1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * This code is based on a version (aka dlmalloc) of malloc/free/realloc written
4  * by Doug Lea and released to the public domain, as explained at
5  * http://creativecommons.org/publicdomain/zero/1.0/-
6  *
7  * The original code is available at http://gee.cs.oswego.edu/pub/misc/
8  * as file malloc-2.6.6.c.
9  */
10 
11 #if CONFIG_IS_ENABLED(UNIT_TEST)
12 #define DEBUG
13 #endif
14 
15 #include <log.h>
16 #include <asm/global_data.h>
17 
18 #include <malloc.h>
19 #include <mapmem.h>
20 #include <string.h>
21 #include <asm/io.h>
22 #include <valgrind/memcheck.h>
23 
24 #ifdef DEBUG
25 #if __STD_C
26 static void malloc_update_mallinfo (void);
27 void malloc_stats (void);
28 #else
29 static void malloc_update_mallinfo ();
30 void malloc_stats();
31 #endif
32 #endif	/* DEBUG */
33 
34 DECLARE_GLOBAL_DATA_PTR;
35 
36 #ifdef MCHECK_HEAP_PROTECTION
37  #define STATIC_IF_MCHECK static
38  #undef MALLOC_COPY
39  #undef MALLOC_ZERO
MALLOC_ZERO(void * p,size_t sz)40 static inline void MALLOC_ZERO(void *p, size_t sz) { memset(p, 0, sz); }
MALLOC_COPY(void * dest,const void * src,size_t sz)41 static inline void MALLOC_COPY(void *dest, const void *src, size_t sz) { memcpy(dest, src, sz); }
42 #else
43  #define STATIC_IF_MCHECK
44  #define mALLOc_impl mALLOc
45  #define fREe_impl fREe
46  #define rEALLOc_impl rEALLOc
47  #define mEMALIGn_impl mEMALIGn
48  #define cALLOc_impl cALLOc
49 #endif
50 
51 /*
52   Emulation of sbrk for WIN32
53   All code within the ifdef WIN32 is untested by me.
54 
55   Thanks to Martin Fong and others for supplying this.
56 */
57 
58 #ifdef WIN32
59 
60 #define AlignPage(add) (((add) + (malloc_getpagesize-1)) & \
61 ~(malloc_getpagesize-1))
62 #define AlignPage64K(add) (((add) + (0x10000 - 1)) & ~(0x10000 - 1))
63 
64 /* resrve 64MB to insure large contiguous space */
65 #define RESERVED_SIZE (1024*1024*64)
66 #define NEXT_SIZE (2048*1024)
67 #define TOP_MEMORY ((unsigned long)2*1024*1024*1024)
68 
69 struct GmListElement;
70 typedef struct GmListElement GmListElement;
71 
72 struct GmListElement
73 {
74 	GmListElement* next;
75 	void* base;
76 };
77 
78 static GmListElement* head = 0;
79 static unsigned int gNextAddress = 0;
80 static unsigned int gAddressBase = 0;
81 static unsigned int gAllocatedSize = 0;
82 
83 static
makeGmListElement(void * bas)84 GmListElement* makeGmListElement (void* bas)
85 {
86 	GmListElement* this;
87 	this = (GmListElement*)(void*)LocalAlloc (0, sizeof (GmListElement));
88 	assert (this);
89 	if (this)
90 	{
91 		this->base = bas;
92 		this->next = head;
93 		head = this;
94 	}
95 	return this;
96 }
97 
gcleanup(void)98 void gcleanup (void)
99 {
100 	BOOL rval;
101 	assert ( (head == NULL) || (head->base == (void*)gAddressBase));
102 	if (gAddressBase && (gNextAddress - gAddressBase))
103 	{
104 		rval = VirtualFree ((void*)gAddressBase,
105 							gNextAddress - gAddressBase,
106 							MEM_DECOMMIT);
107 	assert (rval);
108 	}
109 	while (head)
110 	{
111 		GmListElement* next = head->next;
112 		rval = VirtualFree (head->base, 0, MEM_RELEASE);
113 		assert (rval);
114 		LocalFree (head);
115 		head = next;
116 	}
117 }
118 
119 static
findRegion(void * start_address,unsigned long size)120 void* findRegion (void* start_address, unsigned long size)
121 {
122 	MEMORY_BASIC_INFORMATION info;
123 	if (size >= TOP_MEMORY) return NULL;
124 
125 	while ((unsigned long)start_address + size < TOP_MEMORY)
126 	{
127 		VirtualQuery (start_address, &info, sizeof (info));
128 		if ((info.State == MEM_FREE) && (info.RegionSize >= size))
129 			return start_address;
130 		else
131 		{
132 			/* Requested region is not available so see if the */
133 			/* next region is available.  Set 'start_address' */
134 			/* to the next region and call 'VirtualQuery()' */
135 			/* again. */
136 
137 			start_address = (char*)info.BaseAddress + info.RegionSize;
138 
139 			/* Make sure we start looking for the next region */
140 			/* on the *next* 64K boundary.  Otherwise, even if */
141 			/* the new region is free according to */
142 			/* 'VirtualQuery()', the subsequent call to */
143 			/* 'VirtualAlloc()' (which follows the call to */
144 			/* this routine in 'wsbrk()') will round *down* */
145 			/* the requested address to a 64K boundary which */
146 			/* we already know is an address in the */
147 			/* unavailable region.  Thus, the subsequent call */
148 			/* to 'VirtualAlloc()' will fail and bring us back */
149 			/* here, causing us to go into an infinite loop. */
150 
151 			start_address =
152 				(void *) AlignPage64K((unsigned long) start_address);
153 		}
154 	}
155 	return NULL;
156 
157 }
158 
wsbrk(long size)159 void* wsbrk (long size)
160 {
161 	void* tmp;
162 	if (size > 0)
163 	{
164 		if (gAddressBase == 0)
165 		{
166 			gAllocatedSize = max (RESERVED_SIZE, AlignPage (size));
167 			gNextAddress = gAddressBase =
168 				(unsigned int)VirtualAlloc (NULL, gAllocatedSize,
169 											MEM_RESERVE, PAGE_NOACCESS);
170 		} else if (AlignPage (gNextAddress + size) > (gAddressBase +
171 gAllocatedSize))
172 		{
173 			long new_size = max (NEXT_SIZE, AlignPage (size));
174 			void* new_address = (void*)(gAddressBase+gAllocatedSize);
175 			do
176 			{
177 				new_address = findRegion (new_address, new_size);
178 
179 				if (!new_address)
180 					return (void*)-1;
181 
182 				gAddressBase = gNextAddress =
183 					(unsigned int)VirtualAlloc (new_address, new_size,
184 												MEM_RESERVE, PAGE_NOACCESS);
185 				/* repeat in case of race condition */
186 				/* The region that we found has been snagged */
187 				/* by another thread */
188 			}
189 			while (gAddressBase == 0);
190 
191 			assert (new_address == (void*)gAddressBase);
192 
193 			gAllocatedSize = new_size;
194 
195 			if (!makeGmListElement ((void*)gAddressBase))
196 				return (void*)-1;
197 		}
198 		if ((size + gNextAddress) > AlignPage (gNextAddress))
199 		{
200 			void* res;
201 			res = VirtualAlloc ((void*)AlignPage (gNextAddress),
202 								(size + gNextAddress -
203 								 AlignPage (gNextAddress)),
204 								MEM_COMMIT, PAGE_READWRITE);
205 			if (!res)
206 				return (void*)-1;
207 		}
208 		tmp = (void*)gNextAddress;
209 		gNextAddress = (unsigned int)tmp + size;
210 		return tmp;
211 	}
212 	else if (size < 0)
213 	{
214 		unsigned int alignedGoal = AlignPage (gNextAddress + size);
215 		/* Trim by releasing the virtual memory */
216 		if (alignedGoal >= gAddressBase)
217 		{
218 			VirtualFree ((void*)alignedGoal, gNextAddress - alignedGoal,
219 						 MEM_DECOMMIT);
220 			gNextAddress = gNextAddress + size;
221 			return (void*)gNextAddress;
222 		}
223 		else
224 		{
225 			VirtualFree ((void*)gAddressBase, gNextAddress - gAddressBase,
226 						 MEM_DECOMMIT);
227 			gNextAddress = gAddressBase;
228 			return (void*)-1;
229 		}
230 	}
231 	else
232 	{
233 		return (void*)gNextAddress;
234 	}
235 }
236 
237 #endif
238 
239 /*
240   Type declarations
241 */
242 
243 struct malloc_chunk
244 {
245   INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
246   INTERNAL_SIZE_T size;      /* Size in bytes, including overhead. */
247   struct malloc_chunk* fd;   /* double links -- used only if free. */
248   struct malloc_chunk* bk;
249 } __attribute__((__may_alias__)) ;
250 
251 typedef struct malloc_chunk* mchunkptr;
252 
253 /*
254 
255    malloc_chunk details:
256 
257     (The following includes lightly edited explanations by Colin Plumb.)
258 
259     Chunks of memory are maintained using a `boundary tag' method as
260     described in e.g., Knuth or Standish.  (See the paper by Paul
261     Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
262     survey of such techniques.)  Sizes of free chunks are stored both
263     in the front of each chunk and at the end.  This makes
264     consolidating fragmented chunks into bigger chunks very fast.  The
265     size fields also hold bits representing whether chunks are free or
266     in use.
267 
268     An allocated chunk looks like this:
269 
270     chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
271 	    |             Size of previous chunk, if allocated            | |
272 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
273 	    |             Size of chunk, in bytes                         |P|
274       mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
275 	    |             User data starts here...                          .
276 	    .                                                               .
277 	    .             (malloc_usable_space() bytes)                     .
278 	    .                                                               |
279 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
280 	    |             Size of chunk                                     |
281 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
282 
283     Where "chunk" is the front of the chunk for the purpose of most of
284     the malloc code, but "mem" is the pointer that is returned to the
285     user.  "Nextchunk" is the beginning of the next contiguous chunk.
286 
287     Chunks always begin on even word boundries, so the mem portion
288     (which is returned to the user) is also on an even word boundary, and
289     thus double-word aligned.
290 
291     Free chunks are stored in circular doubly-linked lists, and look like this:
292 
293     chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
294 	    |             Size of previous chunk                            |
295 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
296     `head:' |             Size of chunk, in bytes                         |P|
297       mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
298 	    |             Forward pointer to next chunk in list             |
299 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
300 	    |             Back pointer to previous chunk in list            |
301 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
302 	    |             Unused space (may be 0 bytes long)                .
303 	    .                                                               .
304 	    .                                                               |
305 
306 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
307     `foot:' |             Size of chunk, in bytes                           |
308 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
309 
310     The P (PREV_INUSE) bit, stored in the unused low-order bit of the
311     chunk size (which is always a multiple of two words), is an in-use
312     bit for the *previous* chunk.  If that bit is *clear*, then the
313     word before the current chunk size contains the previous chunk
314     size, and can be used to find the front of the previous chunk.
315     (The very first chunk allocated always has this bit set,
316     preventing access to non-existent (or non-owned) memory.)
317 
318     Note that the `foot' of the current chunk is actually represented
319     as the prev_size of the NEXT chunk. (This makes it easier to
320     deal with alignments etc).
321 
322     The two exceptions to all this are
323 
324      1. The special chunk `top', which doesn't bother using the
325 	trailing size field since there is no
326 	next contiguous chunk that would have to index off it. (After
327 	initialization, `top' is forced to always exist.  If it would
328 	become less than MINSIZE bytes long, it is replenished via
329 	malloc_extend_top.)
330 
331      2. Chunks allocated via mmap, which have the second-lowest-order
332 	bit (IS_MMAPPED) set in their size fields.  Because they are
333 	never merged or traversed from any other chunk, they have no
334 	foot size or inuse information.
335 
336     Available chunks are kept in any of several places (all declared below):
337 
338     * `av': An array of chunks serving as bin headers for consolidated
339        chunks. Each bin is doubly linked.  The bins are approximately
340        proportionally (log) spaced.  There are a lot of these bins
341        (128). This may look excessive, but works very well in
342        practice.  All procedures maintain the invariant that no
343        consolidated chunk physically borders another one. Chunks in
344        bins are kept in size order, with ties going to the
345        approximately least recently used chunk.
