1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Copyright (C) 2018 Exceet Electronics GmbH
4  * Copyright (C) 2018 Bootlin
5  *
6  * Author:
7  *	Peter Pan <peterpandong@micron.com>
8  *	Boris Brezillon <boris.brezillon@bootlin.com>
9  */
10 
11 #ifndef __UBOOT_SPI_MEM_H
12 #define __UBOOT_SPI_MEM_H
13 
14 #include <linux/errno.h>
15 
16 struct udevice;
17 
18 #define SPI_MEM_OP_CMD(__opcode, __buswidth)			\
19 	{							\
20 		.buswidth = __buswidth,				\
21 		.opcode = __opcode,				\
22 		.nbytes = 1,					\
23 	}
24 
25 #define SPI_MEM_OP_ADDR(__nbytes, __val, __buswidth)		\
26 	{							\
27 		.nbytes = __nbytes,				\
28 		.val = __val,					\
29 		.buswidth = __buswidth,				\
30 	}
31 
32 #define SPI_MEM_OP_NO_ADDR	{ }
33 
34 #define SPI_MEM_OP_DUMMY(__nbytes, __buswidth)			\
35 	{							\
36 		.nbytes = __nbytes,				\
37 		.buswidth = __buswidth,				\
38 	}
39 
40 #define SPI_MEM_OP_NO_DUMMY	{ }
41 
42 #define SPI_MEM_OP_DATA_IN(__nbytes, __buf, __buswidth)		\
43 	{							\
44 		.dir = SPI_MEM_DATA_IN,				\
45 		.nbytes = __nbytes,				\
46 		.buf.in = __buf,				\
47 		.buswidth = __buswidth,				\
48 	}
49 
50 #define SPI_MEM_OP_DATA_OUT(__nbytes, __buf, __buswidth)	\
51 	{							\
52 		.dir = SPI_MEM_DATA_OUT,			\
53 		.nbytes = __nbytes,				\
54 		.buf.out = __buf,				\
55 		.buswidth = __buswidth,				\
56 	}
57 
58 #define SPI_MEM_OP_NO_DATA	{ }
59 
60 /**
61  * enum spi_mem_data_dir - describes the direction of a SPI memory data
62  *			   transfer from the controller perspective
63  * @SPI_MEM_NO_DATA: no data transferred
64  * @SPI_MEM_DATA_IN: data coming from the SPI memory
65  * @SPI_MEM_DATA_OUT: data sent the SPI memory
66  */
67 enum spi_mem_data_dir {
68 	SPI_MEM_NO_DATA,
69 	SPI_MEM_DATA_IN,
70 	SPI_MEM_DATA_OUT,
71 };
72 
73 /**
74  * struct spi_mem_op - describes a SPI memory operation
75  * @cmd.nbytes: number of opcode bytes (only 1 or 2 are valid). The opcode is
76  *		sent MSB-first.
77  * @cmd.buswidth: number of IO lines used to transmit the command
78  * @cmd.opcode: operation opcode
79  * @cmd.dtr: whether the command opcode should be sent in DTR mode or not
80  * @addr.nbytes: number of address bytes to send. Can be zero if the operation
81  *		 does not need to send an address
82  * @addr.buswidth: number of IO lines used to transmit the address cycles
83  * @addr.val: address value. This value is always sent MSB first on the bus.
84  *	      Note that only @addr.nbytes are taken into account in this
85  *	      address value, so users should make sure the value fits in the
86  *	      assigned number of bytes.
87  * @addr.dtr: whether the address should be sent in DTR mode or not
88  * @dummy.nbytes: number of dummy bytes to send after an opcode or address. Can
89  *		  be zero if the operation does not require dummy bytes
90  * @dummy.buswidth: number of IO lanes used to transmit the dummy bytes
91  * @dummy.dtr: whether the dummy bytes should be sent in DTR mode or not
92  * @data.buswidth: number of IO lanes used to send/receive the data
93  * @data.dtr: whether the data should be sent in DTR mode or not
94  * @data.dir: direction of the transfer
95  * @data.buf.in: input buffer
96  * @data.buf.out: output buffer
97  */
98 struct spi_mem_op {
99 	struct {
100 		u8 nbytes;
101 		u8 buswidth;
102 		u8 dtr : 1;
103 		u16 opcode;
104 	} cmd;
105 
106 	struct {
107 		u8 nbytes;
108 		u8 buswidth;
109 		u8 dtr : 1;
110 		u64 val;
111 	} addr;
112 
113 	struct {
114 		u8 nbytes;
115 		u8 buswidth;
116 		u8 dtr : 1;
117 	} dummy;
118 
119 	struct {
120 		u8 buswidth;
121 		u8 dtr : 1;
122 		enum spi_mem_data_dir dir;
123 		unsigned int nbytes;
124 		/* buf.{in,out} must be DMA-able. */
125 		union {
126 			void *in;
127 			const void *out;
128 		} buf;
129 	} data;
130 };
131 
132 #define SPI_MEM_OP(__cmd, __addr, __dummy, __data)		\
133 	{							\
134 		.cmd = __cmd,					\
135 		.addr = __addr,					\
136 		.dummy = __dummy,				\
137 		.data = __data,					\
138 	}
139 /**
140  * struct spi_mem_dirmap_info - Direct mapping information
141  * @op_tmpl: operation template that should be used by the direct mapping when
142  *	     the memory device is accessed
143  * @offset: absolute offset this direct mapping is pointing to
144  * @length: length in byte of this direct mapping
145  *
146  * This information is used by the controller specific implementation to know
147  * the portion of memory that is directly mapped and the spi_mem_op that should
148  * be used to access the device.
