1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3   This code is based on a version of malloc/free/realloc written by Doug Lea and
4   released to the public domain. Send questions/comments/complaints/performance
5   data to dl@cs.oswego.edu
6 
7 * VERSION 2.6.6  Sun Mar  5 19:10:03 2000  Doug Lea  (dl at gee)
8 
9    Note: There may be an updated version of this malloc obtainable at
10 	   http://g.oswego.edu/pub/misc/malloc.c
11 	 Check before installing!
12 
13 * Why use this malloc?
14 
15   This is not the fastest, most space-conserving, most portable, or
16   most tunable malloc ever written. However it is among the fastest
17   while also being among the most space-conserving, portable and tunable.
18   Consistent balance across these factors results in a good general-purpose
19   allocator. For a high-level description, see
20      http://g.oswego.edu/dl/html/malloc.html
21 
22 * Synopsis of public routines
23 
24   (Much fuller descriptions are contained in the program documentation below.)
25 
26   malloc(size_t n);
27      Return a pointer to a newly allocated chunk of at least n bytes, or null
28      if no space is available.
29   free(Void_t* p);
30      Release the chunk of memory pointed to by p, or no effect if p is null.
31   realloc(Void_t* p, size_t n);
32      Return a pointer to a chunk of size n that contains the same data
33      as does chunk p up to the minimum of (n, p's size) bytes, or null
34      if no space is available. The returned pointer may or may not be
35      the same as p. If p is null, equivalent to malloc.  Unless the
36      #define REALLOC_ZERO_BYTES_FREES below is set, realloc with a
37      size argument of zero (re)allocates a minimum-sized chunk.
38   memalign(size_t alignment, size_t n);
39      Return a pointer to a newly allocated chunk of n bytes, aligned
40      in accord with the alignment argument, which must be a power of
41      two.
42   valloc(size_t n);
43      Equivalent to memalign(pagesize, n), where pagesize is the page
44      size of the system (or as near to this as can be figured out from
45      all the includes/defines below.)
46   pvalloc(size_t n);
47      Equivalent to valloc(minimum-page-that-holds(n)), that is,
48      round up n to nearest pagesize.
49   calloc(size_t unit, size_t quantity);
50      Returns a pointer to quantity * unit bytes, with all locations
51      set to zero.
52   cfree(Void_t* p);
53      Equivalent to free(p).
54   malloc_trim(size_t pad);
55      Release all but pad bytes of freed top-most memory back
56      to the system. Return 1 if successful, else 0.
57   malloc_usable_size(Void_t* p);
58      Report the number usable allocated bytes associated with allocated
59      chunk p. This may or may not report more bytes than were requested,
60      due to alignment and minimum size constraints.
61   malloc_stats();
62      Prints brief summary statistics on stderr.
63   mallinfo()
64      Returns (by copy) a struct containing various summary statistics.
65   mallopt(int parameter_number, int parameter_value)
66      Changes one of the tunable parameters described below. Returns
67      1 if successful in changing the parameter, else 0.
68 
69 * Vital statistics:
70 
71   Alignment:                            8-byte
72        8 byte alignment is currently hardwired into the design.  This
73        seems to suffice for all current machines and C compilers.
74 
75   Assumed pointer representation:       4 or 8 bytes
76        Code for 8-byte pointers is untested by me but has worked
77        reliably by Wolfram Gloger, who contributed most of the
78        changes supporting this.
79 
80   Assumed size_t  representation:       4 or 8 bytes
81        Note that size_t is allowed to be 4 bytes even if pointers are 8.
82 
83   Minimum overhead per allocated chunk: 4 or 8 bytes
84        Each malloced chunk has a hidden overhead of 4 bytes holding size
85        and status information.
86 
87   Minimum allocated size: 4-byte ptrs:  16 bytes    (including 4 overhead)
88 			  8-byte ptrs:  24/32 bytes (including, 4/8 overhead)
89 
90        When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte
91        ptrs but 4 byte size) or 24 (for 8/8) additional bytes are
92        needed; 4 (8) for a trailing size field
93        and 8 (16) bytes for free list pointers. Thus, the minimum
94        allocatable size is 16/24/32 bytes.
95 
96        Even a request for zero bytes (i.e., malloc(0)) returns a
97        pointer to something of the minimum allocatable size.
98 
99   Maximum allocated size: 4-byte size_t: 2^31 -  8 bytes
100 			  8-byte size_t: 2^63 - 16 bytes
101 
102        It is assumed that (possibly signed) size_t bit values suffice to
103        represent chunk sizes. `Possibly signed' is due to the fact
104        that `size_t' may be defined on a system as either a signed or
105        an unsigned type. To be conservative, values that would appear
106        as negative numbers are avoided.
107        Requests for sizes with a negative sign bit when the request
108        size is treaded as a long will return null.