346 
347        The chunks in each bin are maintained in decreasing sorted order by
348        size.  This is irrelevant for the small bins, which all contain
349        the same-sized chunks, but facilitates best-fit allocation for
350        larger chunks. (These lists are just sequential. Keeping them in
351        order almost never requires enough traversal to warrant using
352        fancier ordered data structures.)  Chunks of the same size are
353        linked with the most recently freed at the front, and allocations
354        are taken from the back.  This results in LRU or FIFO allocation
355        order, which tends to give each chunk an equal opportunity to be
356        consolidated with adjacent freed chunks, resulting in larger free
357        chunks and less fragmentation.
358 
359     * `top': The top-most available chunk (i.e., the one bordering the
360        end of available memory) is treated specially. It is never
361        included in any bin, is used only if no other chunk is
362        available, and is released back to the system if it is very
363        large (see M_TRIM_THRESHOLD).
364 
365     * `last_remainder': A bin holding only the remainder of the
366        most recently split (non-top) chunk. This bin is checked
367        before other non-fitting chunks, so as to provide better
368        locality for runs of sequentially allocated chunks.
369 
370     *  Implicitly, through the host system's memory mapping tables.
371        If supported, requests greater than a threshold are usually
372        serviced via calls to mmap, and then later released via munmap.
373 
374 */
375 
376 /*  sizes, alignments */
377 
378 #define SIZE_SZ                (sizeof(INTERNAL_SIZE_T))
379 #define MALLOC_ALIGNMENT       (SIZE_SZ + SIZE_SZ)
380 #define MALLOC_ALIGN_MASK      (MALLOC_ALIGNMENT - 1)
381 #define MINSIZE                (sizeof(struct malloc_chunk))
382 
383 /* conversion from malloc headers to user pointers, and back */
384 
385 #define chunk2mem(p)   ((Void_t*)((char*)(p) + 2*SIZE_SZ))
386 #define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
387 
388 /* pad request bytes into a usable size */
389 
390 #define request2size(req) \
391  ((((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) < \
392   (MINSIZE + MALLOC_ALIGN_MASK)) ? MINSIZE : \
393    (((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) & ~(MALLOC_ALIGN_MASK)))
394 
395 /* Check if m has acceptable alignment */
396 
397 #define aligned_OK(m)    (((unsigned long)((m)) & (MALLOC_ALIGN_MASK)) == 0)
398 
399 /*
400   Physical chunk operations
401 */
402 
403 /* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
404 
405 #define PREV_INUSE 0x1
406 
407 /* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
408 
409 #define IS_MMAPPED 0x2
410 
411 /* Bits to mask off when extracting size */
412 
413 #define SIZE_BITS (PREV_INUSE|IS_MMAPPED)
414 
415 /* Ptr to next physical malloc_chunk. */
416 
417 #define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~PREV_INUSE) ))
418 
419 /* Ptr to previous physical malloc_chunk */
420 
421 #define prev_chunk(p)\
422    ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) ))
423 
424 /* Treat space at ptr + offset as a chunk */
425 
426 #define chunk_at_offset(p, s)  ((mchunkptr)(((char*)(p)) + (s)))
427 
428 /*
429   Dealing with use bits
430 */
431 
432 /* extract p's inuse bit */
433 
434 #define inuse(p)\
435 ((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE)
436 
437 /* extract inuse bit of previous chunk */
438 
439 #define prev_inuse(p)  ((p)->size & PREV_INUSE)
440 
441 /* check for mmap()'ed chunk */
442 
443 #define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)
444 
445 /* set/clear chunk as in use without otherwise disturbing */
446 
447 #define set_inuse(p)\
448 ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE
449 
450 #define clear_inuse(p)\
451 ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE)
452 
453 /* check/set/clear inuse bits in known places */
454 
455 #define inuse_bit_at_offset(p, s)\
456  (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE)
457 
458 #define set_inuse_bit_at_offset(p, s)\
459  (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE)
460 
461 #define clear_inuse_bit_at_offset(p, s)\
462  (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE))
463 
464 /*
465   Dealing with size fields
466 */
467 
468 /* Get size, ignoring use bits */
469 
470 #define chunksize(p)          ((p)->size & ~(SIZE_BITS))
471 
472 /* Set size at head, without disturbing its use bit */
473 
474 #define set_head_size(p, s)   ((p)->size = (((p)->size & PREV_INUSE) | (s)))
475 
476 /* Set size/use ignoring previous bits in header */
477 
478 #define set_head(p, s)        ((p)->size = (s))
479 
480 /* Set size at footer (only when chunk is not in use) */
481 
482 #define set_foot(p, s)   (((mchunkptr)((char*)(p) + (s)))->prev_size = (s))
483 
484 /*
485    Bins
486 
487     The bins, `av_' are an array of pairs of pointers serving as the
488     heads of (initially empty) doubly-linked lists of chunks, laid out
489     in a way so that each pair can be treated as if it were in a
490     malloc_chunk. (This way, the fd/bk offsets for linking bin heads
491     and chunks are the same).
492 
493     Bins for sizes < 512 bytes contain chunks of all the same size, spaced
494     8 bytes apart. Larger bins are approximately logarithmically
495     spaced. (See the table below.) The `av_' array is never mentioned
496     directly in the code, but instead via bin access macros.
497 
498     Bin layout:
499 
500     64 bins of size       8
501     32 bins of size      64
502     16 bins of size     512
503      8 bins of size    4096
504      4 bins of size   32768
505      2 bins of size  262144
506      1 bin  of size what's left
507 
508     There is actually a little bit of slop in the numbers in bin_index
509     for the sake of speed. This makes no difference elsewhere.
510 
511     The special chunks `top' and `last_remainder' get their own bins,
512     (this is implemented via yet more trickery with the av_ array),
513     although `top' is never properly linked to its bin since it is
514     always handled specially.
515 
516 */
517 
518 #define NAV             128   /* number of bins */
519 
520 typedef struct malloc_chunk* mbinptr;
521 
522 /* access macros */
523 
524 #define bin_at(i)      ((mbinptr)((char*)&(av_[2*(i) + 2]) - 2*SIZE_SZ))
525 #define next_bin(b)    ((mbinptr)((char*)(b) + 2 * sizeof(mbinptr)))
526 #define prev_bin(b)    ((mbinptr)((char*)(b) - 2 * sizeof(mbinptr)))
527 
528 /*
529    The first 2 bins are never indexed. The corresponding av_ cells are instead
530    used for bookkeeping. This is not to save space, but to simplify
531    indexing, maintain locality, and avoid some initialization tests.
532 */
533 
534 #define top            (av_[2])          /* The topmost chunk */
535 #define last_remainder (bin_at(1))       /* remainder from last split */
536 
537 /*
538    Because top initially points to its own bin with initial
539    zero size, thus forcing extension on the first malloc request,
540    we avoid having any special code in malloc to check whether
541    it even exists yet. But we still need to in malloc_extend_top.
542 */
543 
544 #define initial_top    ((mchunkptr)(bin_at(0)))
545 
546 /* Helper macro to initialize bins */
547 
548 #define IAV(i)  bin_at(i), bin_at(i)
549 
550 static mbinptr av_[NAV * 2 + 2] = {
551  NULL, NULL,
552  IAV(0),   IAV(1),   IAV(2),   IAV(3),   IAV(4),   IAV(5),   IAV(6),   IAV(7),
553  IAV(8),   IAV(9),   IAV(10),  IAV(11),  IAV(12),  IAV(13),  IAV(14),  IAV(15),
554  IAV(16),  IAV(17),  IAV(18),  IAV(19),  IAV(20),  IAV(21),  IAV(22),  IAV(23),
555  IAV(24),  IAV(25),  IAV(26),  IAV(27),  IAV(28),  IAV(29),  IAV(30),  IAV(31),
556  IAV(32),  IAV(33),  IAV(34),  IAV(35),  IAV(36),  IAV(37),  IAV(38),  IAV(39),
557  IAV(40),  IAV(41),  IAV(42),  IAV(43),  IAV(44),  IAV(45),  IAV(46),  IAV(47),
558  IAV(48),  IAV(49),  IAV(50),  IAV(51),  IAV(52),  IAV(53),  IAV(54),  IAV(55),
559  IAV(56),  IAV(57),  IAV(58),  IAV(59),  IAV(60),  IAV(61),  IAV(62),  IAV(63),
560  IAV(64),  IAV(65),  IAV(66),  IAV(67),  IAV(68),  IAV(69),  IAV(70),  IAV(71),
561  IAV(72),  IAV(73),  IAV(74),  IAV(75),  IAV(76),  IAV(77),  IAV(78),  IAV(79),
562  IAV(80),  IAV(81),  IAV(82),  IAV(83),  IAV(84),  IAV(85),  IAV(86),  IAV(87),
563  IAV(88),  IAV(89),  IAV(90),  IAV(91),  IAV(92),  IAV(93),  IAV(94),  IAV(95),
564  IAV(96),  IAV(97),  IAV(98),  IAV(99),  IAV(100), IAV(101), IAV(102), IAV(103),
565  IAV(104), IAV(105), IAV(106), IAV(107), IAV(108), IAV(109), IAV(110), IAV(111),
566  IAV(112), IAV(113), IAV(114), IAV(115), IAV(116), IAV(117), IAV(118), IAV(119),
567  IAV(120), IAV(121), IAV(122), IAV(123), IAV(124), IAV(125), IAV(126), IAV(127)
568 };
569 
570 #ifdef CONFIG_SYS_MALLOC_DEFAULT_TO_INIT
571 static void malloc_init(void);
572 #endif
573 
574 ulong mem_malloc_start = 0;
575 ulong mem_malloc_end = 0;
576 ulong mem_malloc_brk = 0;
577 
578 static bool malloc_testing;	/* enable test mode */
579 static int malloc_max_allocs;	/* return NULL after this many calls to malloc() */
580 
sbrk(ptrdiff_t increment)581 void *sbrk(ptrdiff_t increment)
582 {
583 	ulong old = mem_malloc_brk;
584 	ulong new = old + increment;
585 
586 	if ((new < mem_malloc_start) || (new > mem_malloc_end))
587 		return (void *)MORECORE_FAILURE;
588 
589 	/*
590 	 * if we are giving memory back make sure we clear it out since
591 	 * we set MORECORE_CLEARS to 1
592 	 */
593 	if (increment < 0)
594 		memset((void *)new, 0, -increment);
595 
596 	mem_malloc_brk = new;
597 
598 	return (void *)old;
599 }
600 
mem_malloc_init(ulong start,ulong size)601 void mem_malloc_init(ulong start, ulong size)
602 {
603 	mem_malloc_start = (ulong)map_sysmem(start, size);
604 	mem_malloc_end = mem_malloc_start + size;
605 	mem_malloc_brk = mem_malloc_start;
606 
607 #ifdef CONFIG_SYS_MALLOC_DEFAULT_TO_INIT
608 	malloc_init();
609 #endif
610 
611 	debug("using memory %#lx-%#lx for malloc()\n", mem_malloc_start,
612 	      mem_malloc_end);
613 #if CONFIG_IS_ENABLED(SYS_MALLOC_CLEAR_ON_INIT)
614 	memset((void *)mem_malloc_start, 0x0, size);
615 #endif
616 }
617 
618 /* field-extraction macros */
619 
620 #define first(b) ((b)->fd)
621 #define last(b)  ((b)->bk)
622 
623 /*
624   Indexing into bins
625 */
626 
627 #define bin_index(sz)                                                          \
628 (((((unsigned long)(sz)) >> 9) ==    0) ?       (((unsigned long)(sz)) >>  3): \
629  ((((unsigned long)(sz)) >> 9) <=    4) ?  56 + (((unsigned long)(sz)) >>  6): \
630  ((((unsigned long)(sz)) >> 9) <=   20) ?  91 + (((unsigned long)(sz)) >>  9): \
631  ((((unsigned long)(sz)) >> 9) <=   84) ? 110 + (((unsigned long)(sz)) >> 12): \
632  ((((unsigned long)(sz)) >> 9) <=  340) ? 119 + (((unsigned long)(sz)) >> 15): \
633  ((((unsigned long)(sz)) >> 9) <= 1364) ? 124 + (((unsigned long)(sz)) >> 18): \
634 					  126)
635 /*
636   bins for chunks < 512 are all spaced 8 bytes apart, and hold
637   identically sized chunks. This is exploited in malloc.
