1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * (C) Copyright 2015
4  * Texas Instruments Incorporated - https://www.ti.com/
5  */
6 
7 #ifndef _RPROC_H_
8 #define _RPROC_H_
9 
10 /*
11  * Note: The platform data support is not meant for use with newer
12  * platforms. This is meant only for legacy devices. This mode of
13  * initialization *will* be eventually removed once all necessary
14  * platforms have moved to dm/fdt.
15  */
16 #include <dm/platdata.h>	/* For platform data support - non dt world */
17 #include <linux/errno.h>
18 
19 /**
20  * struct fw_rsc_hdr - firmware resource entry header
21  * @type: resource type
22  * @data: resource data
23  *
24  * Every resource entry begins with a 'struct fw_rsc_hdr' header providing
25  * its @type. The content of the entry itself will immediately follow
26  * this header, and it should be parsed according to the resource type.
27  */
28 struct fw_rsc_hdr {
29 	u32 type;
30 	u8 data[0];
31 };
32 
33 /**
34  * enum fw_resource_type - types of resource entries
35  *
36  * @RSC_CARVEOUT:   request for allocation of a physically contiguous
37  *		    memory region.
38  * @RSC_DEVMEM:     request to iommu_map a memory-based peripheral.
39  * @RSC_TRACE:	    announces the availability of a trace buffer into which
40  *		    the remote processor will be writing logs.
41  * @RSC_VDEV:       declare support for a virtio device, and serve as its
42  *		    virtio header.
43  * @RSC_PRELOAD_VENDOR: a vendor resource type that needs to be handled by
44  *		    remoteproc implementations before loading
45  * @RSC_POSTLOAD_VENDOR: a vendor resource type that needs to be handled by
46  *		    remoteproc implementations after loading
47  * @RSC_LAST:       just keep this one at the end
48  *
49  * For more details regarding a specific resource type, please see its
50  * dedicated structure below.
51  *
52  * Please note that these values are used as indices to the rproc_handle_rsc
53  * lookup table, so please keep them sane. Moreover, @RSC_LAST is used to
54  * check the validity of an index before the lookup table is accessed, so
55  * please update it as needed.
56  */
57 enum fw_resource_type {
58 	RSC_CARVEOUT		= 0,
59 	RSC_DEVMEM		= 1,
60 	RSC_TRACE		= 2,
61 	RSC_VDEV		= 3,
62 	RSC_PRELOAD_VENDOR	= 4,
63 	RSC_POSTLOAD_VENDOR	= 5,
64 	RSC_LAST		= 6,
65 };
66 
67 #define FW_RSC_ADDR_ANY (-1)
68 
69 /**
70  * struct fw_rsc_carveout - physically contiguous memory request
71  * @da: device address
72  * @pa: physical address
73  * @len: length (in bytes)
74  * @flags: iommu protection flags
75  * @reserved: reserved (must be zero)
76  * @name: human-readable name of the requested memory region
77  *
78  * This resource entry requests the host to allocate a physically contiguous
79  * memory region.
80  *
81  * These request entries should precede other firmware resource entries,
82  * as other entries might request placing other data objects inside
83  * these memory regions (e.g. data/code segments, trace resource entries, ...).
84  *
85  * Allocating memory this way helps utilizing the reserved physical memory
86  * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
87  * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
88  * pressure is important; it may have a substantial impact on performance.
89  *
90  * If the firmware is compiled with static addresses, then @da should specify
91  * the expected device address of this memory region. If @da is set to
92  * FW_RSC_ADDR_ANY, then the host will dynamically allocate it, and then
93  * overwrite @da with the dynamically allocated address.
94  *
95  * We will always use @da to negotiate the device addresses, even if it
96  * isn't using an iommu. In that case, though, it will obviously contain
97  * physical addresses.
98  *
99  * Some remote processors needs to know the allocated physical address
100  * even if they do use an iommu. This is needed, e.g., if they control
101  * hardware accelerators which access the physical memory directly (this
102  * is the case with OMAP4 for instance). In that case, the host will
103  * overwrite @pa with the dynamically allocated physical address.
