1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Copyright (c) 2011 The Chromium OS Authors.
4  */
5 
6 /* Tegra clock control functions */
7 
8 #ifndef _TEGRA_CLOCK_H_
9 #define _TEGRA_CLOCK_H_
10 
11 struct udevice;
12 
13 /* Set of oscillator frequencies supported in the internal API. */
14 enum clock_osc_freq {
15 	/* All in MHz, so 13_0 is 13.0MHz */
16 	CLOCK_OSC_FREQ_13_0 = 0,
17 	CLOCK_OSC_FREQ_16_8,
18 	CLOCK_OSC_FREQ_19_2 = 4,
19 	CLOCK_OSC_FREQ_38_4,
20 	CLOCK_OSC_FREQ_12_0 = 8,
21 	CLOCK_OSC_FREQ_48_0,
22 	CLOCK_OSC_FREQ_26_0 = 12,
23 
24 	CLOCK_OSC_FREQ_COUNT,
25 };
26 
27 /*
28  * Note that no Tegra clock register actually uses all of bits 31:28 as
29  * the mux field. Rather, bits 30:28, 29:28, or 28 are used. However, in
30  * those cases, nothing is stored in the bits about the mux field, so it's
31  * safe to pretend that the mux field extends all the way to the end of the
32  * register. As such, the U-Boot clock driver is currently a bit lazy, and
33  * doesn't distinguish between 31:28, 30:28, 29:28 and 28; it just lumps
34  * them all together and pretends they're all 31:28.
35  */
36 enum {
37 	MASK_BITS_31_30,
38 	MASK_BITS_31_29,
39 	MASK_BITS_31_28,
40 };
41 
42 #include <asm/arch/clock-tables.h>
43 /* PLL stabilization delay in usec */
44 #define CLOCK_PLL_STABLE_DELAY_US 300
45 
46 /* return the current oscillator clock frequency */
47 enum clock_osc_freq clock_get_osc_freq(void);
48 
49 /* return the clk_m frequency */
50 unsigned int clk_m_get_rate(unsigned int parent_rate);
51 
52 /**
53  * Start PLL using the provided configuration parameters.
54  *
55  * @param id	clock id
56  * @param divm	input divider
57  * @param divn	feedback divider
58  * @param divp	post divider 2^n
59  * @param cpcon	charge pump setup control
60  * @param lfcon	loop filter setup control
61  *
62  * @returns monotonic time in us that the PLL will be stable
63  */
64 unsigned long clock_start_pll(enum clock_id id, u32 divm, u32 divn,
65 		u32 divp, u32 cpcon, u32 lfcon);
66 
67 /**
68  * Set PLL output frequency
69  *
70  * @param clkid	clock id
71  * @param pllout	pll output id
72  * @param rate		desired output rate
73  *
74  * Return: 0 if ok, -1 on error (invalid clock id or no suitable divider)
75  */
76 int clock_set_pllout(enum clock_id clkid, enum pll_out_id pllout,
77 		unsigned rate);
78 
79 /**
80  * Read low-level parameters of a PLL.
81  *
82  * @param id	clock id to read (note: USB is not supported)
83  * @param divm	returns input divider
84  * @param divn	returns feedback divider
85  * @param divp	returns post divider 2^n
86  * @param cpcon	returns charge pump setup control
87  * @param lfcon	returns loop filter setup control
88  *
89  * @returns 0 if ok, -1 on error (invalid clock id)
90  */
91 int clock_ll_read_pll(enum clock_id clkid, u32 *divm, u32 *divn,
92 		u32 *divp, u32 *cpcon, u32 *lfcon);
93 
94 /*
95  * Enable a clock
96  *
97  * @param id	clock id
98  */
99 void clock_enable(enum periph_id clkid);
100 
101 /*
102  * Disable a clock
103  *
104  * @param id	clock id
105  */
106 void clock_disable(enum periph_id clkid);
107 
108 /*
109  * Set whether a clock is enabled or disabled.
110  *
111  * @param id		clock id
112  * @param enable	1 to enable, 0 to disable
113  */
114 void clock_set_enable(enum periph_id clkid, int enable);
115 
116 /**
117  * Reset a peripheral. This puts it in reset, waits for a delay, then takes
118  * it out of reset and waits for th delay again.