638 */
639 
640 #define MAX_SMALLBIN         63
641 #define MAX_SMALLBIN_SIZE   512
642 #define SMALLBIN_WIDTH        8
643 
644 #define smallbin_index(sz)  (((unsigned long)(sz)) >> 3)
645 
646 /*
647    Requests are `small' if both the corresponding and the next bin are small
648 */
649 
650 #define is_small_request(nb) (nb < MAX_SMALLBIN_SIZE - SMALLBIN_WIDTH)
651 
652 /*
653     To help compensate for the large number of bins, a one-level index
654     structure is used for bin-by-bin searching.  `binblocks' is a
655     one-word bitvector recording whether groups of BINBLOCKWIDTH bins
656     have any (possibly) non-empty bins, so they can be skipped over
657     all at once during during traversals. The bits are NOT always
658     cleared as soon as all bins in a block are empty, but instead only
659     when all are noticed to be empty during traversal in malloc.
660 */
661 
662 #define BINBLOCKWIDTH     4   /* bins per block */
663 
664 #define binblocks_r     ((INTERNAL_SIZE_T)av_[1]) /* bitvector of nonempty blocks */
665 #define binblocks_w     (av_[1])
666 
667 /* bin<->block macros */
668 
669 #define idx2binblock(ix)    ((unsigned)1 << (ix / BINBLOCKWIDTH))
670 #define mark_binblock(ii)   (binblocks_w = (mbinptr)(binblocks_r | idx2binblock(ii)))
671 #define clear_binblock(ii)  (binblocks_w = (mbinptr)(binblocks_r & ~(idx2binblock(ii))))
672 
673 /*  Other static bookkeeping data */
674 
675 /* variables holding tunable values */
676 
677 static unsigned long trim_threshold   = DEFAULT_TRIM_THRESHOLD;
678 static unsigned long top_pad          = DEFAULT_TOP_PAD;
679 static unsigned int  n_mmaps_max      = DEFAULT_MMAP_MAX;
680 static unsigned long mmap_threshold   = DEFAULT_MMAP_THRESHOLD;
681 
682 /* The first value returned from sbrk */
683 static char* sbrk_base = (char*)(-1);
684 
685 /* The maximum memory obtained from system via sbrk */
686 static unsigned long max_sbrked_mem = 0;
687 
688 /* The maximum via either sbrk or mmap */
689 static unsigned long max_total_mem = 0;
690 
691 /* internal working copy of mallinfo */
692 static struct mallinfo current_mallinfo = {  0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
693 
694 /* The total memory obtained from system via sbrk */
695 #define sbrked_mem  (current_mallinfo.arena)
696 
697 /* Tracking mmaps */
698 
699 #ifdef DEBUG
700 static unsigned int n_mmaps = 0;
701 #endif	/* DEBUG */
702 static unsigned long mmapped_mem = 0;
703 #if HAVE_MMAP
704 static unsigned int max_n_mmaps = 0;
705 static unsigned long max_mmapped_mem = 0;
706 #endif
707 
708 #ifdef CONFIG_SYS_MALLOC_DEFAULT_TO_INIT
malloc_init(void)709 static void malloc_init(void)
710 {
711 	int i, j;
712 
713 	debug("bins (av_ array) are at %p\n", (void *)av_);
714 
715 	av_[0] = NULL; av_[1] = NULL;
716 	for (i = 2, j = 2; i < NAV * 2 + 2; i += 2, j++) {
717 		av_[i] = bin_at(j - 2);
718 		av_[i + 1] = bin_at(j - 2);
719 
720 		/* Just print the first few bins so that
721 		 * we can see there are alright.
722 		 */
723 		if (i < 10)
724 			debug("av_[%d]=%lx av_[%d]=%lx\n",
725 			      i, (ulong)av_[i],
726 			      i + 1, (ulong)av_[i + 1]);
727 	}
728 
729 	/* Init the static bookkeeping as well */
730 	sbrk_base = (char *)(-1);
731 	max_sbrked_mem = 0;
732 	max_total_mem = 0;
733 #ifdef DEBUG
734 	memset((void *)&current_mallinfo, 0, sizeof(struct mallinfo));
735 #endif
736 }
737 #endif
738 
739 /*
740   Debugging support
741 */
742 
743 #ifdef DEBUG
744 
745 /*
746   These routines make a number of assertions about the states
747   of data structures that should be true at all times. If any
748   are not true, it's very likely that a user program has somehow
749   trashed memory. (It's also possible that there is a coding error
750   in malloc. In which case, please report it!)
751 */
752 
753 #if __STD_C
do_check_chunk(mchunkptr p)754 static void do_check_chunk(mchunkptr p)
755 #else
756 static void do_check_chunk(p) mchunkptr p;
757 #endif
758 {
759   INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
760 
761   /* No checkable chunk is mmapped */
762   assert(!chunk_is_mmapped(p));
763 
764   /* Check for legal address ... */
765   assert((char*)p >= sbrk_base);
766   if (p != top)
767     assert((char*)p + sz <= (char*)top);
768   else
769     assert((char*)p + sz <= sbrk_base + sbrked_mem);
770 
771 }
772 
773 #if __STD_C
do_check_free_chunk(mchunkptr p)774 static void do_check_free_chunk(mchunkptr p)
775 #else
776 static void do_check_free_chunk(p) mchunkptr p;
777 #endif
778 {
779   INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
780   mchunkptr next = chunk_at_offset(p, sz);
781 
782   do_check_chunk(p);
783 
784   /* Check whether it claims to be free ... */
785   assert(!inuse(p));
786 
787   /* Unless a special marker, must have OK fields */
788   if ((long)sz >= (long)MINSIZE)
789   {
790     assert((sz & MALLOC_ALIGN_MASK) == 0);
791     assert(aligned_OK(chunk2mem(p)));
792     /* ... matching footer field */
793     assert(next->prev_size == sz);
794     /* ... and is fully consolidated */
795     assert(prev_inuse(p));
796     assert (next == top || inuse(next));
797 
798     /* ... and has minimally sane links */
799     assert(p->fd->bk == p);
800     assert(p->bk->fd == p);
801   }
802   else /* markers are always of size SIZE_SZ */
803     assert(sz == SIZE_SZ);
804 }
805 
806 #if __STD_C
do_check_inuse_chunk(mchunkptr p)807 static void do_check_inuse_chunk(mchunkptr p)
808 #else
809 static void do_check_inuse_chunk(p) mchunkptr p;
810 #endif
811 {
812   mchunkptr next = next_chunk(p);
813   do_check_chunk(p);
814 
815   /* Check whether it claims to be in use ... */
816   assert(inuse(p));
817 
818   /* ... and is surrounded by OK chunks.
819     Since more things can be checked with free chunks than inuse ones,
820     if an inuse chunk borders them and debug is on, it's worth doing them.
821   */
822   if (!prev_inuse(p))
823   {
824     mchunkptr prv = prev_chunk(p);
825     assert(next_chunk(prv) == p);
826     do_check_free_chunk(prv);
827   }
828   if (next == top)
829   {
830     assert(prev_inuse(next));
831     assert(chunksize(next) >= MINSIZE);
832   }
833   else if (!inuse(next))
834     do_check_free_chunk(next);
835 
836 }
837 
838 #if __STD_C
do_check_malloced_chunk(mchunkptr p,INTERNAL_SIZE_T s)839 static void do_check_malloced_chunk(mchunkptr p, INTERNAL_SIZE_T s)
840 #else
841 static void do_check_malloced_chunk(p, s) mchunkptr p; INTERNAL_SIZE_T s;
842 #endif
843 {
844   INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
845   long room = sz - s;
846 
847   do_check_inuse_chunk(p);
848 
849   /* Legal size ... */
850   assert((long)sz >= (long)MINSIZE);
851   assert((sz & MALLOC_ALIGN_MASK) == 0);
852   assert(room >= 0);
853   assert(room < (long)MINSIZE);
854 
855   /* ... and alignment */
856   assert(aligned_OK(chunk2mem(p)));
857 
858   /* ... and was allocated at front of an available chunk */
859   assert(prev_inuse(p));
860 
861 }
862 
863 #define check_free_chunk(P)  do_check_free_chunk(P)
864 #define check_inuse_chunk(P) do_check_inuse_chunk(P)
865 #define check_chunk(P) do_check_chunk(P)
866 #define check_malloced_chunk(P,N) do_check_malloced_chunk(P,N)
867 #else
868 #define check_free_chunk(P)
869 #define check_inuse_chunk(P)
870 #define check_chunk(P)
871 #define check_malloced_chunk(P,N)
872 #endif
873 
874 /*
875   Macro-based internal utilities
876 */
877 
878 /*
879   Linking chunks in bin lists.
880   Call these only with variables, not arbitrary expressions, as arguments.
881 */
882 
883 /*
884   Place chunk p of size s in its bin, in size order,
885   putting it ahead of others of same size.
886 */
887 
888 #define frontlink(P, S, IDX, BK, FD)                                          \
889 {                                                                             \
890   if (S < MAX_SMALLBIN_SIZE)                                                  \
891   {                                                                           \
892     IDX = smallbin_index(S);                                                  \
893     mark_binblock(IDX);                                                       \
894     BK = bin_at(IDX);                                                         \
895     FD = BK->fd;                                                              \
896     P->bk = BK;                                                               \
897     P->fd = FD;                                                               \
898     FD->bk = BK->fd = P;                                                      \
899   }                                                                           \
900   else                                                                        \
901   {                                                                           \
902     IDX = bin_index(S);                                                       \
903     BK = bin_at(IDX);                                                         \
904     FD = BK->fd;                                                              \
905     if (FD == BK) mark_binblock(IDX);                                         \
906     else                                                                      \
907     {                                                                         \
908       while (FD != BK && S < chunksize(FD)) FD = FD->fd;                      \
909       BK = FD->bk;                                                            \
910     }                                                                         \
911     P->bk = BK;                                                               \
912     P->fd = FD;                                                               \
913     FD->bk = BK->fd = P;                                                      \
914   }                                                                           \
915 }
916 
917 /* take a chunk off a list */
918 
919 #define unlink(P, BK, FD)                                                     \
920 {                                                                             \
921   BK = P->bk;                                                                 \
922   FD = P->fd;                                                                 \
923   FD->bk = BK;                                                                \
924   BK->fd = FD;                                                                \
925 }                                                                             \
926 
927 /* Place p as the last remainder */
928 
929 #define link_last_remainder(P)                                                \
930 {                                                                             \
931   last_remainder->fd = last_remainder->bk =  P;                               \
932   P->fd = P->bk = last_remainder;                                             \
933 }
934 
935 /* Clear the last_remainder bin */
936 
937 #define clear_last_remainder \
938   (last_remainder->fd = last_remainder->bk = last_remainder)
939 
940 /* Routines dealing with mmap(). */
941 
942 #if HAVE_MMAP
943 
944 #if __STD_C
mmap_chunk(size_t size)945 static mchunkptr mmap_chunk(size_t size)
946 #else
947 static mchunkptr mmap_chunk(size) size_t size;
948 #endif
949 {
950   size_t page_mask = malloc_getpagesize - 1;
951   mchunkptr p;
952 
953 #ifndef MAP_ANONYMOUS
954   static int fd = -1;
955 #endif
956 
957   if(n_mmaps >= n_mmaps_max) return 0; /* too many regions */
958 
959   /* For mmapped chunks, the overhead is one SIZE_SZ unit larger, because
960    * there is no following chunk whose prev_size field could be used.
961    */
962   size = (size + SIZE_SZ + page_mask) & ~page_mask;
963 
964 #ifdef MAP_ANONYMOUS
965   p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE,
966 		      MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
967 #else /* !MAP_ANONYMOUS */
968   if (fd < 0)
969   {
970     fd = open("/dev/zero", O_RDWR);
971     if(fd < 0) return 0;
972   }
973   p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);
974 #endif
975 
976   if(p == (mchunkptr)-1) return 0;
977 
978   n_mmaps++;
979   if (n_mmaps > max_n_mmaps) max_n_mmaps = n_mmaps;
980 
981   /* We demand that eight bytes into a page must be 8-byte aligned. */
982   assert(aligned_OK(chunk2mem(p)));
983 
984   /* The offset to the start of the mmapped region is stored
985    * in the prev_size field of the chunk; normally it is zero,
986    * but that can be changed in memalign().