109 
110   Maximum overhead wastage per allocated chunk: normally 15 bytes
111 
112        Alignnment demands, plus the minimum allocatable size restriction
113        make the normal worst-case wastage 15 bytes (i.e., up to 15
114        more bytes will be allocated than were requested in malloc), with
115        two exceptions:
116 	 1. Because requests for zero bytes allocate non-zero space,
117 	    the worst case wastage for a request of zero bytes is 24 bytes.
118 	 2. For requests >= mmap_threshold that are serviced via
119 	    mmap(), the worst case wastage is 8 bytes plus the remainder
120 	    from a system page (the minimal mmap unit); typically 4096 bytes.
121 
122 * Limitations
123 
124     Here are some features that are NOT currently supported
125 
126     * No user-definable hooks for callbacks and the like.
127     * No automated mechanism for fully checking that all accesses
128       to malloced memory stay within their bounds.
129     * No support for compaction.
130 
131 * Synopsis of compile-time options:
132 
133     People have reported using previous versions of this malloc on all
134     versions of Unix, sometimes by tweaking some of the defines
135     below. It has been tested most extensively on Solaris and
136     Linux. It is also reported to work on WIN32 platforms.
137     People have also reported adapting this malloc for use in
138     stand-alone embedded systems.
139 
140     The implementation is in straight, hand-tuned ANSI C.  Among other
141     consequences, it uses a lot of macros.  Because of this, to be at
142     all usable, this code should be compiled using an optimizing compiler
143     (for example gcc -O2) that can simplify expressions and control
144     paths.
145 
146   __STD_C                  (default: derived from C compiler defines)
147      Nonzero if using ANSI-standard C compiler, a C++ compiler, or
148      a C compiler sufficiently close to ANSI to get away with it.
149   DEBUG                    (default: NOT defined)
150      Define to enable debugging. Adds fairly extensive assertion-based
151      checking to help track down memory errors, but noticeably slows down
152      execution.
153   REALLOC_ZERO_BYTES_FREES (default: NOT defined)
154      Define this if you think that realloc(p, 0) should be equivalent
155      to free(p). Otherwise, since malloc returns a unique pointer for
156      malloc(0), so does realloc(p, 0).
157   HAVE_MEMCPY               (default: defined)
158      Define if you are not otherwise using ANSI STD C, but still
159      have memcpy and memset in your C library and want to use them.
160      Otherwise, simple internal versions are supplied.
161   USE_MEMCPY               (default: 1 if HAVE_MEMCPY is defined, 0 otherwise)
162      Define as 1 if you want the C library versions of memset and
163      memcpy called in realloc and calloc (otherwise macro versions are used).
164      At least on some platforms, the simple macro versions usually
165      outperform libc versions.
166   HAVE_MMAP                 (default: defined as 1)
167      Define to non-zero to optionally make malloc() use mmap() to
168      allocate very large blocks.
169   HAVE_MREMAP                 (default: defined as 0 unless Linux libc set)
170      Define to non-zero to optionally make realloc() use mremap() to
171      reallocate very large blocks.
172   malloc_getpagesize        (default: derived from system #includes)
173      Either a constant or routine call returning the system page size.
174   HAVE_USR_INCLUDE_MALLOC_H (default: NOT defined)
175      Optionally define if you are on a system with a /usr/include/malloc.h
176      that declares struct mallinfo. It is not at all necessary to
177      define this even if you do, but will ensure consistency.
178   INTERNAL_SIZE_T           (default: size_t)
179      Define to a 32-bit type (probably `unsigned int') if you are on a
180      64-bit machine, yet do not want or need to allow malloc requests of
181      greater than 2^31 to be handled. This saves space, especially for
182      very small chunks.
183   INTERNAL_LINUX_C_LIB      (default: NOT defined)
184      Defined only when compiled as part of Linux libc.
185      Also note that there is some odd internal name-mangling via defines
186      (for example, internally, `malloc' is named `mALLOc') needed
187      when compiling in this case. These look funny but don't otherwise
188      affect anything.
189   WIN32                     (default: undefined)
190      Define this on MS win (95, nt) platforms to compile in sbrk emulation.
191   LACKS_UNISTD_H            (default: undefined if not WIN32)
192      Define this if your system does not have a <unistd.h>.
193   LACKS_SYS_PARAM_H         (default: undefined if not WIN32)
194      Define this if your system does not have a <sys/param.h>.
195   MORECORE                  (default: sbrk)
196      The name of the routine to call to obtain more memory from the system.
197   MORECORE_FAILURE          (default: -1)
198      The value returned upon failure of MORECORE.
199   MORECORE_CLEARS           (default 1)
200      true (1) if the routine mapped to MORECORE zeroes out memory (which
201      holds for sbrk).
202   DEFAULT_TRIM_THRESHOLD
203   DEFAULT_TOP_PAD
204   DEFAULT_MMAP_THRESHOLD
205   DEFAULT_MMAP_MAX
206      Default values of tunable parameters (described in detail below)
207      controlling interaction with host system routines (sbrk, mmap, etc).
