gadget:the device whose VBUS supply is being described
739  *
740  * This call is used by a driver for an external transceiver (or GPIO)
741  * that detects a VBUS power session ending.  Common responses include
742  * reversing everything done in usb_gadget_vbus_connect().
743  *
744  * Returns zero on success, else negative errno.
745  */
usb_gadget_vbus_disconnect(struct usb_gadget * gadget)746 static inline int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
747 {
748 	if (!gadget->ops->vbus_session)
749 		return -EOPNOTSUPP;
750 	return gadget->ops->vbus_session(gadget, 0);
751 }
752 
753 /**
754  * usb_gadget_connect - software-controlled connect to USB host
755  * @gadget:the peripheral being connected
756  *
757  * Enables the D+ (or potentially D-) pullup.  The host will start
758  * enumerating this gadget when the pullup is active and a VBUS session
759  * is active (the link is powered).  This pullup is always enabled unless
760  * usb_gadget_disconnect() has been used to disable it.
761  *
762  * Returns zero on success, else negative errno.
763  */
usb_gadget_connect(struct usb_gadget * gadget)764 static inline int usb_gadget_connect(struct usb_gadget *gadget)
765 {
766 	if (!gadget->ops->pullup)
767 		return -EOPNOTSUPP;
768 	return gadget->ops->pullup(gadget, 1);
769 }
770 
771 /**
772  * usb_gadget_disconnect - software-controlled disconnect from USB host
773  * @gadget:the peripheral being disconnected
774  *
775  * Disables the D+ (or potentially D-) pullup, which the host may see
776  * as a disconnect (when a VBUS session is active).  Not all systems
777  * support software pullup controls.
778  *
779  * This routine may be used during the gadget driver bind() call to prevent
780  * the peripheral from ever being visible to the USB host, unless later
781  * usb_gadget_connect() is called.  For example, user mode components may
782  * need to be activated before the system can talk to hosts.
783  *
784  * Returns zero on success, else negative errno.
785  */
usb_gadget_disconnect(struct usb_gadget * gadget)786 static inline int usb_gadget_disconnect(struct usb_gadget *gadget)
787 {
788 	if (!gadget->ops->pullup)
789 		return -EOPNOTSUPP;
790 	return gadget->ops->pullup(gadget, 0);
791 }
792 
793 /*-------------------------------------------------------------------------*/
794 
795 /**
796  * struct usb_gadget_driver - driver for usb 'slave' devices
797  * @function: String describing the gadget's function
798  * @speed: Highest speed the driver handles.
799  * @bind: Invoked when the driver is bound to a gadget, usually
800  *	after registering the driver.
801  *	At that point, ep0 is fully initialized, and ep_list holds
802  *	the currently-available endpoints.
803  *	Called in a context that permits sleeping.
804  * @setup: Invoked for ep0 control requests that aren't handled by
805  *	the hardware level driver. Most calls must be handled by
806  *	the gadget driver, including descriptor and configuration
807  *	management.  The 16 bit members of the setup data are in
808  *	USB byte order. Called in_interrupt; this may not sleep.  Driver
809  *	queues a response to ep0, or returns negative to stall.
810  * @disconnect: Invoked after all transfers have been stopped,
811  *	when the host is disconnected.  May be called in_interrupt; this
812  *	may not sleep.  Some devices can't detect disconnect, so this might
813  *	not be called except as part of controller shutdown.
814  * @unbind: Invoked when the driver is unbound from a gadget,
815  *	usually from rmmod (after a disconnect is reported).
816  *	Called in a context that permits sleeping.
817  * @suspend: Invoked on USB suspend.  May be called in_interrupt.
818  * @resume: Invoked on USB resume.  May be called in_interrupt.
819  * @reset: Invoked on USB bus reset. It is mandatory for all gadget drivers
820  *	and should be called in_interrupt.
821  *
822  * Devices are disabled till a gadget driver successfully bind()s, which
823  * means the driver will handle setup() requests needed to enumerate (and
824  * meet "chapter 9" requirements) then do some useful work.