987    */
988   p->prev_size = 0;
989   set_head(p, size|IS_MMAPPED);
990 
991   mmapped_mem += size;
992   if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
993     max_mmapped_mem = mmapped_mem;
994   if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
995     max_total_mem = mmapped_mem + sbrked_mem;
996   return p;
997 }
998 
999 #if __STD_C
munmap_chunk(mchunkptr p)1000 static void munmap_chunk(mchunkptr p)
1001 #else
1002 static void munmap_chunk(p) mchunkptr p;
1003 #endif
1004 {
1005   INTERNAL_SIZE_T size = chunksize(p);
1006   int ret;
1007 
1008   assert (chunk_is_mmapped(p));
1009   assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
1010   assert((n_mmaps > 0));
1011   assert(((p->prev_size + size) & (malloc_getpagesize-1)) == 0);
1012 
1013   n_mmaps--;
1014   mmapped_mem -= (size + p->prev_size);
1015 
1016   ret = munmap((char *)p - p->prev_size, size + p->prev_size);
1017 
1018   /* munmap returns non-zero on failure */
1019   assert(ret == 0);
1020 }
1021 
1022 #if HAVE_MREMAP
1023 
1024 #if __STD_C
mremap_chunk(mchunkptr p,size_t new_size)1025 static mchunkptr mremap_chunk(mchunkptr p, size_t new_size)
1026 #else
1027 static mchunkptr mremap_chunk(p, new_size) mchunkptr p; size_t new_size;
1028 #endif
1029 {
1030   size_t page_mask = malloc_getpagesize - 1;
1031   INTERNAL_SIZE_T offset = p->prev_size;
1032   INTERNAL_SIZE_T size = chunksize(p);
1033   char *cp;
1034 
1035   assert (chunk_is_mmapped(p));
1036   assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
1037   assert((n_mmaps > 0));
1038   assert(((size + offset) & (malloc_getpagesize-1)) == 0);
1039 
1040   /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */
1041   new_size = (new_size + offset + SIZE_SZ + page_mask) & ~page_mask;
1042 
1043   cp = (char *)mremap((char *)p - offset, size + offset, new_size, 1);
1044 
1045   if (cp == (char *)-1) return 0;
1046 
1047   p = (mchunkptr)(cp + offset);
1048 
1049   assert(aligned_OK(chunk2mem(p)));
1050 
1051   assert((p->prev_size == offset));
1052   set_head(p, (new_size - offset)|IS_MMAPPED);
1053 
1054   mmapped_mem -= size + offset;
1055   mmapped_mem += new_size;
1056   if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
1057     max_mmapped_mem = mmapped_mem;
1058   if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1059     max_total_mem = mmapped_mem + sbrked_mem;
1060   return p;
1061 }
1062 
1063 #endif /* HAVE_MREMAP */
1064 
1065 #endif /* HAVE_MMAP */
1066 
1067 /*
1068   Extend the top-most chunk by obtaining memory from system.
1069   Main interface to sbrk (but see also malloc_trim).
1070 */
1071 
1072 #if __STD_C
malloc_extend_top(INTERNAL_SIZE_T nb)1073 static void malloc_extend_top(INTERNAL_SIZE_T nb)
1074 #else
1075 static void malloc_extend_top(nb) INTERNAL_SIZE_T nb;
1076 #endif
1077 {
1078   char*     brk;                  /* return value from sbrk */
1079   INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of sbrked space */
1080   INTERNAL_SIZE_T correction;     /* bytes for 2nd sbrk call */
1081   char*     new_brk;              /* return of 2nd sbrk call */
1082   INTERNAL_SIZE_T top_size;       /* new size of top chunk */
1083 
1084   mchunkptr old_top     = top;  /* Record state of old top */
1085   INTERNAL_SIZE_T old_top_size = chunksize(old_top);
1086   char*     old_end      = (char*)(chunk_at_offset(old_top, old_top_size));
1087 
1088   /* Pad request with top_pad plus minimal overhead */
1089 
1090   INTERNAL_SIZE_T    sbrk_size     = nb + top_pad + MINSIZE;
1091   unsigned long pagesz    = malloc_getpagesize;
1092 
1093   /* If not the first time through, round to preserve page boundary */
1094   /* Otherwise, we need to correct to a page size below anyway. */
1095   /* (We also correct below if an intervening foreign sbrk call.) */
1096 
1097   if (sbrk_base != (char*)(-1))
1098     sbrk_size = (sbrk_size + (pagesz - 1)) & ~(pagesz - 1);
1099 
1100   brk = (char*)(MORECORE (sbrk_size));
1101 
1102   /* Fail if sbrk failed or if a foreign sbrk call killed our space */
1103   if (brk == (char*)(MORECORE_FAILURE) ||
1104       (brk < old_end && old_top != initial_top))
1105     return;
1106 
1107   sbrked_mem += sbrk_size;
1108 
1109   if (brk == old_end) /* can just add bytes to current top */
1110   {
1111     top_size = sbrk_size + old_top_size;
1112     set_head(top, top_size | PREV_INUSE);
1113   }
1114   else
1115   {
1116     if (sbrk_base == (char*)(-1))  /* First time through. Record base */
1117       sbrk_base = brk;
1118     else  /* Someone else called sbrk().  Count those bytes as sbrked_mem. */
1119       sbrked_mem += brk - (char*)old_end;
1120 
1121     /* Guarantee alignment of first new chunk made from this space */
1122     front_misalign = (unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK;
1123     if (front_misalign > 0)
1124     {
1125       correction = (MALLOC_ALIGNMENT) - front_misalign;
1126       brk += correction;
1127     }
1128     else
1129       correction = 0;
1130 
1131     /* Guarantee the next brk will be at a page boundary */
1132 
1133     correction += ((((unsigned long)(brk + sbrk_size))+(pagesz-1)) &
1134 		   ~(pagesz - 1)) - ((unsigned long)(brk + sbrk_size));
1135 
1136     /* Allocate correction */
1137     new_brk = (char*)(MORECORE (correction));
1138     if (new_brk == (char*)(MORECORE_FAILURE)) return;
1139 
1140     sbrked_mem += correction;
1141 
1142     top = (mchunkptr)brk;
1143     top_size = new_brk - brk + correction;
1144     set_head(top, top_size | PREV_INUSE);
1145 
1146     if (old_top != initial_top)
1147     {
1148 
1149       /* There must have been an intervening foreign sbrk call. */
1150       /* A double fencepost is necessary to prevent consolidation */
1151 
1152       /* If not enough space to do this, then user did something very wrong */
1153       if (old_top_size < MINSIZE)
1154       {
1155 	set_head(top, PREV_INUSE); /* will force null return from malloc */
1156 	return;
1157       }
1158 
1159       /* Also keep size a multiple of MALLOC_ALIGNMENT */
1160       old_top_size = (old_top_size - 3*SIZE_SZ) & ~MALLOC_ALIGN_MASK;
1161       set_head_size(old_top, old_top_size);
1162       chunk_at_offset(old_top, old_top_size          )->size =
1163 	SIZE_SZ|PREV_INUSE;
1164       chunk_at_offset(old_top, old_top_size + SIZE_SZ)->size =
1165 	SIZE_SZ|PREV_INUSE;
1166       /* If possible, release the rest. */
1167       if (old_top_size >= MINSIZE)
1168 	fREe(chunk2mem(old_top));
1169     }
1170   }
1171 
1172   if ((unsigned long)sbrked_mem > (unsigned long)max_sbrked_mem)
1173     max_sbrked_mem = sbrked_mem;
1174   if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1175     max_total_mem = mmapped_mem + sbrked_mem;
1176 
1177   /* We always land on a page boundary */
1178   assert(((unsigned long)((char*)top + top_size) & (pagesz - 1)) == 0);
1179 }
1180 
1181 /* Main public routines */
1182 
1183 /*
1184   Malloc Algorthim:
1185 
1186     The requested size is first converted into a usable form, `nb'.
1187     This currently means to add 4 bytes overhead plus possibly more to
1188     obtain 8-byte alignment and/or to obtain a size of at least
1189     MINSIZE (currently 16 bytes), the smallest allocatable size.
1190     (All fits are considered `exact' if they are within MINSIZE bytes.)
1191 
1192     From there, the first successful of the following steps is taken:
1193 
1194       1. The bin corresponding to the request size is scanned, and if
1195 	 a chunk of exactly the right size is found, it is taken.
1196 
1197       2. The most recently remaindered chunk is used if it is big
1198 	 enough.  This is a form of (roving) first fit, used only in
1199 	 the absence of exact fits. Runs of consecutive requests use
1200 	 the remainder of the chunk used for the previous such request
1201 	 whenever possible. This limited use of a first-fit style
1202 	 allocation strategy tends to give contiguous chunks
1203 	 coextensive lifetimes, which improves locality and can reduce
1204 	 fragmentation in the long run.
1205 
1206       3. Other bins are scanned in increasing size order, using a
1207 	 chunk big enough to fulfill the request, and splitting off
1208 	 any remainder.  This search is strictly by best-fit; i.e.,
1209 	 the smallest (with ties going to approximately the least
1210 	 recently used) chunk that fits is selected.
1211 
1212       4. If large enough, the chunk bordering the end of memory
1213 	 (`top') is split off. (This use of `top' is in accord with
1214 	 the best-fit search rule.  In effect, `top' is treated as
1215 	 larger (and thus less well fitting) than any other available
1216 	 chunk since it can be extended to be as large as necessary
1217 	 (up to system limitations).
1218 
1219       5. If the request size meets the mmap threshold and the
1220 	 system supports mmap, and there are few enough currently
1221 	 allocated mmapped regions, and a call to mmap succeeds,
1222 	 the request is allocated via direct memory mapping.
1223 
1224       6. Otherwise, the top of memory is extended by
1225 	 obtaining more space from the system (normally using sbrk,
1226 	 but definable to anything else via the MORECORE macro).
1227 	 Memory is gathered from the system (in system page-sized
1228 	 units) in a way that allows chunks obtained across different
1229 	 sbrk calls to be consolidated, but does not require
1230 	 contiguous memory. Thus, it should be safe to intersperse
1231 	 mallocs with other sbrk calls.
1232 
1233       All allocations are made from the the `lowest' part of any found
1234       chunk. (The implementation invariant is that prev_inuse is
1235       always true of any allocated chunk; i.e., that each allocated
1236       chunk borders either a previously allocated and still in-use chunk,
1237       or the base of its memory arena.)