208      These values may also be changed dynamically via mallopt(). The
209      preset defaults are those that give best performance for typical
210      programs/systems.
211   USE_DL_PREFIX             (default: undefined)
212      Prefix all public routines with the string 'dl'.  Useful to
213      quickly avoid procedure declaration conflicts and linker symbol
214      conflicts with existing memory allocation routines.
215 
216 */
217 
218 
219 #ifndef __MALLOC_H__
220 #define __MALLOC_H__
221 
222 /* Preliminaries */
223 
224 #ifndef __STD_C
225 #ifdef __STDC__
226 #define __STD_C     1
227 #else
228 #if __cplusplus
229 #define __STD_C     1
230 #else
231 #define __STD_C     0
232 #endif /*__cplusplus*/
233 #endif /*__STDC__*/
234 #endif /*__STD_C*/
235 
236 #ifndef Void_t
237 #if (__STD_C || defined(WIN32))
238 #define Void_t      void
239 #else
240 #define Void_t      char
241 #endif
242 #endif /*Void_t*/
243 
244 #if __STD_C
245 #include <linux/stddef.h>	/* for size_t */
246 #else
247 #include <sys/types.h>
248 #endif	/* __STD_C */
249 
250 #ifdef __cplusplus
251 extern "C" {
252 #endif
253 
254 #if 0	/* not for U-Boot */
255 #include <stdio.h>	/* needed for malloc_stats */
256 #endif
257 
258 /*
259   Compile-time options
260 */
261 
262 /*
263     Debugging:
264 
265     Because freed chunks may be overwritten with link fields, this
266     malloc will often die when freed memory is overwritten by user
267     programs.  This can be very effective (albeit in an annoying way)
268     in helping track down dangling pointers.
269 
270     If you compile with -DDEBUG, a number of assertion checks are
271     enabled that will catch more memory errors. You probably won't be
272     able to make much sense of the actual assertion errors, but they
273     should help you locate incorrectly overwritten memory.  The
274     checking is fairly extensive, and will slow down execution
275     noticeably. Calling malloc_stats or mallinfo with DEBUG set will
276     attempt to check every non-mmapped allocated and free chunk in the
277     course of computing the summmaries. (By nature, mmapped regions
278     cannot be checked very much automatically.)
279 
280     Setting DEBUG may also be helpful if you are trying to modify
281     this code. The assertions in the check routines spell out in more
282     detail the assumptions and invariants underlying the algorithms.
283 
284 */
285 
286 /*
287   INTERNAL_SIZE_T is the word-size used for internal bookkeeping
288   of chunk sizes. On a 64-bit machine, you can reduce malloc
289   overhead by defining INTERNAL_SIZE_T to be a 32 bit `unsigned int'
290   at the expense of not being able to handle requests greater than
291   2^31. This limitation is hardly ever a concern; you are encouraged
292   to set this. However, the default version is the same as size_t.
293 */
294 
295 #ifndef INTERNAL_SIZE_T
296 #define INTERNAL_SIZE_T size_t
297 #endif
298 
299 /*
300   REALLOC_ZERO_BYTES_FREES should be set if a call to
301   realloc with zero bytes should be the same as a call to free.
302   Some people think it should. Otherwise, since this malloc
303   returns a unique pointer for malloc(0), so does realloc(p, 0).
304 */
305 
306 /*   #define REALLOC_ZERO_BYTES_FREES */
307 
308 /*
309   WIN32 causes an emulation of sbrk to be compiled in
310   mmap-based options are not currently supported in WIN32.
311 */
312 
313 /* #define WIN32 */
314 #ifdef WIN32
315 #define MORECORE wsbrk
316 #define HAVE_MMAP 0
317 
318 #define LACKS_UNISTD_H
319 #define LACKS_SYS_PARAM_H
320 
321 /*
322   Include 'windows.h' to get the necessary declarations for the
323   Microsoft Visual C++ data structures and routines used in the 'sbrk'
324   emulation.
325 
326   Define WIN32_LEAN_AND_MEAN so that only the essential Microsoft
327   Visual C++ header files are included.
328 */
329 #define WIN32_LEAN_AND_MEAN
330 #include <windows.h>
331 #endif
332 
333 /*
334   HAVE_MEMCPY should be defined if you are not otherwise using
335   ANSI STD C, but still have memcpy and memset in your C library
336   and want to use them in calloc and realloc. Otherwise simple
337   macro versions are defined here.
338 
339   USE_MEMCPY should be defined as 1 if you actually want to
340   have memset and memcpy called. People report that the macro
341   versions are often enough faster than libc versions on many
342   systems that it is better to use them.