149  * A direct mapping is only valid for one direction (read or write) and this
150  * direction is directly encoded in the ->op_tmpl.data.dir field.
151  */
152 struct spi_mem_dirmap_info {
153 	struct spi_mem_op op_tmpl;
154 	u64 offset;
155 	u64 length;
156 };
157 
158 /**
159  * struct spi_mem_dirmap_desc - Direct mapping descriptor
160  * @mem: the SPI memory device this direct mapping is attached to
161  * @info: information passed at direct mapping creation time
162  * @nodirmap: set to 1 if the SPI controller does not implement
163  *            ->mem_ops->dirmap_create() or when this function returned an
164  *            error. If @nodirmap is true, all spi_mem_dirmap_{read,write}()
165  *            calls will use spi_mem_exec_op() to access the memory. This is a
166  *            degraded mode that allows spi_mem drivers to use the same code
167  *            no matter whether the controller supports direct mapping or not
168  * @priv: field pointing to controller specific data
169  *
170  * Common part of a direct mapping descriptor. This object is created by
171  * spi_mem_dirmap_create() and controller implementation of ->create_dirmap()
172  * can create/attach direct mapping resources to the descriptor in the ->priv
173  * field.
174  */
175 struct spi_mem_dirmap_desc {
176 	struct spi_slave *slave;
177 	struct spi_mem_dirmap_info info;
178 	unsigned int nodirmap;
179 	void *priv;
180 };
181 
182 #ifndef __UBOOT__
183 /**
184  * struct spi_mem - describes a SPI memory device
185  * @spi: the underlying SPI device
186  * @drvpriv: spi_mem_driver private data
187  *
188  * Extra information that describe the SPI memory device and may be needed by
189  * the controller to properly handle this device should be placed here.
190  *
191  * One example would be the device size since some controller expose their SPI
192  * mem devices through a io-mapped region.
193  */
194 struct spi_mem {
195 	struct udevice *dev;
196 	void *drvpriv;
197 };
198 
199 /**
200  * struct spi_mem_set_drvdata() - attach driver private data to a SPI mem
201  *				  device
202  * @mem: memory device
203  * @data: data to attach to the memory device
204  */
spi_mem_set_drvdata(struct spi_mem * mem,void * data)205 static inline void spi_mem_set_drvdata(struct spi_mem *mem, void *data)
206 {
207 	mem->drvpriv = data;
208 }
209 
210 /**
211  * struct spi_mem_get_drvdata() - get driver private data attached to a SPI mem
212  *				  device
213  * @mem: memory device
214  *
215  * Return: the data attached to the mem device.
216  */
spi_mem_get_drvdata(struct spi_mem * mem)217 static inline void *spi_mem_get_drvdata(struct spi_mem *mem)
218 {
219 	return mem->drvpriv;
220 }
221 #endif /* __UBOOT__ */
222 
223 /**
224  * struct spi_controller_mem_ops - SPI memory operations
225  * @adjust_op_size: shrink the data xfer of an operation to match controller's
226  *		    limitations (can be alignment of max RX/TX size
227  *		    limitations)
228  * @supports_op: check if an operation is supported by the controller
229  * @exec_op: execute a SPI memory operation
230  * @dirmap_create: create a direct mapping descriptor that can later be used to
231  *		   access the memory device. This method is optional
232  * @dirmap_destroy: destroy a memory descriptor previous created by
233  *		    ->dirmap_create()
234  * @dirmap_read: read data from the memory device using the direct mapping
235  *		 created by ->dirmap_create(). The function can return less
236  *		 data than requested (for example when the request is crossing
237  *		 the currently mapped area), and the caller of
238  *		 spi_mem_dirmap_read() is responsible for calling it again in
239  *		 this case.
240  * @dirmap_write: write data to the memory device using the direct mapping
241  *		  created by ->dirmap_create(). The function can return less
242  *		  data than requested (for example when the request is crossing
243  *		  the currently mapped area), and the caller of
244  *		  spi_mem_dirmap_write() is responsible for calling it again in
245  *		  this case.
246  *
247  * This interface should be implemented by SPI controllers providing an
248  * high-level interface to execute SPI memory operation, which is usually the
249  * case for QSPI controllers.