1238 
1239 */
1240 
1241 STATIC_IF_MCHECK
1242 #if __STD_C
mALLOc_impl(size_t bytes)1243 Void_t* mALLOc_impl(size_t bytes)
1244 #else
1245 Void_t* mALLOc_impl(bytes) size_t bytes;
1246 #endif
1247 {
1248   mchunkptr victim;                  /* inspected/selected chunk */
1249   INTERNAL_SIZE_T victim_size;       /* its size */
1250   int       idx;                     /* index for bin traversal */
1251   mbinptr   bin;                     /* associated bin */
1252   mchunkptr remainder;               /* remainder from a split */
1253   long      remainder_size;          /* its size */
1254   int       remainder_index;         /* its bin index */
1255   unsigned long block;               /* block traverser bit */
1256   int       startidx;                /* first bin of a traversed block */
1257   mchunkptr fwd;                     /* misc temp for linking */
1258   mchunkptr bck;                     /* misc temp for linking */
1259   mbinptr q;                         /* misc temp */
1260 
1261   INTERNAL_SIZE_T nb;
1262 
1263 #if CONFIG_IS_ENABLED(SYS_MALLOC_F)
1264 	if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT))
1265 		return malloc_simple(bytes);
1266 #endif
1267 
1268   if (CONFIG_IS_ENABLED(UNIT_TEST) && malloc_testing) {
1269     if (--malloc_max_allocs < 0)
1270       return NULL;
1271   }
1272 
1273   /* check if mem_malloc_init() was run */
1274   if ((mem_malloc_start == 0) && (mem_malloc_end == 0)) {
1275     /* not initialized yet */
1276     return NULL;
1277   }
1278 
1279   if (bytes > CONFIG_SYS_MALLOC_LEN || (long)bytes < 0)
1280      return NULL;
1281 
1282   nb = request2size(bytes);  /* padded request size; */
1283 
1284   /* Check for exact match in a bin */
1285 
1286   if (is_small_request(nb))  /* Faster version for small requests */
1287   {
1288     idx = smallbin_index(nb);
1289 
1290     /* No traversal or size check necessary for small bins.  */
1291 
1292     q = bin_at(idx);
1293     victim = last(q);
1294 
1295     /* Also scan the next one, since it would have a remainder < MINSIZE */
1296     if (victim == q)
1297     {
1298       q = next_bin(q);
1299       victim = last(q);
1300     }
1301     if (victim != q)
1302     {
1303       victim_size = chunksize(victim);
1304       unlink(victim, bck, fwd);
1305       set_inuse_bit_at_offset(victim, victim_size);
1306       check_malloced_chunk(victim, nb);
1307       VALGRIND_MALLOCLIKE_BLOCK(chunk2mem(victim), bytes, SIZE_SZ, false);
1308       return chunk2mem(victim);
1309     }
1310 
1311     idx += 2; /* Set for bin scan below. We've already scanned 2 bins. */
1312 
1313   }
1314   else
1315   {
1316     idx = bin_index(nb);
1317     bin = bin_at(idx);
1318 
1319     for (victim = last(bin); victim != bin; victim = victim->bk)
1320     {
1321       victim_size = chunksize(victim);
1322       remainder_size = victim_size - nb;
1323 
1324       if (remainder_size >= (long)MINSIZE) /* too big */
1325       {
1326 	--idx; /* adjust to rescan below after checking last remainder */
1327 	break;
1328       }
1329 
1330       else if (remainder_size >= 0) /* exact fit */
1331       {
1332 	unlink(victim, bck, fwd);
1333 	set_inuse_bit_at_offset(victim, victim_size);
1334 	check_malloced_chunk(victim, nb);
1335         VALGRIND_MALLOCLIKE_BLOCK(chunk2mem(victim), bytes, SIZE_SZ, false);
1336 	return chunk2mem(victim);
1337       }
1338     }
1339 
1340     ++idx;
1341 
1342   }
1343 
1344   /* Try to use the last split-off remainder */
1345 
1346   if ( (victim = last_remainder->fd) != last_remainder)
1347   {
1348     victim_size = chunksize(victim);
1349     remainder_size = victim_size - nb;
1350 
1351     if (remainder_size >= (long)MINSIZE) /* re-split */
1352     {
1353       remainder = chunk_at_offset(victim, nb);
1354       set_head(victim, nb | PREV_INUSE);
1355       link_last_remainder(remainder);
1356       set_head(remainder, remainder_size | PREV_INUSE);
1357       set_foot(remainder, remainder_size);
1358       check_malloced_chunk(victim, nb);
1359       VALGRIND_MALLOCLIKE_BLOCK(chunk2mem(victim), bytes, SIZE_SZ, false);
1360       return chunk2mem(victim);
1361     }
1362 
1363     clear_last_remainder;
1364 
1365     if (remainder_size >= 0)  /* exhaust */
1366     {
1367       set_inuse_bit_at_offset(victim, victim_size);
1368       check_malloced_chunk(victim, nb);
1369       VALGRIND_MALLOCLIKE_BLOCK(chunk2mem(victim), bytes, SIZE_SZ, false);
1370       return chunk2mem(victim);
1371     }
1372 
1373     /* Else place in bin */
1374 
1375     frontlink(victim, victim_size, remainder_index, bck, fwd);
1376   }
1377 
1378   /*
1379      If there are any possibly nonempty big-enough blocks,
1380      search for best fitting chunk by scanning bins in blockwidth units.
1381   */
1382 
1383   if ( (block = idx2binblock(idx)) <= binblocks_r)
1384   {
1385 
1386     /* Get to the first marked block */
1387 
1388     if ( (block & binblocks_r) == 0)
1389     {
1390       /* force to an even block boundary */
1391       idx = (idx & ~(BINBLOCKWIDTH - 1)) + BINBLOCKWIDTH;
1392       block <<= 1;
1393       while ((block & binblocks_r) == 0)
1394       {
1395 	idx += BINBLOCKWIDTH;
1396 	block <<= 1;
1397       }
1398     }
1399 
1400     /* For each possibly nonempty block ... */
1401     for (;;)
1402     {
1403       startidx = idx;          /* (track incomplete blocks) */
1404       q = bin = bin_at(idx);
1405 
1406       /* For each bin in this block ... */
1407       do
1408       {
1409 	/* Find and use first big enough chunk ... */
1410 
1411 	for (victim = last(bin); victim != bin; victim = victim->bk)
1412 	{
1413 	  victim_size = chunksize(victim);
1414 	  remainder_size = victim_size - nb;
1415 
1416 	  if (remainder_size >= (long)MINSIZE) /* split */
1417 	  {
1418 	    remainder = chunk_at_offset(victim, nb);
1419 	    set_head(victim, nb | PREV_INUSE);
1420 	    unlink(victim, bck, fwd);
1421 	    link_last_remainder(remainder);
1422 	    set_head(remainder, remainder_size | PREV_INUSE);
1423 	    set_foot(remainder, remainder_size);
1424 	    check_malloced_chunk(victim, nb);
1425 	    VALGRIND_MALLOCLIKE_BLOCK(chunk2mem(victim), bytes, SIZE_SZ, false);
1426 	    return chunk2mem(victim);
1427 	  }
1428 
1429 	  else if (remainder_size >= 0)  /* take */
1430 	  {
1431 	    set_inuse_bit_at_offset(victim, victim_size);
1432 	    unlink(victim, bck, fwd);
1433 	    check_malloced_chunk(victim, nb);
1434 	    VALGRIND_MALLOCLIKE_BLOCK(chunk2mem(victim), bytes, SIZE_SZ, false);
1435 	    return chunk2mem(victim);
1436 	  }
1437 
1438 	}
1439 
1440        bin = next_bin(bin);
1441 
1442       } while ((++idx & (BINBLOCKWIDTH - 1)) != 0);
1443 
1444       /* Clear out the block bit. */
1445 
1446       do   /* Possibly backtrack to try to clear a partial block */
1447       {
1448 	if ((startidx & (BINBLOCKWIDTH - 1)) == 0)
1449 	{
1450 	  av_[1] = (mbinptr)(binblocks_r & ~block);
1451 	  break;
1452 	}
1453 	--startidx;
1454        q = prev_bin(q);
1455       } while (first(q) == q);
1456 
1457       /* Get to the next possibly nonempty block */
1458 
1459       if ( (block <<= 1) <= binblocks_r && (block != 0) )
1460       {
1461 	while ((block & binblocks_r) == 0)
1462 	{
1463 	  idx += BINBLOCKWIDTH;
1464 	  block <<= 1;
1465 	}
1466       }
1467       else
1468 	break;
1469     }
1470   }
1471 
1472   /* Try to use top chunk */
1473 
1474   /* Require that there be a remainder, ensuring top always exists  */
1475   if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
1476   {
1477 
1478 #if HAVE_MMAP
1479     /* If big and would otherwise need to extend, try to use mmap instead */
1480     if ((unsigned long)nb >= (unsigned long)mmap_threshold &&
1481 	(victim = mmap_chunk(nb)))
1482       VALGRIND_MALLOCLIKE_BLOCK(chunk2mem(victim), bytes, SIZE_SZ, false);
1483       return chunk2mem(victim);
1484 #endif
1485 
1486     /* Try to extend */
1487     malloc_extend_top(nb);
1488     if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
1489       return NULL; /* propagate failure */
1490   }
1491 
1492   victim = top;
1493   set_head(victim, nb | PREV_INUSE);
1494   top = chunk_at_offset(victim, nb);
1495   set_head(top, remainder_size | PREV_INUSE);
1496   check_malloced_chunk(victim, nb);
1497   VALGRIND_MALLOCLIKE_BLOCK(chunk2mem(victim), bytes, SIZE_SZ, false);
1498   return chunk2mem(victim);
1499 
1500 }
1501 
1502 /*
1503 
1504   free() algorithm :
1505 
1506     cases:
1507 
1508        1. free(0) has no effect.
1509 
1510        2. If the chunk was allocated via mmap, it is release via munmap().
1511 
1512        3. If a returned chunk borders the current high end of memory,
1513 	  it is consolidated into the top, and if the total unused
1514 	  topmost memory exceeds the trim threshold, malloc_trim is
1515 	  called.
1516 
1517        4. Other chunks are consolidated as they arrive, and
1518 	  placed in corresponding bins. (This includes the case of
1519 	  consolidating with the current `last_remainder').
1520 
1521 */
1522 
1523 STATIC_IF_MCHECK
1524 #if __STD_C
fREe_impl(Void_t * mem)1525 void fREe_impl(Void_t* mem)
1526 #else
1527 void fREe_impl(mem) Void_t* mem;
1528 #endif
1529 {
1530   mchunkptr p;         /* chunk corresponding to mem */
1531   INTERNAL_SIZE_T hd;  /* its head field */
1532   INTERNAL_SIZE_T sz;  /* its size */
1533   int       idx;       /* its bin index */
1534   mchunkptr next;      /* next contiguous chunk */
1535   INTERNAL_SIZE_T nextsz; /* its size */
1536   INTERNAL_SIZE_T prevsz; /* size of previous contiguous chunk */
1537   mchunkptr bck;       /* misc temp for linking */
1538   mchunkptr fwd;       /* misc temp for linking */
1539   int       islr;      /* track whether merging with last_remainder */
1540 
1541 #if CONFIG_IS_ENABLED(SYS_MALLOC_F)
1542 	/* free() is a no-op - all the memory will be freed on relocation */
1543 	if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) {
1544 		VALGRIND_FREELIKE_BLOCK(mem, SIZE_SZ);
1545 		return;
1546 	}
1547 #endif
1548 
1549   if (mem == NULL)                              /* free(0) has no effect */
1550     return;
1551 
1552   p = mem2chunk(mem);
1553   hd = p->size;
1554 
1555 #if HAVE_MMAP
1556   if (hd & IS_MMAPPED)                       /* release mmapped memory. */
1557   {
1558     munmap_chunk(p);
1559     return;
1560   }
1561 #endif
1562 
1563   check_inuse_chunk(p);
1564 
1565   sz = hd & ~PREV_INUSE;
1566   next = chunk_at_offset(p, sz);
1567   nextsz = chunksize(next);
1568   VALGRIND_FREELIKE_BLOCK(mem, SIZE_SZ);
1569 
1570   if (next == top)                            /* merge with top */
1571   {
1572     sz += nextsz;
1573 
1574     if (!(hd & PREV_INUSE))                    /* consolidate backward */
1575     {
1576       prevsz = p->prev_size;
1577       p = chunk_at_offset(p, -((long) prevsz));
1578       sz += prevsz;
1579       unlink(p, bck, fwd);
1580     }
1581 
1582     set_head(p, sz | PREV_INUSE);
1583     top = p;
1584     if ((unsigned long)(sz) >= (unsigned long)trim_threshold)
1585       malloc_trim(top_pad);
1586     return;
1587   }
1588 
1589   set_head(next, nextsz);                    /* clear inuse bit */
1590 
1591   islr = 0;
1592 
1593   if (!(hd & PREV_INUSE))                    /* consolidate backward */
1594   {
1595     prevsz = p->prev_size;
1596     p = chunk_at_offset(p, -((long) prevsz));
1597     sz += prevsz;
1598 
1599     if (p->fd == last_remainder)             /* keep as last_remainder */
1600       islr = 1;
1601     else
1602       unlink(p, bck, fwd);
1603   }
1604 
1605   if (!(inuse_bit_at_offset(next, nextsz)))   /* consolidate forward */
1606   {
1607     sz += nextsz;
1608 
1609     if (!islr && next->fd == last_remainder)  /* re-insert last_remainder */
1610     {
1611       islr = 1;
1612       link_last_remainder(p);
1613     }
1614     else
1615       unlink(next, bck, fwd);
1616   }
1617 
1618   set_head(p, sz | PREV_INUSE);
1619   set_foot(p, sz);
1620   if (!islr)
1621     frontlink(p, sz, idx, bck, fwd);
1622 }
1623 
1624 /*
1625 
1626   Realloc algorithm:
1627 
1628     Chunks that were obtained via mmap cannot be extended or shrunk
1629     unless HAVE_MREMAP is defined, in which case mremap is used.
1630     Otherwise, if their reallocation is for additional space, they are
1631     copied.  If for less, they are just left alone.
1632 
1633     Otherwise, if the reallocation is for additional space, and the
1634     chunk can be extended, it is, else a malloc-copy-free sequence is
1635     taken.  There are several different ways that a chunk could be
1636     extended. All are tried:
1637 
1638        * Extending forward into following adjacent free chunk.
1639        * Shifting backwards, joining preceding adjacent space
1640        * Both shifting backwards and extending forward.
1641        * Extending into newly sbrked space
1642 
1643     Unless the #define REALLOC_ZERO_BYTES_FREES is set, realloc with a
1644     size argument of zero (re)allocates a minimum-sized chunk.
1645 
1646     If the reallocation is for less space, and the new request is for
1647     a `small' (<512 bytes) size, then the newly unused space is lopped
1648     off and freed.