104  * Generally we don't want to expose physical addresses if we don't have to
105  * (remote processors are generally _not_ trusted), so we might want to
106  * change this to happen _only_ when explicitly required by the hardware.
107  *
108  * @flags is used to provide IOMMU protection flags, and @name should
109  * (optionally) contain a human readable name of this carveout region
110  * (mainly for debugging purposes).
111  */
112 struct fw_rsc_carveout {
113 	u32 da;
114 	u32 pa;
115 	u32 len;
116 	u32 flags;
117 	u32 reserved;
118 	u8 name[32];
119 };
120 
121 /**
122  * struct fw_rsc_devmem - iommu mapping request
123  * @da: device address
124  * @pa: physical address
125  * @len: length (in bytes)
126  * @flags: iommu protection flags
127  * @reserved: reserved (must be zero)
128  * @name: human-readable name of the requested region to be mapped
129  *
130  * This resource entry requests the host to iommu map a physically contiguous
131  * memory region. This is needed in case the remote processor requires
132  * access to certain memory-based peripherals; _never_ use it to access
133  * regular memory.
134  *
135  * This is obviously only needed if the remote processor is accessing memory
136  * via an iommu.
137  *
138  * @da should specify the required device address, @pa should specify
139  * the physical address we want to map, @len should specify the size of
140  * the mapping and @flags is the IOMMU protection flags. As always, @name may
141  * (optionally) contain a human readable name of this mapping (mainly for
142  * debugging purposes).
143  *
144  * Note: at this point we just "trust" those devmem entries to contain valid
145  * physical addresses, but this isn't safe and will be changed: eventually we
146  * want remoteproc implementations to provide us ranges of physical addresses
147  * the firmware is allowed to request, and not allow firmwares to request
148  * access to physical addresses that are outside those ranges.
149  */
150 struct fw_rsc_devmem {
151 	u32 da;
152 	u32 pa;
153 	u32 len;
154 	u32 flags;
155 	u32 reserved;
156 	u8 name[32];
157 };
158 
159 /**
160  * struct fw_rsc_trace - trace buffer declaration
161  * @da: device address
162  * @len: length (in bytes)
163  * @reserved: reserved (must be zero)
164  * @name: human-readable name of the trace buffer
165  *
166  * This resource entry provides the host information about a trace buffer
167  * into which the remote processor will write log messages.
168  *
169  * @da specifies the device address of the buffer, @len specifies
170  * its size, and @name may contain a human readable name of the trace buffer.
171  *
172  * After booting the remote processor, the trace buffers are exposed to the
173  * user via debugfs entries (called trace0, trace1, etc..).
174  */
175 struct fw_rsc_trace {
176 	u32 da;
177 	u32 len;
178 	u32 reserved;
179 	u8 name[32];
180 };
181 
182 /**
183  * struct fw_rsc_vdev_vring - vring descriptor entry
184  * @da: device address
185  * @align: the alignment between the consumer and producer parts of the vring
186  * @num: num of buffers supported by this vring (must be power of two)
187  * @notifyid is a unique rproc-wide notify index for this vring. This notify
188  * index is used when kicking a remote processor, to let it know that this
189  * vring is triggered.
190  * @pa: physical address
191  *
192  * This descriptor is not a resource entry by itself; it is part of the
193  * vdev resource type (see below).
194  *
195  * Note that @da should either contain the device address where
196  * the remote processor is expecting the vring, or indicate that
197  * dynamically allocation of the vring's device address is supported.
198  */
199 struct fw_rsc_vdev_vring {
200 	u32 da;
201 	u32 align;
202 	u32 num;
203 	u32 notifyid;
204 	u32 pa;
205 };
206 
207 /**
208  * struct fw_rsc_vdev - virtio device header
209  * @id: virtio device id (as in virtio_ids.h)
210  * @notifyid is a unique rproc-wide notify index for this vdev. This notify
211  * index is used when kicking a remote processor, to let it know that the
212  * status/features of this vdev have changes.
