1 #ifndef _LINUX_KERNEL_H
2 #define _LINUX_KERNEL_H
3 
4 #include <linux/types.h>
5 #include <linux/printk.h> /* for printf/pr_* utilities */
6 #include <limits.h>
7 
8 #define STACK_MAGIC	0xdeadbeef
9 
10 #define REPEAT_BYTE(x)	((~0ul / 0xff) * (x))
11 
12 #define ALIGN(x,a)		__ALIGN_MASK((x),(typeof(x))(a)-1)
13 #define ALIGN_DOWN(x, a)	ALIGN((x) - ((a) - 1), (a))
14 #define __ALIGN_MASK(x,mask)	(((x)+(mask))&~(mask))
15 #define PTR_ALIGN(p, a)		((typeof(p))ALIGN((unsigned long)(p), (a)))
16 #define IS_ALIGNED(x, a)		(((x) & ((typeof(x))(a) - 1)) == 0)
17 
18 #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
19 
20 /*
21  * This looks more complex than it should be. But we need to
22  * get the type for the ~ right in round_down (it needs to be
23  * as wide as the result!), and we want to evaluate the macro
24  * arguments just once each.
25  */
26 #define __round_mask(x, y) ((__typeof__(x))((y)-1))
27 #define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
28 #define round_down(x, y) ((x) & ~__round_mask(x, y))
29 
30 #define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f))
31 #define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d))
32 
33 #define DIV_ROUND_DOWN_ULL(ll, d) \
34 	({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; })
35 
36 #define DIV_ROUND_UP_ULL(ll, d)		DIV_ROUND_DOWN_ULL((ll) + (d) - 1, (d))
37 
38 #define ROUND(a, b)		(((a) + (b) - 1) & ~((b) - 1))
39 
40 #if BITS_PER_LONG == 32
41 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d)
42 #else
43 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d)
44 #endif
45 
46 /* The `const' in roundup() prevents gcc-3.3 from calling __divdi3 */
47 #define roundup(x, y) (					\
48 {							\
49 	const typeof(y) __y = y;			\
50 	(((x) + (__y - 1)) / __y) * __y;		\
51 }							\
52 )
53 #define rounddown(x, y) (				\
54 {							\
55 	typeof(x) __x = (x);				\
56 	__x - (__x % (y));				\
57 }							\
58 )
59 
60 /*
61  * Divide positive or negative dividend by positive divisor and round
62  * to closest integer. Result is undefined for negative divisors and
63  * for negative dividends if the divisor variable type is unsigned.
64  */
65 #define DIV_ROUND_CLOSEST(x, divisor)(			\
66 {							\
67 	typeof(x) __x = x;				\
68 	typeof(divisor) __d = divisor;			\
69 	(((typeof(x))-1) > 0 ||				\
70 	 ((typeof(divisor))-1) > 0 || (__x) > 0) ?	\
71 		(((__x) + ((__d) / 2)) / (__d)) :	\
72 		(((__x) - ((__d) / 2)) / (__d));	\
73 }							\
74 )
75 /*
76  * Same as above but for u64 dividends. divisor must be a 32-bit
77  * number.
78  */
79 #define DIV_ROUND_CLOSEST_ULL(x, divisor)(		\
80 {							\
81 	typeof(divisor) __d = divisor;			\
82 	unsigned long long _tmp = (x) + (__d) / 2;	\
83 	do_div(_tmp, __d);				\
84 	_tmp;						\
85 }							\
86 )
87 
88 /*
89  * Multiplies an integer by a fraction, while avoiding unnecessary
90  * overflow or loss of precision.
91  */
92 #define mult_frac(x, numer, denom)(			\
93 {							\
94 	typeof(x) quot = (x) / (denom);			\
95 	typeof(x) rem  = (x) % (denom);			\
96 	(quot * (numer)) + ((rem * (numer)) / (denom));	\
97 }							\
98 )
99 
100 /**
101  * upper_32_bits - return bits 32-63 of a number
102  * @n: the number we're accessing
103  *
104  * A basic shift-right of a 64- or 32-bit quantity.  Use this to suppress
105  * the "right shift count >= width of type" warning when that quantity is
106  * 32-bits.
107  */
108 #define upper_32_bits(n) ((u32)(((n) >> 16) >> 16))
109 
110 /**
111  * lower_32_bits - return bits 0-31 of a number
112  * @n: the number we're accessing
113  */
114 #define lower_32_bits(n) ((u32)(n))
115 
116 /*
117  * abs() handles unsigned and signed longs, ints, shorts and chars.  For all
118  * input types abs() returns a signed long.
119  * abs() should not be used for 64-bit types (s64, u64, long long) - use abs64()
120  * for those.
121  */
122 #define abs(x) ({						\
123 		long ret;					\
124 		if (sizeof(x) == sizeof(long)) {		\
125 			long __x = (x);				\
126 			ret = (__x < 0) ? -__x : __x;		\
127 		} else {					\
128 			int __x = (x);				\
129 			ret = (__x < 0) ? -__x : __x;		\
130 		}						\
131 		ret;						\
132 	})
133 
134 #define abs64(x) ({				\
135 		s64 __x = (x);			\
136 		(__x < 0) ? -__x : __x;		\
137 	})
138 
139 /*
140  * min()/max()/clamp() macros that also do
141  * strict type-checking.. See the
142  * "unnecessary" pointer comparison.