1649 
1650     The old unix realloc convention of allowing the last-free'd chunk
1651     to be used as an argument to realloc is no longer supported.
1652     I don't know of any programs still relying on this feature,
1653     and allowing it would also allow too many other incorrect
1654     usages of realloc to be sensible.
1655 
1656 */
1657 
1658 STATIC_IF_MCHECK
1659 #if __STD_C
rEALLOc_impl(Void_t * oldmem,size_t bytes)1660 Void_t* rEALLOc_impl(Void_t* oldmem, size_t bytes)
1661 #else
1662 Void_t* rEALLOc_impl(oldmem, bytes) Void_t* oldmem; size_t bytes;
1663 #endif
1664 {
1665   INTERNAL_SIZE_T    nb;      /* padded request size */
1666 
1667   mchunkptr oldp;             /* chunk corresponding to oldmem */
1668   INTERNAL_SIZE_T    oldsize; /* its size */
1669 
1670   mchunkptr newp;             /* chunk to return */
1671   INTERNAL_SIZE_T    newsize; /* its size */
1672   Void_t*   newmem;           /* corresponding user mem */
1673 
1674   mchunkptr next;             /* next contiguous chunk after oldp */
1675   INTERNAL_SIZE_T  nextsize;  /* its size */
1676 
1677   mchunkptr prev;             /* previous contiguous chunk before oldp */
1678   INTERNAL_SIZE_T  prevsize;  /* its size */
1679 
1680   mchunkptr remainder;        /* holds split off extra space from newp */
1681   INTERNAL_SIZE_T  remainder_size;   /* its size */
1682 
1683   mchunkptr bck;              /* misc temp for linking */
1684   mchunkptr fwd;              /* misc temp for linking */
1685 
1686 #ifdef REALLOC_ZERO_BYTES_FREES
1687   if (!bytes) {
1688 	fREe_impl(oldmem);
1689 	return NULL;
1690   }
1691 #endif
1692 
1693   if (bytes > CONFIG_SYS_MALLOC_LEN || (long)bytes < 0)
1694      return NULL;
1695 
1696   /* realloc of null is supposed to be same as malloc */
1697   if (oldmem == NULL) return mALLOc_impl(bytes);
1698 
1699 #if CONFIG_IS_ENABLED(SYS_MALLOC_F)
1700 	if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) {
1701 		/* This is harder to support and should not be needed */
1702 		panic("pre-reloc realloc() is not supported");
1703 	}
1704 #endif
1705   if (CONFIG_IS_ENABLED(UNIT_TEST) && malloc_testing) {
1706     if (--malloc_max_allocs < 0)
1707       return NULL;
1708   }
1709 
1710   newp    = oldp    = mem2chunk(oldmem);
1711   newsize = oldsize = chunksize(oldp);
1712 
1713   nb = request2size(bytes);
1714 
1715 #if HAVE_MMAP
1716   if (chunk_is_mmapped(oldp))
1717   {
1718 #if HAVE_MREMAP
1719     newp = mremap_chunk(oldp, nb);
1720     if(newp) return chunk2mem(newp);
1721 #endif
1722     /* Note the extra SIZE_SZ overhead. */
1723     if(oldsize - SIZE_SZ >= nb) return oldmem; /* do nothing */
1724     /* Must alloc, copy, free. */
1725     newmem = mALLOc_impl(bytes);
1726     if (!newmem)
1727 	return NULL; /* propagate failure */
1728     MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ);
1729     munmap_chunk(oldp);
1730     return newmem;
1731   }
1732 #endif
1733 
1734   check_inuse_chunk(oldp);
1735 
1736   if ((long)(oldsize) < (long)(nb))
1737   {
1738 
1739     /* Try expanding forward */
1740 
1741     next = chunk_at_offset(oldp, oldsize);
1742     if (next == top || !inuse(next))
1743     {
1744       nextsize = chunksize(next);
1745 
1746       /* Forward into top only if a remainder */
1747       if (next == top)
1748       {
1749 	if ((long)(nextsize + newsize) >= (long)(nb + MINSIZE))
1750 	{
1751 	  newsize += nextsize;
1752 	  top = chunk_at_offset(oldp, nb);
1753 	  set_head(top, (newsize - nb) | PREV_INUSE);
1754 	  set_head_size(oldp, nb);
1755 	  VALGRIND_RESIZEINPLACE_BLOCK(chunk2mem(oldp), 0, bytes, SIZE_SZ);
1756 	  VALGRIND_MAKE_MEM_DEFINED(chunk2mem(oldp), bytes);
1757 	  return chunk2mem(oldp);
1758 	}
1759       }
1760 
1761       /* Forward into next chunk */
1762       else if (((long)(nextsize + newsize) >= (long)(nb)))
1763       {
1764 	unlink(next, bck, fwd);
1765 	newsize  += nextsize;
1766 	VALGRIND_RESIZEINPLACE_BLOCK(chunk2mem(oldp), 0, bytes, SIZE_SZ);
1767 	VALGRIND_MAKE_MEM_DEFINED(chunk2mem(oldp), bytes);
1768 	goto split;
1769       }
1770     }
1771     else
1772     {
1773       next = NULL;
1774       nextsize = 0;
1775     }
1776 
1777     /* Try shifting backwards. */
1778 
1779     if (!prev_inuse(oldp))
1780     {
1781       prev = prev_chunk(oldp);
1782       prevsize = chunksize(prev);
1783 
1784       /* try forward + backward first to save a later consolidation */
1785 
1786       if (next != NULL)
1787       {
1788 	/* into top */
1789 	if (next == top)
1790 	{
1791 	  if ((long)(nextsize + prevsize + newsize) >= (long)(nb + MINSIZE))
1792 	  {
1793 	    unlink(prev, bck, fwd);
1794 	    newp = prev;
1795 	    newsize += prevsize + nextsize;
1796 	    newmem = chunk2mem(newp);
1797 	    VALGRIND_MALLOCLIKE_BLOCK(newmem, bytes, SIZE_SZ, false);
1798 	    MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
1799 	    top = chunk_at_offset(newp, nb);
1800 	    set_head(top, (newsize - nb) | PREV_INUSE);
1801 	    set_head_size(newp, nb);
1802 	    VALGRIND_FREELIKE_BLOCK(oldmem, SIZE_SZ);
1803 	    return newmem;
1804 	  }
1805 	}
1806 
1807 	/* into next chunk */
1808 	else if (((long)(nextsize + prevsize + newsize) >= (long)(nb)))
1809 	{
1810 	  unlink(next, bck, fwd);
1811 	  unlink(prev, bck, fwd);
1812 	  newp = prev;
1813 	  newsize += nextsize + prevsize;
1814 	  newmem = chunk2mem(newp);
1815 	  VALGRIND_MALLOCLIKE_BLOCK(newmem, bytes, SIZE_SZ, false);
1816 	  MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
1817 	  goto split;
1818 	}
1819       }
1820 
1821       /* backward only */
1822       if (prev != NULL && (long)(prevsize + newsize) >= (long)nb)
1823       {
1824 	unlink(prev, bck, fwd);
1825 	newp = prev;
1826 	newsize += prevsize;
1827 	newmem = chunk2mem(newp);
1828 	VALGRIND_MALLOCLIKE_BLOCK(newmem, bytes, SIZE_SZ, false);
1829 	MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
1830 	goto split;
1831       }
1832     }
1833 
1834     /* Must allocate */
1835 
1836     newmem = mALLOc_impl (bytes);
1837 
1838     if (newmem == NULL)  /* propagate failure */
1839       return NULL;
1840 
1841     /* Avoid copy if newp is next chunk after oldp. */
1842     /* (This can only happen when new chunk is sbrk'ed.) */
1843 
1844     if ( (newp = mem2chunk(newmem)) == next_chunk(oldp))
1845     {
1846       newsize += chunksize(newp);
1847       newp = oldp;
1848       goto split;
1849     }
1850 
1851     /* Otherwise copy, free, and exit */
1852     MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
1853     fREe_impl(oldmem);
1854     return newmem;
1855   } else {
1856     VALGRIND_RESIZEINPLACE_BLOCK(oldmem, 0, bytes, SIZE_SZ);
1857     VALGRIND_MAKE_MEM_DEFINED(oldmem, bytes);
1858   }
1859 
1860  split:  /* split off extra room in old or expanded chunk */
1861 
1862   if (newsize - nb >= MINSIZE) /* split off remainder */
1863   {
1864     remainder = chunk_at_offset(newp, nb);
1865     remainder_size = newsize - nb;
1866     set_head_size(newp, nb);
1867     set_head(remainder, remainder_size | PREV_INUSE);
1868     set_inuse_bit_at_offset(remainder, remainder_size);
1869     VALGRIND_MALLOCLIKE_BLOCK(chunk2mem(remainder), remainder_size, SIZE_SZ,
1870 			      false);
1871     fREe_impl(chunk2mem(remainder)); /* let free() deal with it */
1872   }
1873   else
1874   {
1875     set_head_size(newp, newsize);
1876     set_inuse_bit_at_offset(newp, newsize);
1877   }
1878 
1879   check_inuse_chunk(newp);
1880   return chunk2mem(newp);
1881 }
1882 
1883 /*
1884 
1885   memalign algorithm:
1886 
1887     memalign requests more than enough space from malloc, finds a spot
1888     within that chunk that meets the alignment request, and then
1889     possibly frees the leading and trailing space.
1890 
1891     The alignment argument must be a power of two. This property is not
1892     checked by memalign, so misuse may result in random runtime errors.
1893 
1894     8-byte alignment is guaranteed by normal malloc calls, so don't
1895     bother calling memalign with an argument of 8 or less.
1896 
1897     Overreliance on memalign is a sure way to fragment space.
1898 
1899 */
1900 
1901 STATIC_IF_MCHECK
1902 #if __STD_C
mEMALIGn_impl(size_t alignment,size_t bytes)1903 Void_t* mEMALIGn_impl(size_t alignment, size_t bytes)
1904 #else
1905 Void_t* mEMALIGn_impl(alignment, bytes) size_t alignment; size_t bytes;
1906 #endif
1907 {
1908   INTERNAL_SIZE_T    nb;      /* padded  request size */
1909   char*     m;                /* memory returned by malloc call */
1910   mchunkptr p;                /* corresponding chunk */
1911   char*     brk;              /* alignment point within p */
1912   mchunkptr newp;             /* chunk to return */
1913   INTERNAL_SIZE_T  newsize;   /* its size */
1914   INTERNAL_SIZE_T  leadsize;  /* leading space befor alignment point */
1915   mchunkptr remainder;        /* spare room at end to split off */
1916   long      remainder_size;   /* its size */
1917 
1918   if (bytes > CONFIG_SYS_MALLOC_LEN || (long)bytes < 0)
1919      return NULL;
1920 
1921 #if CONFIG_IS_ENABLED(SYS_MALLOC_F)
1922 	if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) {
1923 		return memalign_simple(alignment, bytes);
1924 	}
1925 #endif
1926 
1927   /* If need less alignment than we give anyway, just relay to malloc */
1928 
1929   if (alignment <= MALLOC_ALIGNMENT) return mALLOc_impl(bytes);
1930 
1931   /* Otherwise, ensure that it is at least a minimum chunk size */
1932 
1933   if (alignment <  MINSIZE) alignment = MINSIZE;
1934 
1935   /* Call malloc with worst case padding to hit alignment. */
1936 
1937   nb = request2size(bytes);
1938   m  = (char*)(mALLOc_impl(nb + alignment + MINSIZE));
1939 
1940   /*
1941   * The attempt to over-allocate (with a size large enough to guarantee the
1942   * ability to find an aligned region within allocated memory) failed.
1943   *
1944   * Try again, this time only allocating exactly the size the user wants. If
1945   * the allocation now succeeds and just happens to be aligned, we can still
1946   * fulfill the user's request.
1947   */
1948   if (m == NULL) {
1949     size_t extra, extra2;
1950     /*
1951      * Use bytes not nb, since mALLOc internally calls request2size too, and
1952      * each call increases the size to allocate, to account for the header.
1953      */
1954     m  = (char*)(mALLOc_impl(bytes));
1955     /* Aligned -> return it */
1956     if ((((unsigned long)(m)) % alignment) == 0)
1957       return m;
1958     /*
1959      * Otherwise, try again, requesting enough extra space to be able to
1960      * acquire alignment.