213  * @dfeatures specifies the virtio device features supported by the firmware
214  * @gfeatures is a place holder used by the host to write back the
215  * negotiated features that are supported by both sides.
216  * @config_len is the size of the virtio config space of this vdev. The config
217  * space lies in the resource table immediate after this vdev header.
218  * @status is a place holder where the host will indicate its virtio progress.
219  * @num_of_vrings indicates how many vrings are described in this vdev header
220  * @reserved: reserved (must be zero)
221  * @vring is an array of @num_of_vrings entries of 'struct fw_rsc_vdev_vring'.
222  *
223  * This resource is a virtio device header: it provides information about
224  * the vdev, and is then used by the host and its peer remote processors
225  * to negotiate and share certain virtio properties.
226  *
227  * By providing this resource entry, the firmware essentially asks remoteproc
228  * to statically allocate a vdev upon registration of the rproc (dynamic vdev
229  * allocation is not yet supported).
230  *
231  * Note: unlike virtualization systems, the term 'host' here means
232  * the Linux side which is running remoteproc to control the remote
233  * processors. We use the name 'gfeatures' to comply with virtio's terms,
234  * though there isn't really any virtualized guest OS here: it's the host
235  * which is responsible for negotiating the final features.
236  * Yeah, it's a bit confusing.
237  *
238  * Note: immediately following this structure is the virtio config space for
239  * this vdev (which is specific to the vdev; for more info, read the virtio
240  * spec). the size of the config space is specified by @config_len.
241  */
242 struct fw_rsc_vdev {
243 	u32 id;
244 	u32 notifyid;
245 	u32 dfeatures;
246 	u32 gfeatures;
247 	u32 config_len;
248 	u8 status;
249 	u8 num_of_vrings;
250 	u8 reserved[2];
251 	struct fw_rsc_vdev_vring vring[0];
252 };
253 
254 /**
255  * struct rproc_mem_entry - memory entry descriptor
256  * @va:	virtual address
257  * @dma: dma address
258  * @len: length, in bytes
259  * @da: device address
260  * @priv: associated data
261  * @name: associated memory region name (optional)
262  * @node: list node
263  */
264 struct rproc_mem_entry {
265 	void *va;
266 	dma_addr_t dma;
267 	int len;
268 	u32 da;
269 	void *priv;
270 	char name[32];
271 	struct list_head node;
272 };
273 
274 struct rproc;
275 
276 typedef u32(*init_func_proto) (u32 core_id, struct rproc *cfg);
277 
278 struct l3_map {
279 	u32 priv_addr;
280 	u32 l3_addr;
281 	u32 len;
282 };
283 
284 struct rproc_intmem_to_l3_mapping {
285 	u32 num_entries;
286 	struct l3_map mappings[16];
287 };
288 
289 /**
290  * enum rproc_crash_type - remote processor crash types
291  * @RPROC_MMUFAULT:	iommu fault
292  * @RPROC_WATCHDOG:	watchdog bite
293  * @RPROC_FATAL_ERROR	fatal error
294  *
295  * Each element of the enum is used as an array index. So that, the value of
296  * the elements should be always something sane.
297  *
298  * Feel free to add more types when needed.
299  */
300 enum rproc_crash_type {
301 	RPROC_MMUFAULT,
302 	RPROC_WATCHDOG,
303 	RPROC_FATAL_ERROR,
304 };
305 
306 /* we currently support only two vrings per rvdev */
307 #define RVDEV_NUM_VRINGS 2
308 
309 #define RPMSG_NUM_BUFS         (512)
310 #define RPMSG_BUF_SIZE         (512)
311 #define RPMSG_TOTAL_BUF_SPACE  (RPMSG_NUM_BUFS * RPMSG_BUF_SIZE)
312 
313 /**
314  * struct rproc_vring - remoteproc vring state
315  * @va:	virtual address
316  * @dma: dma address
317  * @len: length, in bytes
318  * @da: device address
319  * @align: vring alignment
320  * @notifyid: rproc-specific unique vring index
321  * @rvdev: remote vdev
322  * @vq: the virtqueue of this vring
323  */
324 struct rproc_vring {
325 	void *va;
326 	dma_addr_t dma;
327 	int len;
328 	u32 da;
329 	u32 align;
330 	int notifyid;
331 	struct rproc_vdev *rvdev;
332 	struct virtqueue *vq;
333 };
334 
335 /** struct rproc - structure with all processor specific information for
336  * loading remotecore from boot loader.