343 
344 */
345 
346 #define HAVE_MEMCPY
347 
348 #ifndef USE_MEMCPY
349 #ifdef HAVE_MEMCPY
350 #define USE_MEMCPY 1
351 #else
352 #define USE_MEMCPY 0
353 #endif
354 #endif
355 
356 #if (__STD_C || defined(HAVE_MEMCPY))
357 
358 #if __STD_C
359 /* U-Boot defines memset() and memcpy in /include/linux/string.h
360 void* memset(void*, int, size_t);
361 void* memcpy(void*, const void*, size_t);
362 */
363 #include <linux/string.h>
364 #else
365 #ifdef WIN32
366 /* On Win32 platforms, 'memset()' and 'memcpy()' are already declared in */
367 /* 'windows.h' */
368 #else
369 Void_t* memset();
370 Void_t* memcpy();
371 #endif
372 #endif
373 #endif
374 
375 #if USE_MEMCPY
376 
377 /* The following macros are only invoked with (2n+1)-multiples of
378    INTERNAL_SIZE_T units, with a positive integer n. This is exploited
379    for fast inline execution when n is small. */
380 
381 #define MALLOC_ZERO(charp, nbytes)                                            \
382 do {                                                                          \
383   INTERNAL_SIZE_T mzsz = (nbytes);                                            \
384   if(mzsz <= 9*sizeof(mzsz)) {                                                \
385     INTERNAL_SIZE_T* mz = (INTERNAL_SIZE_T*) (charp);                         \
386     if(mzsz >= 5*sizeof(mzsz)) {     *mz++ = 0;                               \
387 				     *mz++ = 0;                               \
388       if(mzsz >= 7*sizeof(mzsz)) {   *mz++ = 0;                               \
389 				     *mz++ = 0;                               \
390 	if(mzsz >= 9*sizeof(mzsz)) { *mz++ = 0;                               \
391 				     *mz++ = 0; }}}                           \
392 				     *mz++ = 0;                               \
393 				     *mz++ = 0;                               \
394 				     *mz   = 0;                               \
395   } else memset((charp), 0, mzsz);                                            \
396 } while(0)
397 
398 #define MALLOC_COPY(dest,src,nbytes)                                          \
399 do {                                                                          \
400   INTERNAL_SIZE_T mcsz = (nbytes);                                            \
401   if(mcsz <= 9*sizeof(mcsz)) {                                                \
402     INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) (src);                        \
403     INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) (dest);                       \
404     if(mcsz >= 5*sizeof(mcsz)) {     *mcdst++ = *mcsrc++;                     \
405 				     *mcdst++ = *mcsrc++;                     \
406       if(mcsz >= 7*sizeof(mcsz)) {   *mcdst++ = *mcsrc++;                     \
407 				     *mcdst++ = *mcsrc++;                     \
408 	if(mcsz >= 9*sizeof(mcsz)) { *mcdst++ = *mcsrc++;                     \
409 				     *mcdst++ = *mcsrc++; }}}                 \
410 				     *mcdst++ = *mcsrc++;                     \
411 				     *mcdst++ = *mcsrc++;                     \
412 				     *mcdst   = *mcsrc  ;                     \
413   } else memcpy(dest, src, mcsz);                                             \
414 } while(0)
415 
416 #else /* !USE_MEMCPY */
417 
418 /* Use Duff's device for good zeroing/copying performance. */
419 
420 #define MALLOC_ZERO(charp, nbytes)                                            \
421 do {                                                                          \
422   INTERNAL_SIZE_T* mzp = (INTERNAL_SIZE_T*)(charp);                           \
423   long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn;                         \
424   if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; }             \
425   switch (mctmp) {                                                            \
426     case 0: for(;;) { *mzp++ = 0;                                             \
427     case 7:           *mzp++ = 0;                                             \
428     case 6:           *mzp++ = 0;                                             \
429     case 5:           *mzp++ = 0;                                             \
430     case 4:           *mzp++ = 0;                                             \
431     case 3:           *mzp++ = 0;                                             \
432     case 2:           *mzp++ = 0;                                             \
433     case 1:           *mzp++ = 0; if(mcn <= 0) break; mcn--; }                \
434   }                                                                           \
435 } while(0)
436 
437 #define MALLOC_COPY(dest,src,nbytes)                                          \
438 do {                                                                          \
439   INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) src;                            \
440   INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) dest;                           \
441   long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn;                         \
442   if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; }             \
443   switch (mctmp) {                                                            \
444     case 0: for(;;) { *mcdst++ = *mcsrc++;                                    \
445     case 7:           *mcdst++ = *mcsrc++;                                    \
446     case 6:           *mcdst++ = *mcsrc++;                                    \
447     case 5:           *mcdst++ = *mcsrc++;                                    \
448     case 4:           *mcdst++ = *mcsrc++;                                    \
449     case 3:           *mcdst++ = *mcsrc++;                                    \
450     case 2:           *mcdst++ = *mcsrc++;                                    \
451     case 1:           *mcdst++ = *mcsrc++; if(mcn <= 0) break; mcn--; }       \
452   }                                                                           \
453 } while(0)
454 
455 #endif
456 
457 /*
458   Define HAVE_MMAP to optionally make malloc() use mmap() to
459   allocate very large blocks.  These will be returned to the
460   operating system immediately after a free().