1961      */
1962     fREe_impl(m);
1963     /* Add in extra bytes to match misalignment of unexpanded allocation */
1964     extra = alignment - (((unsigned long)(m)) % alignment);
1965     m  = (char*)(mALLOc_impl(bytes + extra));
1966     /*
1967      * m might not be the same as before. Validate that the previous value of
1968      * extra still works for the current value of m.
1969      * If (!m), extra2=alignment so
1970      */
1971     if (m) {
1972       extra2 = alignment - (((unsigned long)(m)) % alignment);
1973       if (extra2 > extra) {
1974         fREe_impl(m);
1975         m = NULL;
1976       }
1977     }
1978     /* Fall through to original NULL check and chunk splitting logic */
1979   }
1980 
1981   if (m == NULL) return NULL; /* propagate failure */
1982 
1983   p = mem2chunk(m);
1984 
1985   if ((((unsigned long)(m)) % alignment) == 0) /* aligned */
1986   {
1987 #if HAVE_MMAP
1988     if(chunk_is_mmapped(p))
1989       return chunk2mem(p); /* nothing more to do */
1990 #endif
1991   }
1992   else /* misaligned */
1993   {
1994     /*
1995       Find an aligned spot inside chunk.
1996       Since we need to give back leading space in a chunk of at
1997       least MINSIZE, if the first calculation places us at
1998       a spot with less than MINSIZE leader, we can move to the
1999       next aligned spot -- we've allocated enough total room so that
2000       this is always possible.
2001     */
2002 
2003     brk = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) & -((signed) alignment));
2004     if ((long)(brk - (char*)(p)) < MINSIZE) brk = brk + alignment;
2005 
2006     newp = (mchunkptr)brk;
2007     leadsize = brk - (char*)(p);
2008     newsize = chunksize(p) - leadsize;
2009 
2010 #if HAVE_MMAP
2011     if(chunk_is_mmapped(p))
2012     {
2013       newp->prev_size = p->prev_size + leadsize;
2014       set_head(newp, newsize|IS_MMAPPED);
2015       return chunk2mem(newp);
2016     }
2017 #endif
2018 
2019     /* give back leader, use the rest */
2020 
2021     set_head(newp, newsize | PREV_INUSE);
2022     set_inuse_bit_at_offset(newp, newsize);
2023     set_head_size(p, leadsize);
2024     fREe_impl(chunk2mem(p));
2025     p = newp;
2026     VALGRIND_MALLOCLIKE_BLOCK(chunk2mem(p), bytes, SIZE_SZ, false);
2027 
2028     assert (newsize >= nb && (((unsigned long)(chunk2mem(p))) % alignment) == 0);
2029   }
2030 
2031   /* Also give back spare room at the end */
2032 
2033   remainder_size = chunksize(p) - nb;
2034 
2035   if (remainder_size >= (long)MINSIZE)
2036   {
2037     remainder = chunk_at_offset(p, nb);
2038     set_head(remainder, remainder_size | PREV_INUSE);
2039     set_head_size(p, nb);
2040     VALGRIND_MALLOCLIKE_BLOCK(chunk2mem(remainder), remainder_size, SIZE_SZ,
2041 			      false);
2042     fREe_impl(chunk2mem(remainder));
2043   }
2044 
2045   check_inuse_chunk(p);
2046   return chunk2mem(p);
2047 
2048 }
2049 
2050 /*
2051     valloc just invokes memalign with alignment argument equal
2052     to the page size of the system (or as near to this as can
2053     be figured out from all the includes/defines above.)
2054 */
2055 
2056 #if __STD_C
vALLOc(size_t bytes)2057 Void_t* vALLOc(size_t bytes)
2058 #else
2059 Void_t* vALLOc(bytes) size_t bytes;
2060 #endif
2061 {
2062   return mEMALIGn (malloc_getpagesize, bytes);
2063 }
2064 
2065 /*
2066   pvalloc just invokes valloc for the nearest pagesize
2067   that will accommodate request
2068 */
2069 
2070 #if __STD_C
pvALLOc(size_t bytes)2071 Void_t* pvALLOc(size_t bytes)
2072 #else
2073 Void_t* pvALLOc(bytes) size_t bytes;
2074 #endif
2075 {
2076   size_t pagesize = malloc_getpagesize;
2077   return mEMALIGn (pagesize, (bytes + pagesize - 1) & ~(pagesize - 1));
2078 }
2079 
2080 /*
2081 
2082   calloc calls malloc, then zeroes out the allocated chunk.
2083 
2084 */
2085 
2086 STATIC_IF_MCHECK
2087 #if __STD_C
cALLOc_impl(size_t n,size_t elem_size)2088 Void_t* cALLOc_impl(size_t n, size_t elem_size)
2089 #else
2090 Void_t* cALLOc_impl(n, elem_size) size_t n; size_t elem_size;
2091 #endif
2092 {
2093   mchunkptr p;
2094   INTERNAL_SIZE_T csz;
2095 
2096   INTERNAL_SIZE_T sz = n * elem_size;
2097 
2098   /* check if expand_top called, in which case don't need to clear */
2099 #if CONFIG_IS_ENABLED(SYS_MALLOC_CLEAR_ON_INIT)
2100 #if MORECORE_CLEARS
2101   mchunkptr oldtop = top;
2102   INTERNAL_SIZE_T oldtopsize = chunksize(top);
2103 #endif
2104 #endif
2105   Void_t* mem = mALLOc_impl (sz);
2106 
2107   if ((long)n < 0) return NULL;
2108 
2109   if (mem == NULL)
2110     return NULL;
2111   else
2112   {
2113 #if CONFIG_IS_ENABLED(SYS_MALLOC_F)
2114 	if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) {
2115 		memset(mem, 0, sz);
2116 		return mem;
2117 	}
2118 #endif
2119     p = mem2chunk(mem);
2120 
2121     /* Two optional cases in which clearing not necessary */
2122 
2123 #if HAVE_MMAP
2124     if (chunk_is_mmapped(p)) return mem;
2125 #endif
2126 
2127     csz = chunksize(p);
2128 
2129 #if CONFIG_IS_ENABLED(SYS_MALLOC_CLEAR_ON_INIT)
2130 #if MORECORE_CLEARS
2131     if (p == oldtop && csz > oldtopsize)
2132     {
2133       /* clear only the bytes from non-freshly-sbrked memory */
2134       csz = oldtopsize;
2135     }
2136 #endif
2137 #endif
2138 
2139     MALLOC_ZERO(mem, csz - SIZE_SZ);
2140     VALGRIND_MAKE_MEM_DEFINED(mem, sz);
2141     return mem;
2142   }
2143 }
2144 
2145 /*
2146 
2147   cfree just calls free. It is needed/defined on some systems
2148   that pair it with calloc, presumably for odd historical reasons.
2149 
2150 */
2151 
2152 #if !defined(INTERNAL_LINUX_C_LIB) || !defined(__ELF__)
2153 #if __STD_C
cfree(Void_t * mem)2154 void cfree(Void_t *mem)
2155 #else
2156 void cfree(mem) Void_t *mem;
2157 #endif
2158 {
2159   fREe(mem);
2160 }
2161 #endif
2162 
2163 #ifdef MCHECK_HEAP_PROTECTION
2164  #include "mcheck_core.inc.h"
2165  #if !__STD_C
2166   #error "must have __STD_C"
2167  #endif
2168 
mALLOc(size_t bytes)2169 Void_t *mALLOc(size_t bytes)
2170 {
2171 	mcheck_pedantic_prehook();
2172 	size_t fullsz = mcheck_alloc_prehook(bytes);
2173 	void *p = mALLOc_impl(fullsz);
2174 
2175 	if (!p)
2176 		return p;
2177 	return mcheck_alloc_posthook(p, bytes);
2178 }
2179 
fREe(Void_t * mem)2180 void fREe(Void_t *mem) { fREe_impl(mcheck_free_prehook(mem)); }
2181 
rEALLOc(Void_t * oldmem,size_t bytes)2182 Void_t *rEALLOc(Void_t *oldmem, size_t bytes)
2183 {
2184 	mcheck_pedantic_prehook();
2185 	if (bytes == 0) {
2186 		if (oldmem)
2187 			fREe(oldmem);
2188 		return NULL;
2189 	}
2190 
2191 	if (oldmem == NULL)
2192 		return mALLOc(bytes);
2193 
2194 	void *p = mcheck_reallocfree_prehook(oldmem);
2195 	size_t newsz = mcheck_alloc_prehook(bytes);
2196 
2197 	p = rEALLOc_impl(p, newsz);
2198 	if (!p)
2199 		return p;
2200 	return mcheck_alloc_noclean_posthook(p, bytes);
2201 }
2202 
mEMALIGn(size_t alignment,size_t bytes)2203 Void_t *mEMALIGn(size_t alignment, size_t bytes)
2204 {
2205 	mcheck_pedantic_prehook();
2206 	size_t fullsz = mcheck_memalign_prehook(alignment, bytes);
2207 	void *p = mEMALIGn_impl(alignment, fullsz);
2208 
2209 	if (!p)
2210 		return p;
2211 	return mcheck_memalign_posthook(alignment, p, bytes);
2212 }
2213 
2214 // pvALLOc, vALLOc - redirect to mEMALIGn, defined here, so they need no wrapping.
2215 
cALLOc(size_t n,size_t elem_size)2216 Void_t *cALLOc(size_t n, size_t elem_size)
2217 {
2218 	mcheck_pedantic_prehook();
2219 	// NB: here is no overflow check.
2220 	size_t fullsz = mcheck_alloc_prehook(n * elem_size);
2221 	void *p = cALLOc_impl(1, fullsz);
2222 
2223 	if (!p)
2224 		return p;
2225 	return mcheck_alloc_noclean_posthook(p, n * elem_size);
2226 }
2227 
2228 // mcheck API {
mcheck_pedantic(mcheck_abortfunc_t f)2229 int mcheck_pedantic(mcheck_abortfunc_t f)
2230 {
2231 	mcheck_initialize(f, 1);
2232 	return 0;
2233 }
2234 
mcheck(mcheck_abortfunc_t f)2235 int mcheck(mcheck_abortfunc_t f)
2236 {
2237 	mcheck_initialize(f, 0);
2238 	return 0;
2239 }
2240 
mcheck_check_all(void)2241 void mcheck_check_all(void) { mcheck_pedantic_check(); }
2242 
mprobe(void * __ptr)2243 enum mcheck_status mprobe(void *__ptr) { return mcheck_mprobe(__ptr); }
2244 // mcheck API }
2245 #endif
2246 
2247 /*
2248 
2249     Malloc_trim gives memory back to the system (via negative
2250     arguments to sbrk) if there is unused memory at the `high' end of
2251     the malloc pool. You can call this after freeing large blocks of
2252     memory to potentially reduce the system-level memory requirements
2253     of a program. However, it cannot guarantee to reduce memory. Under
2254     some allocation patterns, some large free blocks of memory will be
2255     locked between two used chunks, so they cannot be given back to
2256     the system.
2257 
2258     The `pad' argument to malloc_trim represents the amount of free
2259     trailing space to leave untrimmed. If this argument is zero,
2260     only the minimum amount of memory to maintain internal data
2261     structures will be left (one page or less). Non-zero arguments
2262     can be supplied to maintain enough trailing space to service
2263     future expected allocations without having to re-obtain memory
2264     from the system.
2265 
2266     Malloc_trim returns 1 if it actually released any memory, else 0.
2267 
2268 */
2269 
2270 #if __STD_C
malloc_trim(size_t pad)2271 int malloc_trim(size_t pad)
2272 #else
2273 int malloc_trim(pad) size_t pad;
2274 #endif
2275 {
2276   long  top_size;        /* Amount of top-most memory */
2277   long  extra;           /* Amount to release */
2278   char* current_brk;     /* address returned by pre-check sbrk call */
2279   char* new_brk;         /* address returned by negative sbrk call */
2280 
2281   unsigned long pagesz = malloc_getpagesize;
2282 
2283   top_size = chunksize(top);
2284   extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz;
2285 
2286   if (extra < (long)pagesz)  /* Not enough memory to release */
2287     return 0;
2288 
2289   else
2290   {
2291     /* Test to make sure no one else called sbrk */
2292     current_brk = (char*)(MORECORE (0));
2293     if (current_brk != (char*)(top) + top_size)
2294       return 0;     /* Apparently we don't own memory; must fail */
2295 
2296     else
2297     {
2298       new_brk = (char*)(MORECORE (-extra));
2299 
2300       if (new_brk == (char*)(MORECORE_FAILURE)) /* sbrk failed? */
2301       {
2302 	/* Try to figure out what we have */
2303 	current_brk = (char*)(MORECORE (0));
2304 	top_size = current_brk - (char*)top;
2305 	if (top_size >= (long)MINSIZE) /* if not, we are very very dead! */
2306 	{
2307 	  sbrked_mem = current_brk - sbrk_base;
2308 	  set_head(top, top_size | PREV_INUSE);
2309 	}
2310 	check_chunk(top);
2311 	return 0;
2312       }
2313 
2314       else
2315       {
2316 	/* Success. Adjust top accordingly. */
2317 	set_head(top, (top_size - extra) | PREV_INUSE);
2318 	sbrked_mem -= extra;
2319 	check_chunk(top);
2320 	return 1;
2321       }
2322     }
2323   }
2324 }
2325 
2326 /*
2327   malloc_usable_size:
2328 
2329     This routine tells you how many bytes you can actually use in an
2330     allocated chunk, which may be more than you requested (although
2331     often not). You can use this many bytes without worrying about
2332     overwriting other allocated objects. Not a particularly great
2333     programming practice, but still sometimes useful.