337  *
338  * @num_iommus: Number of IOMMUs for this remote core. Zero indicates that the
339  * processor does not have an IOMMU.
340  *
341  * @cma_base: Base address of the carveout for this remotecore.
342  *
343  * @cma_size: Length of the carveout in bytes.
344  *
345  * @page_table_addr: array with the physical address of the page table. We are
346  * using the same page table for both IOMMU's. There is currently no strong
347  * usecase for maintaining different page tables for different MMU's servicing
348  * the same CPU.
349  *
350  * @mmu_base_addr: base address of the MMU
351  *
352  * @entry_point: address that is the entry point for the remote core. This
353  * address is in the memory view of the remotecore.
354  *
355  * @load_addr: Address to which the bootloader loads the firmware from
356  * persistent storage before invoking the ELF loader. Keeping this address
357  * configurable allows future optimizations such as loading the firmware from
358  * storage for remotecore2 via EDMA while the CPU is processing the ELF image
359  * of remotecore1. This address is in the memory view of the A15.
360  *
361  * @firmware_name: Name of the file that is expected to contain the ELF image.
362  *
363  * @has_rsc_table: Flag populated after parsing the ELF binary on target.
364  */
365 
366 struct rproc {
367 	u32 num_iommus;
368 	unsigned long cma_base;
369 	u32 cma_size;
370 	unsigned long page_table_addr;
371 	unsigned long mmu_base_addr[2];
372 	unsigned long load_addr;
373 	unsigned long entry_point;
374 	char *core_name;
375 	char *firmware_name;
376 	char *ptn;
377 	init_func_proto start_clocks;
378 	init_func_proto config_mmu;
379 	init_func_proto config_peripherals;
380 	init_func_proto start_core;
381 	u32 has_rsc_table;
382 	struct rproc_intmem_to_l3_mapping *intmem_to_l3_mapping;
383 	u32 trace_pa;
384 	u32 trace_len;
385 };
386 
387 extern struct rproc *rproc_cfg_arr[2];
388 /**
389  * enum rproc_mem_type - What type of memory model does the rproc use
390  * @RPROC_INTERNAL_MEMORY_MAPPED: Remote processor uses own memory and is memory
391  *	mapped to the host processor over an address range.
392  *
393  * Please note that this is an enumeration of memory model of different types
394  * of remote processors. Few of the remote processors do have own internal
395  * memories, while others use external memory for instruction and data.
396  */
397 enum rproc_mem_type {
398 	RPROC_INTERNAL_MEMORY_MAPPED	= 0,
399 };
400 
401 /**
402  * struct dm_rproc_uclass_pdata - platform data for a CPU
403  * @name: Platform-specific way of naming the Remote proc
404  * @mem_type: one of 'enum rproc_mem_type'
405  * @driver_plat_data: driver specific platform data that may be needed.
406  * @fw_name: firmware name
407  *
408  * This can be accessed with dev_get_uclass_plat() for any UCLASS_REMOTEPROC
409  * device.
410  *
411  */
412 struct dm_rproc_uclass_pdata {
413 	const char *name;
414 	enum rproc_mem_type mem_type;
415 	void *driver_plat_data;
416 	char *fw_name;
417 };
418 
419 /**
420  * struct dm_rproc_ops - Driver model remote proc operations.
421  *
422  * This defines the operations provided by remote proc driver.
423  */
424 struct dm_rproc_ops {
425 	/**
426 	 * init() - Initialize the remoteproc device (optional)
427 	 *
428 	 * This is called after the probe is completed allowing the remote
429 	 * processor drivers to split up the initializations between probe and
430 	 * init if needed.