461 */
462 
463 /***
464 #ifndef HAVE_MMAP
465 #define HAVE_MMAP 1
466 #endif
467 ***/
468 #undef	HAVE_MMAP	/* Not available for U-Boot */
469 
470 /*
471   Define HAVE_MREMAP to make realloc() use mremap() to re-allocate
472   large blocks.  This is currently only possible on Linux with
473   kernel versions newer than 1.3.77.
474 */
475 
476 /***
477 #ifndef HAVE_MREMAP
478 #ifdef INTERNAL_LINUX_C_LIB
479 #define HAVE_MREMAP 1
480 #else
481 #define HAVE_MREMAP 0
482 #endif
483 #endif
484 ***/
485 #undef	HAVE_MREMAP	/* Not available for U-Boot */
486 
487 #ifdef HAVE_MMAP
488 
489 #include <unistd.h>
490 #include <fcntl.h>
491 #include <sys/mman.h>
492 
493 #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
494 #define MAP_ANONYMOUS MAP_ANON
495 #endif
496 
497 #endif /* HAVE_MMAP */
498 
499 /*
500   Access to system page size. To the extent possible, this malloc
501   manages memory from the system in page-size units.
502 
503   The following mechanics for getpagesize were adapted from
504   bsd/gnu getpagesize.h
505 */
506 
507 #define	LACKS_UNISTD_H	/* Shortcut for U-Boot */
508 #define	malloc_getpagesize	4096
509 
510 #ifndef LACKS_UNISTD_H
511 #  include <unistd.h>
512 #endif
513 
514 #ifndef malloc_getpagesize
515 #  ifdef _SC_PAGESIZE         /* some SVR4 systems omit an underscore */
516 #    ifndef _SC_PAGE_SIZE
517 #      define _SC_PAGE_SIZE _SC_PAGESIZE
518 #    endif
519 #  endif
520 #  ifdef _SC_PAGE_SIZE
521 #    define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
522 #  else
523 #    if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
524        extern size_t getpagesize();
525 #      define malloc_getpagesize getpagesize()
526 #    else
527 #      ifdef WIN32
528 #        define malloc_getpagesize (4096) /* TBD: Use 'GetSystemInfo' instead */
529 #      else
530 #        ifndef LACKS_SYS_PARAM_H
531 #          include <sys/param.h>
532 #        endif
533 #        ifdef EXEC_PAGESIZE
534 #          define malloc_getpagesize EXEC_PAGESIZE
535 #        else
536 #          ifdef NBPG
537 #            ifndef CLSIZE
538 #              define malloc_getpagesize NBPG
539 #            else
540 #              define malloc_getpagesize (NBPG * CLSIZE)
541 #            endif
542 #          else
543 #            ifdef NBPC
544 #              define malloc_getpagesize NBPC
545 #            else
546 #              ifdef PAGESIZE
547 #                define malloc_getpagesize PAGESIZE
548 #              else
549 #                define malloc_getpagesize (4096) /* just guess */
550 #              endif
551 #            endif
552 #          endif
553 #        endif
554 #      endif
555 #    endif
556 #  endif
557 #endif
558 
559 /*
560 
561   This version of malloc supports the standard SVID/XPG mallinfo
562   routine that returns a struct containing the same kind of
563   information you can get from malloc_stats. It should work on
564   any SVID/XPG compliant system that has a /usr/include/malloc.h
565   defining struct mallinfo. (If you'd like to install such a thing
566   yourself, cut out the preliminary declarations as described above
567   and below and save them in a malloc.h file. But there's no
568   compelling reason to bother to do this.)
569 
570   The main declaration needed is the mallinfo struct that is returned
571   (by-copy) by mallinfo().  The SVID/XPG malloinfo struct contains a
572   bunch of fields, most of which are not even meaningful in this
573   version of malloc. Some of these fields are are instead filled by
574   mallinfo() with other numbers that might possibly be of interest.
575 
576   HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
577   /usr/include/malloc.h file that includes a declaration of struct
578   mallinfo.  If so, it is included; else an SVID2/XPG2 compliant
579   version is declared below.  These must be precisely the same for
580   mallinfo() to work.