2334 
2335 */
2336 
2337 #if __STD_C
malloc_usable_size(Void_t * mem)2338 size_t malloc_usable_size(Void_t* mem)
2339 #else
2340 size_t malloc_usable_size(mem) Void_t* mem;
2341 #endif
2342 {
2343   mchunkptr p;
2344   if (mem == NULL)
2345     return 0;
2346   else
2347   {
2348     p = mem2chunk(mem);
2349     if(!chunk_is_mmapped(p))
2350     {
2351       if (!inuse(p)) return 0;
2352       check_inuse_chunk(p);
2353       return chunksize(p) - SIZE_SZ;
2354     }
2355     return chunksize(p) - 2*SIZE_SZ;
2356   }
2357 }
2358 
2359 /* Utility to update current_mallinfo for malloc_stats and mallinfo() */
2360 
2361 #ifdef DEBUG
malloc_update_mallinfo(void)2362 static void malloc_update_mallinfo(void)
2363 {
2364   int i;
2365   mbinptr b;
2366   mchunkptr p;
2367 #ifdef DEBUG
2368   mchunkptr q;
2369 #endif
2370 
2371   INTERNAL_SIZE_T avail = chunksize(top);
2372   int   navail = ((long)(avail) >= (long)MINSIZE)? 1 : 0;
2373 
2374   for (i = 1; i < NAV; ++i)
2375   {
2376     b = bin_at(i);
2377     for (p = last(b); p != b; p = p->bk)
2378     {
2379 #ifdef DEBUG
2380       check_free_chunk(p);
2381       for (q = next_chunk(p);
2382 	   q < top && inuse(q) && (long)(chunksize(q)) >= (long)MINSIZE;
2383 	   q = next_chunk(q))
2384 	check_inuse_chunk(q);
2385 #endif
2386       avail += chunksize(p);
2387       navail++;
2388     }
2389   }
2390 
2391   current_mallinfo.ordblks = navail;
2392   current_mallinfo.uordblks = sbrked_mem - avail;
2393   current_mallinfo.fordblks = avail;
2394   current_mallinfo.hblks = n_mmaps;
2395   current_mallinfo.hblkhd = mmapped_mem;
2396   current_mallinfo.keepcost = chunksize(top);
2397 
2398 }
2399 #endif	/* DEBUG */
2400 
2401 /*
2402 
2403   malloc_stats:
2404 
2405     Prints on the amount of space obtain from the system (both
2406     via sbrk and mmap), the maximum amount (which may be more than
2407     current if malloc_trim and/or munmap got called), the maximum
2408     number of simultaneous mmap regions used, and the current number
2409     of bytes allocated via malloc (or realloc, etc) but not yet
2410     freed. (Note that this is the number of bytes allocated, not the
2411     number requested. It will be larger than the number requested
2412     because of alignment and bookkeeping overhead.)
2413 
2414 */
2415 
2416 #ifdef DEBUG
malloc_stats(void)2417 void malloc_stats(void)
2418 {
2419   malloc_update_mallinfo();
2420   printf("max system bytes = %10u\n",
2421 	  (unsigned int)(max_total_mem));
2422   printf("system bytes     = %10u\n",
2423 	  (unsigned int)(sbrked_mem + mmapped_mem));
2424   printf("in use bytes     = %10u\n",
2425 	  (unsigned int)(current_mallinfo.uordblks + mmapped_mem));
2426 #if HAVE_MMAP
2427   printf("max mmap regions = %10u\n",
2428 	  (unsigned int)max_n_mmaps);
2429 #endif
2430 }
2431 #endif	/* DEBUG */
2432 
2433 /*
2434   mallinfo returns a copy of updated current mallinfo.
2435 */
2436 
2437 #ifdef DEBUG
mALLINFo(void)2438 struct mallinfo mALLINFo(void)
2439 {
2440   malloc_update_mallinfo();
2441   return current_mallinfo;
2442 }
2443 #endif	/* DEBUG */
2444 
2445 /*
2446   mallopt:
2447 
2448     mallopt is the general SVID/XPG interface to tunable parameters.
2449     The format is to provide a (parameter-number, parameter-value) pair.
2450     mallopt then sets the corresponding parameter to the argument
2451     value if it can (i.e., so long as the value is meaningful),
2452     and returns 1 if successful else 0.
2453 
2454     See descriptions of tunable parameters above.
2455 
2456 */
2457 
2458 #if __STD_C
mALLOPt(int param_number,int value)2459 int mALLOPt(int param_number, int value)
2460 #else
2461 int mALLOPt(param_number, value) int param_number; int value;
2462 #endif
2463 {
2464   switch(param_number)
2465   {
2466     case M_TRIM_THRESHOLD:
2467       trim_threshold = value; return 1;
2468     case M_TOP_PAD:
2469       top_pad = value; return 1;
2470     case M_MMAP_THRESHOLD:
2471       mmap_threshold = value; return 1;
2472     case M_MMAP_MAX:
2473 #if HAVE_MMAP
2474       n_mmaps_max = value; return 1;
2475 #else
2476       if (value != 0) return 0; else  n_mmaps_max = value; return 1;
2477 #endif
2478 
2479     default:
2480       return 0;
2481   }
2482 }
2483 
initf_malloc(void)2484 int initf_malloc(void)
2485 {
2486 #if CONFIG_IS_ENABLED(SYS_MALLOC_F)
2487 	assert(gd->malloc_base);	/* Set up by crt0.S */
2488 	gd->malloc_limit = CONFIG_VAL(SYS_MALLOC_F_LEN);
2489 	gd->malloc_ptr = 0;
2490 #endif
2491 
2492 	return 0;
2493 }
2494 
malloc_enable_testing(int max_allocs)2495 void malloc_enable_testing(int max_allocs)
2496 {
2497 	malloc_testing = true;
2498 	malloc_max_allocs = max_allocs;
2499 }
2500 
malloc_disable_testing(void)2501 void malloc_disable_testing(void)
2502 {
2503 	malloc_testing = false;
2504 }
2505 
2506 /*
2507 
2508 History:
2509 
2510     V2.6.6 Sun Dec  5 07:42:19 1999  Doug Lea  (dl at gee)
2511       * return null for negative arguments
2512       * Added Several WIN32 cleanups from Martin C. Fong <mcfong@yahoo.com>
2513 	 * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
2514 	  (e.g. WIN32 platforms)
2515 	 * Cleanup up header file inclusion for WIN32 platforms
2516 	 * Cleanup code to avoid Microsoft Visual C++ compiler complaints
2517 	 * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
2518 	   memory allocation routines
2519 	 * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
2520 	 * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
2521 	   usage of 'assert' in non-WIN32 code
2522 	 * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
2523 	   avoid infinite loop
2524       * Always call 'fREe()' rather than 'free()'
2525 
2526     V2.6.5 Wed Jun 17 15:57:31 1998  Doug Lea  (dl at gee)
2527       * Fixed ordering problem with boundary-stamping
2528 
2529     V2.6.3 Sun May 19 08:17:58 1996  Doug Lea  (dl at gee)
2530       * Added pvalloc, as recommended by H.J. Liu
2531       * Added 64bit pointer support mainly from Wolfram Gloger
2532       * Added anonymously donated WIN32 sbrk emulation
2533       * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
2534       * malloc_extend_top: fix mask error that caused wastage after
2535 	foreign sbrks
2536       * Add linux mremap support code from HJ Liu
2537 
2538     V2.6.2 Tue Dec  5 06:52:55 1995  Doug Lea  (dl at gee)
2539       * Integrated most documentation with the code.
2540       * Add support for mmap, with help from
2541 	Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
2542       * Use last_remainder in more cases.
2543       * Pack bins using idea from  colin@nyx10.cs.du.edu
2544       * Use ordered bins instead of best-fit threshhold
2545       * Eliminate block-local decls to simplify tracing and debugging.
2546       * Support another case of realloc via move into top
2547       * Fix error occuring when initial sbrk_base not word-aligned.
2548       * Rely on page size for units instead of SBRK_UNIT to
2549 	avoid surprises about sbrk alignment conventions.
2550       * Add mallinfo, mallopt. Thanks to Raymond Nijssen
2551 	(raymond@es.ele.tue.nl) for the suggestion.
2552       * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
2553       * More precautions for cases where other routines call sbrk,
2554 	courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
2555       * Added macros etc., allowing use in linux libc from
2556 	H.J. Lu (hjl@gnu.ai.mit.edu)
2557       * Inverted this history list
2558 
2559     V2.6.1 Sat Dec  2 14:10:57 1995  Doug Lea  (dl at gee)
2560       * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
2561       * Removed all preallocation code since under current scheme
2562 	the work required to undo bad preallocations exceeds
2563 	the work saved in good cases for most test programs.
2564       * No longer use return list or unconsolidated bins since
2565 	no scheme using them consistently outperforms those that don't
2566 	given above changes.
2567       * Use best fit for very large chunks to prevent some worst-cases.
2568       * Added some support for debugging
2569 
2570     V2.6.0 Sat Nov  4 07:05:23 1995  Doug Lea  (dl at gee)
2571       * Removed footers when chunks are in use. Thanks to
2572 	Paul Wilson (wilson@cs.texas.edu) for the suggestion.
2573 
2574     V2.5.4 Wed Nov  1 07:54:51 1995  Doug Lea  (dl at gee)
2575       * Added malloc_trim, with help from Wolfram Gloger
2576 	(wmglo@Dent.MED.Uni-Muenchen.DE).
2577 
2578     V2.5.3 Tue Apr 26 10:16:01 1994  Doug Lea  (dl at g)
2579 
2580     V2.5.2 Tue Apr  5 16:20:40 1994  Doug Lea  (dl at g)
2581       * realloc: try to expand in both directions
2582       * malloc: swap order of clean-bin strategy;
2583       * realloc: only conditionally expand backwards
2584       * Try not to scavenge used bins
2585       * Use bin counts as a guide to preallocation
2586       * Occasionally bin return list chunks in first scan
2587       * Add a few optimizations from colin@nyx10.cs.du.edu
2588 
2589     V2.5.1 Sat Aug 14 15:40:43 1993  Doug Lea  (dl at g)
2590       * faster bin computation & slightly different binning
2591       * merged all consolidations to one part of malloc proper
2592 	 (eliminating old malloc_find_space & malloc_clean_bin)
2593       * Scan 2 returns chunks (not just 1)
2594       * Propagate failure in realloc if malloc returns 0
2595       * Add stuff to allow compilation on non-ANSI compilers
2596 	  from kpv@research.att.com
2597 
2598     V2.5 Sat Aug  7 07:41:59 1993  Doug Lea  (dl at g.oswego.edu)
2599       * removed potential for odd address access in prev_chunk
2600       * removed dependency on getpagesize.h
2601       * misc cosmetics and a bit more internal documentation
2602       * anticosmetics: mangled names in macros to evade debugger strangeness
2603       * tested on sparc, hp-700, dec-mips, rs6000
2604 	  with gcc & native cc (hp, dec only) allowing
2605 	  Detlefs & Zorn comparison study (in SIGPLAN Notices.)
2606 
2607     Trial version Fri Aug 28 13:14:29 1992  Doug Lea  (dl at g.oswego.edu)
2608       * Based loosely on libg++-1.2X malloc. (It retains some of the overall
2609 	 structure of old version,  but most details differ.)
2610 
2611 */
2612