119  *
120  * @param periph_id	peripheral to reset
121  * @param us_delay	time to delay in microseconds
122  */
123 void reset_periph(enum periph_id periph_id, int us_delay);
124 
125 /**
126  * Put a peripheral into or out of reset.
127  *
128  * @param periph_id	peripheral to reset
129  * @param enable	1 to put into reset, 0 to take out of reset
130  */
131 void reset_set_enable(enum periph_id periph_id, int enable);
132 
133 /* CLK_RST_CONTROLLER_RST_CPU_CMPLX_SET/CLR_0 */
134 enum crc_reset_id {
135 	/* Things we can hold in reset for each CPU */
136 	crc_rst_cpu = 1,
137 	crc_rst_de = 1 << 4,	/* What is de? */
138 	crc_rst_watchdog = 1 << 8,
139 	crc_rst_debug = 1 << 12,
140 };
141 
142 /**
143  * Put parts of the CPU complex into or out of reset.\
144  *
145  * @param cpu		cpu number (0 or 1 on Tegra2, 0-3 on Tegra3)
146  * @param which		which parts of the complex to affect (OR of crc_reset_id)
147  * @param reset		1 to assert reset, 0 to de-assert
148  */
149 void reset_cmplx_set_enable(int cpu, int which, int reset);
150 
151 /**
152  * Set the source for a peripheral clock. This plus the divisor sets the
153  * clock rate. You need to look up the datasheet to see the meaning of the
154  * source parameter as it changes for each peripheral.
155  *
156  * Warning: This function is only for use pre-relocation. Please use
157  * clock_start_periph_pll() instead.
158  *
159  * @param periph_id	peripheral to adjust
160  * @param source	source clock (0, 1, 2 or 3)
161  */
162 void clock_ll_set_source(enum periph_id periph_id, unsigned source);
163 
164 /**
165  * This function is similar to clock_ll_set_source() except that it can be
166  * used for clocks with more than 2 mux bits.
167  *
168  * @param periph_id	peripheral to adjust
169  * @param mux_bits	number of mux bits for the clock
170  * @param source	source clock (0-15 depending on mux_bits)
171  */
172 int clock_ll_set_source_bits(enum periph_id periph_id, int mux_bits,
173 			     unsigned source);
174 
175 /**
176  * Set the source and divisor for a peripheral clock. This sets the
177  * clock rate. You need to look up the datasheet to see the meaning of the
178  * source parameter as it changes for each peripheral.
179  *
180  * Warning: This function is only for use pre-relocation. Please use
181  * clock_start_periph_pll() instead.
182  *
183  * @param periph_id	peripheral to adjust
184  * @param source	source clock (0, 1, 2 or 3)
185  * @param divisor	divisor value to use
186  */
187 void clock_ll_set_source_divisor(enum periph_id periph_id, unsigned source,
188 		unsigned divisor);
189 
190 /**
191  * Returns the current parent clock ID of a given peripheral. This can be
192  * useful in order to call clock_*_periph_*() from generic code that has no
193  * specific knowledge of system-level clock tree structure.
194  *
195  * @param periph_id	peripheral to query
196  * Return: clock ID of the peripheral's current parent clock
197  */
198 enum clock_id clock_get_periph_parent(enum periph_id periph_id);
199 
200 /**
201  * Start a peripheral PLL clock at the given rate. This also resets the
202  * peripheral.
203  *
204  * @param periph_id	peripheral to start
205  * @param parent	PLL id of required parent clock
206  * @param rate		Required clock rate in Hz
207  * Return: rate selected in Hz, or -1U if something went wrong
208  */
209 unsigned clock_start_periph_pll(enum periph_id periph_id,
210 		enum clock_id parent, unsigned rate);
211 
212 /**
213  * Returns the rate of a peripheral clock in Hz. Since the caller almost
214  * certainly knows the parent clock (having just set it) we require that
215  * this be passed in so we don't need to work it out.
216  *
217  * @param periph_id	peripheral to start
218  * @param parent	PLL id of parent clock (used to calculate rate, you
219  *			must know this!)