581 
582 */
583 
584 /* #define HAVE_USR_INCLUDE_MALLOC_H */
585 
586 #ifdef HAVE_USR_INCLUDE_MALLOC_H
587 #include "/usr/include/malloc.h"
588 #else
589 
590 /* SVID2/XPG mallinfo structure */
591 
592 struct mallinfo {
593   int arena;    /* total space allocated from system */
594   int ordblks;  /* number of non-inuse chunks */
595   int smblks;   /* unused -- always zero */
596   int hblks;    /* number of mmapped regions */
597   int hblkhd;   /* total space in mmapped regions */
598   int usmblks;  /* unused -- always zero */
599   int fsmblks;  /* unused -- always zero */
600   int uordblks; /* total allocated space */
601   int fordblks; /* total non-inuse space */
602   int keepcost; /* top-most, releasable (via malloc_trim) space */
603 };
604 
605 /* SVID2/XPG mallopt options */
606 
607 #define M_MXFAST  1    /* UNUSED in this malloc */
608 #define M_NLBLKS  2    /* UNUSED in this malloc */
609 #define M_GRAIN   3    /* UNUSED in this malloc */
610 #define M_KEEP    4    /* UNUSED in this malloc */
611 
612 #endif
613 
614 /* mallopt options that actually do something */
615 
616 #define M_TRIM_THRESHOLD    -1
617 #define M_TOP_PAD           -2
618 #define M_MMAP_THRESHOLD    -3
619 #define M_MMAP_MAX          -4
620 
621 #ifndef DEFAULT_TRIM_THRESHOLD
622 #define DEFAULT_TRIM_THRESHOLD (128 * 1024)
623 #endif
624 
625 /*
626     M_TRIM_THRESHOLD is the maximum amount of unused top-most memory
627       to keep before releasing via malloc_trim in free().
628 
629       Automatic trimming is mainly useful in long-lived programs.
630       Because trimming via sbrk can be slow on some systems, and can
631       sometimes be wasteful (in cases where programs immediately
632       afterward allocate more large chunks) the value should be high
633       enough so that your overall system performance would improve by
634       releasing.
635 
636       The trim threshold and the mmap control parameters (see below)
637       can be traded off with one another. Trimming and mmapping are
638       two different ways of releasing unused memory back to the
639       system. Between these two, it is often possible to keep
640       system-level demands of a long-lived program down to a bare
641       minimum. For example, in one test suite of sessions measuring
642       the XF86 X server on Linux, using a trim threshold of 128K and a
643       mmap threshold of 192K led to near-minimal long term resource
644       consumption.
645 
646       If you are using this malloc in a long-lived program, it should
647       pay to experiment with these values.  As a rough guide, you
648       might set to a value close to the average size of a process
649       (program) running on your system.  Releasing this much memory
650       would allow such a process to run in memory.  Generally, it's
651       worth it to tune for trimming rather tham memory mapping when a
652       program undergoes phases where several large chunks are
653       allocated and released in ways that can reuse each other's
654       storage, perhaps mixed with phases where there are no such
655       chunks at all.  And in well-behaved long-lived programs,
656       controlling release of large blocks via trimming versus mapping
657       is usually faster.
658 
659       However, in most programs, these parameters serve mainly as
660       protection against the system-level effects of carrying around
661       massive amounts of unneeded memory. Since frequent calls to
662       sbrk, mmap, and munmap otherwise degrade performance, the default
663       parameters are set to relatively high values that serve only as
664       safeguards.
665 
666       The default trim value is high enough to cause trimming only in
667       fairly extreme (by current memory consumption standards) cases.
668       It must be greater than page size to have any useful effect.  To
669       disable trimming completely, you can set to (unsigned long)(-1);
670 
671 */
672 
673 #ifndef DEFAULT_TOP_PAD
674 #define DEFAULT_TOP_PAD        (0)
675 #endif
676 
677 /*
678     M_TOP_PAD is the amount of extra `padding' space to allocate or
679       retain whenever sbrk is called. It is used in two ways internally:
680 
681       * When sbrk is called to extend the top of the arena to satisfy
682 	a new malloc request, this much padding is added to the sbrk
683 	request.
684 
685       * When malloc_trim is called automatically from free(),
686 	it is used as the `pad' argument.
687 
688       In both cases, the actual amount of padding is rounded
689       so that the end of the arena is always a system page boundary.
690 
691       The main reason for using padding is to avoid calling sbrk so
692       often. Having even a small pad greatly reduces the likelihood
693       that nearly every malloc request during program start-up (or
694       after trimming) will invoke sbrk, which needlessly wastes
695       time.
696 
697       Automatic rounding-up to page-size units is normally sufficient
698       to avoid measurable overhead, so the default is 0.  However, in
699       systems where sbrk is relatively slow, it can pay to increase
700       this value, at the expense of carrying around more memory than
701       the program needs.
702 
703 */
704 
705 #ifndef DEFAULT_MMAP_THRESHOLD
706 #define DEFAULT_MMAP_THRESHOLD (128 * 1024)
707 #endif
708 
709 /*
710 
711     M_MMAP_THRESHOLD is the request size threshold for using mmap()
712       to service a request. Requests of at least this size that cannot
713       be allocated using already-existing space will be serviced via mmap.
714       (If enough normal freed space already exists it is used instead.)
715 
716       Using mmap segregates relatively large chunks of memory so that
717       they can be individually obtained and released from the host
718       system. A request serviced through mmap is never reused by any
719       other request (at least not directly; the system may just so
720       happen to remap successive requests to the same locations).