431 	 *
432 	 * @dev:	Remote proc device
433 	 * @return 0 if all ok, else appropriate error value.
434 	 */
435 	int (*init)(struct udevice *dev);
436 
437 	/**
438 	 * load() - Load the remoteproc device using data provided (mandatory)
439 	 *
440 	 * Load the remoteproc device with an image, do not start the device.
441 	 *
442 	 * @dev:	Remote proc device
443 	 * @addr:	Address of the image to be loaded
444 	 * @size:	Size of the image to be loaded
445 	 * @return 0 if all ok, else appropriate error value.
446 	 */
447 	int (*load)(struct udevice *dev, ulong addr, ulong size);
448 
449 	/**
450 	 * start() - Start the remoteproc device (mandatory)
451 	 *
452 	 * @dev:	Remote proc device
453 	 * @return 0 if all ok, else appropriate error value.
454 	 */
455 	int (*start)(struct udevice *dev);
456 
457 	/**
458 	 * stop() - Stop the remoteproc device (optional)
459 	 *
460 	 * @dev:	Remote proc device
461 	 * @return 0 if all ok, else appropriate error value.
462 	 */
463 	int (*stop)(struct udevice *dev);
464 
465 	/**
466 	 * reset() - Reset the remoteproc device (optional)
467 	 *
468 	 * @dev:	Remote proc device
469 	 * @return 0 if all ok, else appropriate error value.
470 	 */
471 	int (*reset)(struct udevice *dev);
472 
473 	/**
474 	 * is_running() - Check if the remote processor is running (optional)
475 	 *
476 	 * @dev:	Remote proc device
477 	 * @return 0 if running, 1 if not running, -ve on error.
478 	 */
479 	int (*is_running)(struct udevice *dev);
480 
481 	/**
482 	 * ping() - Ping the remote device for basic communication (optional)
483 	 *
484 	 * @dev:	Remote proc device
485 	 * @return 0 on success, 1 if not responding, -ve on other errors.
486 	 */
487 	int (*ping)(struct udevice *dev);
488 
489 	/**
490 	 * device_to_virt() - Return translated virtual address (optional)
491 	 *
492 	 * Translate a device address (remote processor view) to virtual
493 	 * address (main processor view).
494 	 *
495 	 * @dev:	Remote proc device
496 	 * @da:		Device address
497 	 * @size:	Size of the memory region @da is pointing to
498 	 * @return virtual address.
499 	 */
500 	void * (*device_to_virt)(struct udevice *dev, ulong da, ulong size);
501 	int (*add_res)(struct udevice *dev,
502 		       struct rproc_mem_entry *mapping);
503 	void * (*alloc_mem)(struct udevice *dev, unsigned long len,
504 			    unsigned long align);
505 	unsigned int (*config_pagetable)(struct udevice *dev, unsigned int virt,
506 					 unsigned int phys, unsigned int len);
507 };
508 
509 /* Accessor */
510 #define rproc_get_ops(dev) ((struct dm_rproc_ops *)(dev)->driver->ops)
511 
512 #if CONFIG_IS_ENABLED(REMOTEPROC)
513 /**
514  * rproc_init() - Initialize all bound remote proc devices
515  * Return: 0 if all ok, else appropriate error value.
516  */
517 int rproc_init(void);
518 
519 /**
520  * rproc_dev_init() - Initialize a remote proc device based on id
521  * @id:		id of the remote processor
522  * Return: 0 if all ok, else appropriate error value.
523  */
524 int rproc_dev_init(int id);
525 
526 /**
527  * rproc_is_initialized() - check to see if remoteproc devices are initialized
528  * Return: true if all devices are initialized, false otherwise.
529  */
530 bool rproc_is_initialized(void);
531 
532 /**
533  * rproc_load() - load binary or elf to a remote processor
534  * @id:		id of the remote processor
535  * @addr:	address in memory where the image is located
536  * @size:	size of the image
537  * Return: 0 if all ok, else appropriate error value.