250  *
251  * Note on ->dirmap_{read,write}(): drivers should avoid accessing the direct
252  * mapping from the CPU because doing that can stall the CPU waiting for the
253  * SPI mem transaction to finish, and this will make real-time maintainers
254  * unhappy and might make your system less reactive. Instead, drivers should
255  * use DMA to access this direct mapping.
256  */
257 struct spi_controller_mem_ops {
258 	int (*adjust_op_size)(struct spi_slave *slave, struct spi_mem_op *op);
259 	bool (*supports_op)(struct spi_slave *slave,
260 			    const struct spi_mem_op *op);
261 	int (*exec_op)(struct spi_slave *slave,
262 		       const struct spi_mem_op *op);
263 	int (*dirmap_create)(struct spi_mem_dirmap_desc *desc);
264 	void (*dirmap_destroy)(struct spi_mem_dirmap_desc *desc);
265 	ssize_t (*dirmap_read)(struct spi_mem_dirmap_desc *desc,
266 			       u64 offs, size_t len, void *buf);
267 	ssize_t (*dirmap_write)(struct spi_mem_dirmap_desc *desc,
268 				u64 offs, size_t len, const void *buf);
269 };
270 
271 #ifndef __UBOOT__
272 /**
273  * struct spi_mem_driver - SPI memory driver
274  * @spidrv: inherit from a SPI driver
275  * @probe: probe a SPI memory. Usually where detection/initialization takes
276  *	   place
277  * @remove: remove a SPI memory
278  * @shutdown: take appropriate action when the system is shutdown
279  *
280  * This is just a thin wrapper around a spi_driver. The core takes care of
281  * allocating the spi_mem object and forwarding the probe/remove/shutdown
282  * request to the spi_mem_driver. The reason we use this wrapper is because
283  * we might have to stuff more information into the spi_mem struct to let
284  * SPI controllers know more about the SPI memory they interact with, and
285  * having this intermediate layer allows us to do that without adding more
286  * useless fields to the spi_device object.
287  */
288 struct spi_mem_driver {
289 	struct spi_driver spidrv;
290 	int (*probe)(struct spi_mem *mem);
291 	int (*remove)(struct spi_mem *mem);
292 	void (*shutdown)(struct spi_mem *mem);
293 };
294 
295 #if IS_ENABLED(CONFIG_SPI_MEM)
296 int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
297 				       const struct spi_mem_op *op,
298 				       struct sg_table *sg);
299 
300 void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
301 					  const struct spi_mem_op *op,
302 					  struct sg_table *sg);
303 #else
304 static inline int
spi_controller_dma_map_mem_op_data(struct spi_controller * ctlr,const struct spi_mem_op * op,struct sg_table * sg)305 spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
306 				   const struct spi_mem_op *op,
307 				   struct sg_table *sg)
308 {
309 	return -ENOSYS;
310 }
311 
312 static inline void
spi_controller_dma_unmap_mem_op_data(struct spi_controller * ctlr,const struct spi_mem_op * op,struct sg_table * sg)313 spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
314 				     const struct spi_mem_op *op,
315 				     struct sg_table *sg)
316 {
317 }
318 #endif /* CONFIG_SPI_MEM */
319 #endif /* __UBOOT__ */
320 
321 int spi_mem_adjust_op_size(struct spi_slave *slave, struct spi_mem_op *op);
322 
323 bool spi_mem_supports_op(struct spi_slave *slave, const struct spi_mem_op *op);
324 bool spi_mem_dtr_supports_op(struct spi_slave *slave,
325 			     const struct spi_mem_op *op);
326 
327 bool spi_mem_default_supports_op(struct spi_slave *slave,
328 				 const struct spi_mem_op *op);
329 
330 int spi_mem_exec_op(struct spi_slave *slave, const struct spi_mem_op *op);
331 
332 struct spi_mem_dirmap_desc *
333 spi_mem_dirmap_create(struct spi_slave *mem,
334 		      const struct spi_mem_dirmap_info *info);
335 void spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc *desc);
336 ssize_t spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc,
337 			    u64 offs, size_t len, void *buf);
338 ssize_t spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc,
339 			     u64 offs, size_t len, const void *buf);
340 
341 #ifndef __UBOOT__
342 int spi_mem_driver_register_with_owner(struct spi_mem_driver *drv,
343 				       struct module *owner);
344 
345 void spi_mem_driver_unregister(struct spi_mem_driver *drv);
346 
347 #define spi_mem_driver_register(__drv)                                  \
348 	spi_mem_driver_register_with_owner(__drv, THIS_MODULE)
349 
350 #define module_spi_mem_driver(__drv)                                    \
351 	module_driver(__drv, spi_mem_driver_register,                   \
352 		      spi_mem_driver_unregister)
353 #endif
354 
355 #endif /* __LINUX_SPI_MEM_H */
356