721 
722       Segregating space in this way has the benefit that mmapped space
723       can ALWAYS be individually released back to the system, which
724       helps keep the system level memory demands of a long-lived
725       program low. Mapped memory can never become `locked' between
726       other chunks, as can happen with normally allocated chunks, which
727       menas that even trimming via malloc_trim would not release them.
728 
729       However, it has the disadvantages that:
730 
731 	 1. The space cannot be reclaimed, consolidated, and then
732 	    used to service later requests, as happens with normal chunks.
733 	 2. It can lead to more wastage because of mmap page alignment
734 	    requirements
735 	 3. It causes malloc performance to be more dependent on host
736 	    system memory management support routines which may vary in
737 	    implementation quality and may impose arbitrary
738 	    limitations. Generally, servicing a request via normal
739 	    malloc steps is faster than going through a system's mmap.
740 
741       All together, these considerations should lead you to use mmap
742       only for relatively large requests.
743 
744 */
745 
746 #ifndef DEFAULT_MMAP_MAX
747 #ifdef HAVE_MMAP
748 #define DEFAULT_MMAP_MAX       (64)
749 #else
750 #define DEFAULT_MMAP_MAX       (0)
751 #endif
752 #endif
753 
754 /*
755     M_MMAP_MAX is the maximum number of requests to simultaneously
756       service using mmap. This parameter exists because:
757 
758 	 1. Some systems have a limited number of internal tables for
759 	    use by mmap.
760 	 2. In most systems, overreliance on mmap can degrade overall
761 	    performance.
762 	 3. If a program allocates many large regions, it is probably
763 	    better off using normal sbrk-based allocation routines that
764 	    can reclaim and reallocate normal heap memory. Using a
765 	    small value allows transition into this mode after the
766 	    first few allocations.
767 
768       Setting to 0 disables all use of mmap.  If HAVE_MMAP is not set,
769       the default value is 0, and attempts to set it to non-zero values
770       in mallopt will fail.
771 */
772 
773 /*
774     USE_DL_PREFIX will prefix all public routines with the string 'dl'.
775       Useful to quickly avoid procedure declaration conflicts and linker
776       symbol conflicts with existing memory allocation routines.
777 
778 */
779 
780 /*
781  * Rename the U-Boot alloc functions so that sandbox can still use the system
782  * ones
783  */
784 #ifdef CONFIG_SANDBOX
785 #define USE_DL_PREFIX
786 #endif
787 
788 /*
789 
790   Special defines for linux libc
791 
792   Except when compiled using these special defines for Linux libc
793   using weak aliases, this malloc is NOT designed to work in
794   multithreaded applications.  No semaphores or other concurrency
795   control are provided to ensure that multiple malloc or free calls
796   don't run at the same time, which could be disasterous. A single
797   semaphore could be used across malloc, realloc, and free (which is
798   essentially the effect of the linux weak alias approach). It would
799   be hard to obtain finer granularity.
800 
801 */
802 
803 #ifdef INTERNAL_LINUX_C_LIB
804 
805 #if __STD_C
806 
807 Void_t * __default_morecore_init (ptrdiff_t);
808 Void_t *(*__morecore)(ptrdiff_t) = __default_morecore_init;
809 
810 #else
811 
812 Void_t * __default_morecore_init ();
813 Void_t *(*__morecore)() = __default_morecore_init;
814 
815 #endif
816 
817 #define MORECORE (*__morecore)
818 #define MORECORE_FAILURE 0
819 #define MORECORE_CLEARS 1
820 
821 #else /* INTERNAL_LINUX_C_LIB */
822 
823 #if __STD_C
824 extern Void_t*     sbrk(ptrdiff_t);
825 #else
826 extern Void_t*     sbrk();
827 #endif
828 
829 #ifndef MORECORE
830 #define MORECORE sbrk
831 #endif
832 
833 #ifndef MORECORE_FAILURE
834 #define MORECORE_FAILURE -1
835 #endif
836 
837 #ifndef MORECORE_CLEARS
838 #define MORECORE_CLEARS 1
839 #endif
840 
841 #endif /* INTERNAL_LINUX_C_LIB */
842 
843 #if defined(INTERNAL_LINUX_C_LIB) && defined(__ELF__)
844 
845 #define cALLOc		__libc_calloc
846 #define fREe		__libc_free
847 #define mALLOc		__libc_malloc
848 #define mEMALIGn	__libc_memalign
849 #define rEALLOc		__libc_realloc