538  */
539 int rproc_load(int id, ulong addr, ulong size);
540 
541 /**
542  * rproc_start() - Start a remote processor
543  * @id:		id of the remote processor
544  * Return: 0 if all ok, else appropriate error value.
545  */
546 int rproc_start(int id);
547 
548 /**
549  * rproc_stop() - Stop a remote processor
550  * @id:		id of the remote processor
551  * Return: 0 if all ok, else appropriate error value.
552  */
553 int rproc_stop(int id);
554 
555 /**
556  * rproc_reset() - reset a remote processor
557  * @id:		id of the remote processor
558  * Return: 0 if all ok, else appropriate error value.
559  */
560 int rproc_reset(int id);
561 
562 /**
563  * rproc_ping() - ping a remote processor to check if it can communicate
564  * @id:		id of the remote processor
565  * Return: 0 if all ok, else appropriate error value.
566  *
567  * NOTE: this might need communication path available, which is not implemented
568  * as part of remoteproc framework - hook on to appropriate bus architecture to
569  * do the same
570  */
571 int rproc_ping(int id);
572 
573 /**
574  * rproc_is_running() - check to see if remote processor is running
575  * @id:		id of the remote processor
576  * Return: 0 if running, 1 if not running, -ve on error.
577  *
578  * NOTE: this may not involve actual communication capability of the remote
579  * processor, but just ensures that it is out of reset and executing code.
580  */
581 int rproc_is_running(int id);
582 
583 /**
584  * rproc_elf32_sanity_check() - Verify if an image is a valid ELF32 one
585  *
586  * Check if a valid ELF32 image exists at the given memory location. Verify
587  * basic ELF32 format requirements like magic number and sections size.
588  *
589  * @addr:	address of the image to verify
590  * @size:	size of the image
591  * Return: 0 if the image looks good, else appropriate error value.
592  */
593 int rproc_elf32_sanity_check(ulong addr, ulong size);
594 
595 /**
596  * rproc_elf64_sanity_check() - Verify if an image is a valid ELF32 one
597  *
598  * Check if a valid ELF64 image exists at the given memory location. Verify
599  * basic ELF64 format requirements like magic number and sections size.
600  *
601  * @addr:	address of the image to verify
602  * @size:	size of the image
603  * Return: 0 if the image looks good, else appropriate error value.
604  */
605 int rproc_elf64_sanity_check(ulong addr, ulong size);
606 
607 /**
608  * rproc_elf32_load_image() - load an ELF32 image
609  * @dev:	device loading the ELF32 image
610  * @addr:	valid ELF32 image address
611  * @size:	size of the image
612  * Return: 0 if the image is successfully loaded, else appropriate error value.
613  */
614 int rproc_elf32_load_image(struct udevice *dev, unsigned long addr, ulong size);
615 
616 /**
617  * rproc_elf64_load_image() - load an ELF64 image
618  * @dev:	device loading the ELF64 image
619  * @addr:	valid ELF64 image address
620  * @size:	size of the image
621  * Return: 0 if the image is successfully loaded, else appropriate error value.
622  */
623 int rproc_elf64_load_image(struct udevice *dev, ulong addr, ulong size);
624 
625 /**
626  * rproc_elf_load_image() - load an ELF image
627  * @dev:	device loading the ELF image
628  * @addr:	valid ELF image address
629  * @size:	size of the image
630  *
631  * Auto detects if the image is ELF32 or ELF64 image and load accordingly.
632  * Return: 0 if the image is successfully loaded, else appropriate error value.
633  */
634 int rproc_elf_load_image(struct udevice *dev, unsigned long addr, ulong size);
635 
636 /**
637  * rproc_elf_get_boot_addr() - Get rproc's boot address.
638  * @dev:	device loading the ELF image
639  * @addr:	valid ELF image address
640  *
641  * This function returns the entry point address of the ELF
642  * image.