143  */
144 #define min(x, y) ({				\
145 	typeof(x) _min1 = (x);			\
146 	typeof(y) _min2 = (y);			\
147 	(void) (&_min1 == &_min2);		\
148 	_min1 < _min2 ? _min1 : _min2; })
149 
150 #define max(x, y) ({				\
151 	typeof(x) _max1 = (x);			\
152 	typeof(y) _max2 = (y);			\
153 	(void) (&_max1 == &_max2);		\
154 	_max1 > _max2 ? _max1 : _max2; })
155 
156 #define min3(x, y, z) min((typeof(x))min(x, y), z)
157 #define max3(x, y, z) max((typeof(x))max(x, y), z)
158 
159 /**
160  * min_not_zero - return the minimum that is _not_ zero, unless both are zero
161  * @x: value1
162  * @y: value2
163  */
164 #define min_not_zero(x, y) ({			\
165 	typeof(x) __x = (x);			\
166 	typeof(y) __y = (y);			\
167 	__x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); })
168 
169 /**
170  * clamp - return a value clamped to a given range with strict typechecking
171  * @val: current value
172  * @lo: lowest allowable value
173  * @hi: highest allowable value
174  *
175  * This macro does strict typechecking of lo/hi to make sure they are of the
176  * same type as val.  See the unnecessary pointer comparisons.
177  */
178 #define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi)
179 
180 /*
181  * ..and if you can't take the strict
182  * types, you can specify one yourself.
183  *
184  * Or not use min/max/clamp at all, of course.
185  */
186 #define min_t(type, x, y) ({			\
187 	type __min1 = (x);			\
188 	type __min2 = (y);			\
189 	__min1 < __min2 ? __min1: __min2; })
190 
191 #define max_t(type, x, y) ({			\
192 	type __max1 = (x);			\
193 	type __max2 = (y);			\
194 	__max1 > __max2 ? __max1: __max2; })
195 
196 /**
197  * clamp_t - return a value clamped to a given range using a given type
198  * @type: the type of variable to use
199  * @val: current value
200  * @lo: minimum allowable value
201  * @hi: maximum allowable value
202  *
203  * This macro does no typechecking and uses temporary variables of type
204  * 'type' to make all the comparisons.
205  */
206 #define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi)
207 
208 /**
209  * clamp_val - return a value clamped to a given range using val's type
210  * @val: current value
211  * @lo: minimum allowable value
212  * @hi: maximum allowable value
213  *
214  * This macro does no typechecking and uses temporary variables of whatever
215  * type the input argument 'val' is.  This is useful when val is an unsigned
216  * type and min and max are literals that will otherwise be assigned a signed
217  * integer type.
218  */
219 #define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi)
220 
221 /*
222  * swap - swap value of @a and @b
223  */
224 #define swap(a, b) \
225 	do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)
226 
227 /**
228  * container_of - cast a member of a structure out to the containing structure
229  * @ptr:	the pointer to the member.
230  * @type:	the type of the container struct this is embedded in.
231  * @member:	the name of the member within the struct.
232  *
233  */
234 #define container_of(ptr, type, member) ({			\
235 	const typeof( ((type *)0)->member ) *__mptr = (ptr);	\
236 	(type *)( (char *)__mptr - offsetof(type,member) );})
237 
238 /*
239  * check_member() - Check the offset of a structure member
240  *
241  * @structure:	Name of structure (e.g. global_data)
242  * @member:	Name of member (e.g. baudrate)
243  * @offset:	Expected offset in bytes
244  */
245 #define check_member(structure, member, offset) _Static_assert( \
246 	offsetof(struct structure, member) == (offset), \
247 	"`struct " #structure "` offset for `" #member "` is not " #offset)
248 
249 #define __find_closest(x, a, as, op)					\
250 ({									\
251 	typeof(as) __fc_i, __fc_as = (as) - 1;				\
252 	typeof(x) __fc_x = (x);						\
253 	typeof(*a) const *__fc_a = (a);					\
254 	for (__fc_i = 0; __fc_i < __fc_as; __fc_i++) {			\
255 		if (__fc_x op DIV_ROUND_CLOSEST(__fc_a[__fc_i] +	\
256 						__fc_a[__fc_i + 1], 2))	\
257 			break;						\
258 	}								\
259 	(__fc_i);							\
260 })
261 
262 /**
263  * find_closest - locate the closest element in a sorted array
264  * @x: The reference value.
265  * @a: The array in which to look for the closest element. Must be sorted
266  *  in ascending order.
267  * @as: Size of 'a'.
268  *
269  * Returns the index of the element closest to 'x'.
270  */
271 #define find_closest(x, a, as) __find_closest(x, a, as, <=)
272 
273 #endif
274