850 #define vALLOc		__libc_valloc
851 #define pvALLOc		__libc_pvalloc
852 #define mALLINFo	__libc_mallinfo
853 #define mALLOPt		__libc_mallopt
854 
855 #pragma weak calloc = __libc_calloc
856 #pragma weak free = __libc_free
857 #pragma weak cfree = __libc_free
858 #pragma weak malloc = __libc_malloc
859 #pragma weak memalign = __libc_memalign
860 #pragma weak realloc = __libc_realloc
861 #pragma weak valloc = __libc_valloc
862 #pragma weak pvalloc = __libc_pvalloc
863 #pragma weak mallinfo = __libc_mallinfo
864 #pragma weak mallopt = __libc_mallopt
865 
866 #else
867 
868 void malloc_simple_info(void);
869 
870 /**
871  * malloc_enable_testing() - Put malloc() into test mode
872  *
873  * This only works if UNIT_TESTING is enabled
874  *
875  * @max_allocs: return -ENOMEM after max_allocs calls to malloc()
876  */
877 void malloc_enable_testing(int max_allocs);
878 
879 /** malloc_disable_testing() - Put malloc() into normal mode */
880 void malloc_disable_testing(void);
881 
882 #if CONFIG_IS_ENABLED(SYS_MALLOC_SIMPLE)
883 #define malloc malloc_simple
884 #define realloc realloc_simple
885 #define memalign memalign_simple
886 #if IS_ENABLED(CONFIG_VALGRIND)
887 #define free free_simple
888 #else
free(void * ptr)889 static inline void free(void *ptr) {}
890 #endif
891 void *calloc(size_t nmemb, size_t size);
892 void *realloc_simple(void *ptr, size_t size);
893 #else
894 
895 # ifdef USE_DL_PREFIX
896 # define cALLOc		dlcalloc
897 # define fREe		dlfree
898 # define mALLOc		dlmalloc
899 # define mEMALIGn	dlmemalign
900 # define rEALLOc		dlrealloc
901 # define vALLOc		dlvalloc
902 # define pvALLOc		dlpvalloc
903 # define mALLINFo	dlmallinfo
904 # define mALLOPt		dlmallopt
905 
906 /* Ensure that U-Boot actually uses these too */
907 #define calloc dlcalloc
908 #define free(ptr) dlfree(ptr)
909 #define malloc(x) dlmalloc(x)
910 #define memalign dlmemalign
911 #define realloc dlrealloc
912 #define valloc dlvalloc
913 #define pvalloc dlpvalloc
914 #define mallinfo() dlmallinfo()
915 #define mallopt dlmallopt
916 #define malloc_trim dlmalloc_trim
917 #define malloc_usable_size dlmalloc_usable_size
918 #define malloc_stats dlmalloc_stats
919 
920 # else /* USE_DL_PREFIX */
921 # define cALLOc		calloc
922 # define fREe		free
923 # define mALLOc		malloc
924 # define mEMALIGn	memalign
925 # define rEALLOc		realloc
926 # define vALLOc		valloc
927 # define pvALLOc		pvalloc
928 # define mALLINFo	mallinfo
929 # define mALLOPt		mallopt
930 # endif /* USE_DL_PREFIX */
931 
932 #endif
933 
934 /* Set up pre-relocation malloc() ready for use */
935 int initf_malloc(void);
936 
937 /* Public routines */
938 
939 /* Simple versions which can be used when space is tight */
940 void *malloc_simple(size_t size);
941 void *memalign_simple(size_t alignment, size_t bytes);
942 
943 #pragma GCC visibility push(hidden)
944 # if __STD_C
945 
946 Void_t* mALLOc(size_t);
947 void    fREe(Void_t*);
948 Void_t* rEALLOc(Void_t*, size_t);
949 Void_t* mEMALIGn(size_t, size_t);
950 Void_t* vALLOc(size_t);
951 Void_t* pvALLOc(size_t);
952 Void_t* cALLOc(size_t, size_t);
953 void    cfree(Void_t*);
954 int     malloc_trim(size_t);
955 size_t  malloc_usable_size(Void_t*);
956 void    malloc_stats(void);
957 int     mALLOPt(int, int);
958 struct mallinfo mALLINFo(void);
959 # else
960 Void_t* mALLOc();
961 void    fREe();
962 Void_t* rEALLOc();
963 Void_t* mEMALIGn();
964 Void_t* vALLOc();
965 Void_t* pvALLOc();
966 Void_t* cALLOc();
967 void    cfree();
968 int     malloc_trim();
969 size_t  malloc_usable_size();
970 void    malloc_stats();
971 int     mALLOPt();
972 struct mallinfo mALLINFo();
973 # endif
974 #endif
975 #pragma GCC visibility pop
976 
977 /*
978  * Begin and End of memory area for malloc(), and current "brk"
979  */
980 extern ulong mem_malloc_start;
981 extern ulong mem_malloc_end;
982 extern ulong mem_malloc_brk;
983 
984 /**
985  * mem_malloc_init() - Set up the malloc() pool
986  *
987  * Sets the region of memory to be used for all future calls to malloc(), etc.
988  *
989  * @start: Start address
990  * @size: Size in bytes
991  */
992 void mem_malloc_init(ulong start, ulong size);
993 
994 #ifdef __cplusplus
995 };  /* end of extern "C" */
996 #endif
997 
998 #endif /* __MALLOC_H__ */
999