643  */
644 ulong rproc_elf_get_boot_addr(struct udevice *dev, ulong addr);
645 
646 /**
647  * rproc_elf32_load_rsc_table() - load the resource table from an ELF32 image
648  *
649  * Search for the resource table in an ELF32 image, and if found, copy it to
650  * device memory.
651  *
652  * @dev:	device loading the resource table
653  * @fw_addr:	ELF image address
654  * @fw_size:	size of the ELF image
655  * @rsc_addr:	pointer to the found resource table address. Updated on
656  *		operation success
657  * @rsc_size:	pointer to the found resource table size. Updated on operation
658  *		success
659  *
660  * Return: 0 if a valid resource table is successfully loaded, -ENODATA if there
661  * is no resource table (which is optional), or another appropriate error value.
662  */
663 int rproc_elf32_load_rsc_table(struct udevice *dev, ulong fw_addr,
664 			       ulong fw_size, ulong *rsc_addr, ulong *rsc_size);
665 /**
666  * rproc_elf64_load_rsc_table() - load the resource table from an ELF64 image
667  *
668  * Search for the resource table in an ELF64 image, and if found, copy it to
669  * device memory.
670  *
671  * @dev:	device loading the resource table
672  * @fw_addr:	ELF image address
673  * @fw_size:	size of the ELF image
674  * @rsc_addr:	pointer to the found resource table address. Updated on
675  *		operation success
676  * @rsc_size:	pointer to the found resource table size. Updated on operation
677  *		success
678  *
679  * Return: 0 if a valid resource table is successfully loaded, -ENODATA if there
680  * is no resource table (which is optional), or another appropriate error value.
681  */
682 int rproc_elf64_load_rsc_table(struct udevice *dev, ulong fw_addr,
683 			       ulong fw_size, ulong *rsc_addr, ulong *rsc_size);
684 /**
685  * rproc_elf_load_rsc_table() - load the resource table from an ELF image
686  *
687  * Auto detects if the image is ELF32 or ELF64 image and search accordingly for
688  * the resource table, and if found, copy it to device memory.
689  *
690  * @dev:	device loading the resource table
691  * @fw_addr:	ELF image address
692  * @fw_size:	size of the ELF image
693  * @rsc_addr:	pointer to the found resource table address. Updated on
694  *		operation success
695  * @rsc_size:	pointer to the found resource table size. Updated on operation
696  *		success
697  *
698  * Return: 0 if a valid resource table is successfully loaded, -ENODATA if there
699  * is no resource table (which is optional), or another appropriate error value.
700  */
701 int rproc_elf_load_rsc_table(struct udevice *dev, ulong fw_addr,
702 			     ulong fw_size, ulong *rsc_addr, ulong *rsc_size);
703 
704 unsigned long rproc_parse_resource_table(struct udevice *dev,
705 					 struct rproc *cfg);
706 
707 struct resource_table *rproc_find_resource_table(struct udevice *dev,
708 						 unsigned int addr,
709 						 int *tablesz);
710 /**
711  * rproc_set_firmware() - assign a new firmware name
712  * @rproc_dev: device for which new firmware name is being assigned
713  * @fw_name: new firmware name to be assigned
714  *
715  * This function allows remoteproc drivers or clients to configure a custom
716  * firmware name. The function does not trigger a remote processor boot,
717  * only sets the firmware name used for a subsequent boot.
718  *
719  * This function sets the fw_name field in uclass pdata of the Remote proc
720  *
721  * Return: 0 on success or a negative value upon failure
722  */
723 int rproc_set_firmware(struct udevice *rproc_dev, const char *fw_name);
724 
725 /**
726  * rproc_boot() - boot a remote processor
727  * @rproc_dev: rproc device to boot
728  *
729  * Boot a remote processor (i.e. load its firmware, power it on, ...).
730  *
731  * This function first loads the firmware set in the uclass pdata of Remote
732  * processor to a buffer and then loads firmware to the remote processor
733  * using rproc_load().