825  *
826  * If gadget->is_otg is true, the gadget driver must provide an OTG
827  * descriptor during enumeration, or else fail the bind() call.  In such
828  * cases, no USB traffic may flow until both bind() returns without
829  * having called usb_gadget_disconnect(), and the USB host stack has
830  * initialized.
831  *
832  * Drivers use hardware-specific knowledge to configure the usb hardware.
833  * endpoint addressing is only one of several hardware characteristics that
834  * are in descriptors the ep0 implementation returns from setup() calls.
835  *
836  * Except for ep0 implementation, most driver code shouldn't need change to
837  * run on top of different usb controllers.  It'll use endpoints set up by
838  * that ep0 implementation.
839  *
840  * The usb controller driver handles a few standard usb requests.  Those
841  * include set_address, and feature flags for devices, interfaces, and
842  * endpoints (the get_status, set_feature, and clear_feature requests).
843  *
844  * Accordingly, the driver's setup() callback must always implement all
845  * get_descriptor requests, returning at least a device descriptor and
846  * a configuration descriptor.  Drivers must make sure the endpoint
847  * descriptors match any hardware constraints. Some hardware also constrains
848  * other descriptors. (The pxa250 allows only configurations 1, 2, or 3).
849  *
850  * The driver's setup() callback must also implement set_configuration,
851  * and should also implement set_interface, get_configuration, and
852  * get_interface.  Setting a configuration (or interface) is where
853  * endpoints should be activated or (config 0) shut down.
854  *
855  * (Note that only the default control endpoint is supported.  Neither
856  * hosts nor devices generally support control traffic except to ep0.)
857  *
858  * Most devices will ignore USB suspend/resume operations, and so will
859  * not provide those callbacks.  However, some may need to change modes
860  * when the host is not longer directing those activities.  For example,
861  * local controls (buttons, dials, etc) may need to be re-enabled since
862  * the (remote) host can't do that any longer; or an error state might
863  * be cleared, to make the device behave identically whether or not
864  * power is maintained.
865  */
866 struct usb_gadget_driver {
867 	char			*function;
868 	enum usb_device_speed	speed;
869 	int			(*bind)(struct usb_gadget *);
870 	void			(*unbind)(struct usb_gadget *);
871 	int			(*setup)(struct usb_gadget *,
872 					const struct usb_ctrlrequest *);
873 	void			(*disconnect)(struct usb_gadget *);
874 	void			(*suspend)(struct usb_gadget *);
875 	void			(*resume)(struct usb_gadget *);
876 	void			(*reset)(struct usb_gadget *);
877 };
878 
879 /*-------------------------------------------------------------------------*/
880 
881 /* driver modules register and unregister, as usual.
882  * these calls must be made in a context that can sleep.
883  *
884  * these will usually be implemented directly by the hardware-dependent
885  * usb bus interface driver, which will only support a single driver.
886  */
887 
888 /**
889  * usb_gadget_register_driver - register a gadget driver
890  * @driver:the driver being registered
891  *
892  * Call this in your gadget driver's module initialization function,
893  * to tell the underlying usb controller driver about your driver.
894  * The driver's bind() function will be called to bind it to a
895  * gadget before this registration call returns.  It's expected that
896  * the bind() functions will be in init sections.
897  * This function must be called in a context that can sleep.
898  */
899 int usb_gadget_register_driver(struct usb_gadget_driver *driver);
900 
901 /**
902  * usb_gadget_unregister_driver - unregister a gadget driver
903  * @driver:the driver being unregistered
904  *
905  * Call this in your gadget driver's module cleanup function,
906  * to tell the underlying usb controller that your driver is
907  * going away.  If the controller is connected to a USB host,
908  * it will first disconnect().  The driver is also requested
909  * to unbind() and clean up any device state, before this procedure
910  * finally returns.  It's expected that the unbind() functions
911  * will in in exit sections, so may not be linked in some kernels.
912  * This function must be called in a context that can sleep.
913  */
914 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver);
915 
916 int usb_add_gadget_udc_release(struct device *parent,
917 		struct usb_gadget *gadget, void (*release)(struct device *dev));
918 int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget);
919 void usb_del_gadget_udc(struct usb_gadget *gadget);
920 /*-------------------------------------------------------------------------*/
921 
922 /* utility to simplify dealing with string descriptors */
923 
924 /**
925  * struct usb_gadget_strings - a set of USB strings in a given language
926  * @language:identifies the strings' language (0x0409 for en-us)
927  * @strings:array of strings with their ids
928  *
929  * If you're using usb_gadget_get_string(), use this to wrap all the
930  * strings for a given language.
931  */
932 struct usb_gadget_strings {
933 	u16			language;	/* 0x0409 for en-us */
934 	struct usb_string	*strings;
935 };
936 
937 /* put descriptor for string with that id into buf (buflen >= 256) */
938 int usb_gadget_get_string(struct usb_gadget_strings *table, int id, u8 *buf);
939 
940 /*-------------------------------------------------------------------------*/
941 
942 /* utility to simplify managing config descriptors */
943 
944 /* write vector of descriptors into buffer */
945 int usb_descriptor_fillbuf(void *, unsigned,
946 		const struct usb_descriptor_header **);
947 
948 /* build config descriptor from single descriptor vector */
949 int usb_gadget_config_buf(const struct usb_config_descriptor *config,
950 	void *buf, unsigned buflen, const struct usb_descriptor_header **desc);
951 
952 /*-------------------------------------------------------------------------*/
953 /* utility to simplify map/unmap of usb_requests to/from DMA */
954 
955 extern int usb_gadget_map_request(struct usb_gadget *gadget,
956 				  struct usb_request *req, int is_in);
957 
958 extern void usb_gadget_unmap_request(struct usb_gadget *gadget,
959 				     struct usb_request *req, int is_in);
960 
961 /*-------------------------------------------------------------------------*/
962 
963 /* utility to set gadget state properly */
964 
965 extern void usb_gadget_set_state(struct usb_gadget *gadget,
966 				 enum usb_device_state state);
967 
968 /*-------------------------------------------------------------------------*/
969 
970 /* utility to tell udc core that the bus reset occurs */
971 extern void usb_gadget_udc_reset(struct usb_gadget *gadget,
972 				 struct usb_gadget_driver *driver);
973 
974 /*-------------------------------------------------------------------------*/
975 
976 /* utility to give requests back to the gadget layer */
977 
978 extern void usb_gadget_giveback_request(struct usb_ep *ep,
979 					struct usb_request *req);
980 
981 /*-------------------------------------------------------------------------*/
982 
983 /* utility wrapping a simple endpoint selection policy */
984 
985 extern struct usb_ep *usb_ep_autoconfig(struct usb_gadget *,
986 			struct usb_endpoint_descriptor *);
987 
988 extern void usb_ep_autoconfig_reset(struct usb_gadget *);
989 
990 extern int dm_usb_gadget_handle_interrupts(struct udevice *);
991 
992 /**
993  * struct usb_gadget_generic_ops - The functions that a gadget driver must implement.
994  * @handle_interrupts: Handle UDC interrupts.
995  */
996 struct usb_gadget_generic_ops {
997 	int (*handle_interrupts)(struct udevice *udevice);
998 };
999 
1000 /**
1001  * udc_device_get_by_index() - Get UDC udevice by index
1002  * @index: UDC device index
1003  * @udev: UDC udevice matching the index (if found)
1004  *
1005  * Return: 0 if Ok, -ve on error
1006  */
1007 int udc_device_get_by_index(int index, struct udevice **udev);
1008 
1009 /**
1010  * udc_device_put() - Put UDC udevice
1011  * @udev: UDC udevice
1012  *
1013  * Return: 0 if Ok, -ve on error
1014  */
1015 int udc_device_put(struct udevice *udev);
1016 
1017 #endif	/* __LINUX_USB_GADGET_H */
1018