734  *
735  * Return: 0 on success, and an appropriate error value otherwise
736  */
737 int rproc_boot(struct udevice *rproc_dev);
738 #else
rproc_init(void)739 static inline int rproc_init(void) { return -ENOSYS; }
rproc_dev_init(int id)740 static inline int rproc_dev_init(int id) { return -ENOSYS; }
rproc_is_initialized(void)741 static inline bool rproc_is_initialized(void) { return false; }
rproc_load(int id,ulong addr,ulong size)742 static inline int rproc_load(int id, ulong addr, ulong size) { return -ENOSYS; }
rproc_start(int id)743 static inline int rproc_start(int id) { return -ENOSYS; }
rproc_stop(int id)744 static inline int rproc_stop(int id) { return -ENOSYS; }
rproc_reset(int id)745 static inline int rproc_reset(int id) { return -ENOSYS; }
rproc_ping(int id)746 static inline int rproc_ping(int id) { return -ENOSYS; }
rproc_is_running(int id)747 static inline int rproc_is_running(int id) { return -ENOSYS; }
rproc_elf32_sanity_check(ulong addr,ulong size)748 static inline int rproc_elf32_sanity_check(ulong addr,
749 					   ulong size) { return -ENOSYS; }
rproc_elf64_sanity_check(ulong addr,ulong size)750 static inline int rproc_elf64_sanity_check(ulong addr,
751 					   ulong size) { return -ENOSYS; }
rproc_elf_sanity_check(ulong addr,ulong size)752 static inline int rproc_elf_sanity_check(ulong addr,
753 					 ulong size) { return -ENOSYS; }
rproc_elf32_load_image(struct udevice * dev,unsigned long addr,ulong size)754 static inline int rproc_elf32_load_image(struct udevice *dev,
755 					 unsigned long addr, ulong size)
756 { return -ENOSYS; }
rproc_elf64_load_image(struct udevice * dev,ulong addr,ulong size)757 static inline int rproc_elf64_load_image(struct udevice *dev, ulong addr,
758 					 ulong size)
759 { return -ENOSYS; }
rproc_elf_load_image(struct udevice * dev,ulong addr,ulong size)760 static inline int rproc_elf_load_image(struct udevice *dev, ulong addr,
761 				       ulong size)
762 { return -ENOSYS; }
rproc_elf_get_boot_addr(struct udevice * dev,ulong addr)763 static inline ulong rproc_elf_get_boot_addr(struct udevice *dev, ulong addr)
764 { return 0; }
rproc_elf32_load_rsc_table(struct udevice * dev,ulong fw_addr,ulong fw_size,ulong * rsc_addr,ulong * rsc_size)765 static inline int rproc_elf32_load_rsc_table(struct udevice *dev, ulong fw_addr,
766 					     ulong fw_size, ulong *rsc_addr,
767 					     ulong *rsc_size)
768 { return -ENOSYS; }
rproc_elf64_load_rsc_table(struct udevice * dev,ulong fw_addr,ulong fw_size,ulong * rsc_addr,ulong * rsc_size)769 static inline int rproc_elf64_load_rsc_table(struct udevice *dev, ulong fw_addr,
770 					     ulong fw_size, ulong *rsc_addr,
771 					     ulong *rsc_size)
772 { return -ENOSYS; }
rproc_elf_load_rsc_table(struct udevice * dev,ulong fw_addr,ulong fw_size,ulong * rsc_addr,ulong * rsc_size)773 static inline int rproc_elf_load_rsc_table(struct udevice *dev, ulong fw_addr,
774 					   ulong fw_size, ulong *rsc_addr,
775 					   ulong *rsc_size)
776 { return -ENOSYS; }
rproc_set_firmware(struct udevice * rproc_dev,const char * fw_name)777 static inline int rproc_set_firmware(struct udevice *rproc_dev, const char *fw_name)
778 { return -ENOSYS; }
rproc_boot(struct udevice * rproc_dev)779 static inline int rproc_boot(struct udevice *rproc_dev)
780 { return -ENOSYS; }
781 #endif
782 
783 #endif	/* _RPROC_H_ */
784