220  * Return: clock rate of peripheral in Hz
221  */
222 unsigned long clock_get_periph_rate(enum periph_id periph_id,
223 		enum clock_id parent);
224 
225 /**
226  * Adjust peripheral PLL clock to the given rate. This does not reset the
227  * peripheral. If a second stage divisor is not available, pass NULL for
228  * extra_div. If it is available, then this parameter will return the
229  * divisor selected (which will be a power of 2 from 1 to 256).
230  *
231  * @param periph_id	peripheral to start
232  * @param parent	PLL id of required parent clock
233  * @param rate		Required clock rate in Hz
234  * @param extra_div	value for the second-stage divisor (NULL if one is
235 			not available)
236  * Return: rate selected in Hz, or -1U if something went wrong
237  */
238 unsigned clock_adjust_periph_pll_div(enum periph_id periph_id,
239 		enum clock_id parent, unsigned rate, int *extra_div);
240 
241 /**
242  * Returns the clock rate of a specified clock, in Hz.
243  *
244  * @param parent	PLL id of clock to check
245  * Return: rate of clock in Hz
246  */
247 unsigned clock_get_rate(enum clock_id clkid);
248 
249 /**
250  * Start up a UART using low-level calls
251  *
252  * Prior to relocation clock_start_periph_pll() cannot be called. This
253  * function provides a way to set up a UART using low-level calls which
254  * do not require BSS.
255  *
256  * @param periph_id	Peripheral ID of UART to enable (e,g, PERIPH_ID_UART1)
257  */
258 void clock_ll_start_uart(enum periph_id periph_id);
259 
260 /**
261  * Decode a peripheral ID from a device tree node.
262  *
263  * This works by looking up the peripheral's 'clocks' node and reading out
264  * the second cell, which is the clock number / peripheral ID.
265  *
266  * @param blob		FDT blob to use
267  * @param node		Node to look at
268  * Return: peripheral ID, or PERIPH_ID_NONE if none
269  */
270 int clock_decode_periph_id(struct udevice *dev);
271 
272 /**
273  * Get periph clock id and its parent from device tree.
274  *
275  * This works by looking up the peripheral's 'clocks' node and reading out
276  * the second and fourth cells, which are the peripheral and PLL clock numbers.
277  *
278  * @param dev          udevice associated with FDT node
279  * @param clk_id       pointer to int array of 2 values
280  *                     first is periph clock, second is
281  *                     its PLL parent according to FDT.
282  */
283 int clock_decode_pair(struct udevice *dev, int *clk_id);
284 
285 /**
286  * Checks if the oscillator bypass is enabled (XOBP bit)
287  *
288  * Return: 1 if bypass is enabled, 0 if not
289  */
290 int clock_get_osc_bypass(void);
291 
292 /*
293  * Checks that clocks are valid and prints a warning if not
294  *
295  * Return: 0 if ok, -1 on error
296  */
297 int clock_verify(void);
298 
299 /* Initialize the clocks */
300 void clock_init(void);
301 
302 /* Initialize the PLLs */
303 void clock_early_init(void);
304 
305 /* @return true if hardware indicates that clock_early_init() was called */
306 bool clock_early_init_done(void);
307 
308 /* Returns a pointer to the clock source register for a peripheral */
309 u32 *get_periph_source_reg(enum periph_id periph_id);
310 
311 /* Returns a pointer to the given 'simple' PLL */
312 struct clk_pll_simple *clock_get_simple_pll(enum clock_id clkid);
313 
314 /*
315  * Given a peripheral ID, determine where the mux bits are in the peripheral
316  * clock's register, the number of divider bits the clock has, and the SoC-
317  * specific clock type.
318  *
319  * This is an internal API between the core Tegra clock code and the SoC-
320  * specific clock code.
321  *
322  * @param periph_id     peripheral to query
323  * @param mux_bits      Set to number of bits in mux register
324  * @param divider_bits  Set to the relevant MASK_BITS_* value
325  * @param type          Set to the SoC-specific clock type
326  * Return: 0 on success, -1 on error
327  */
328 int get_periph_clock_info(enum periph_id periph_id, int *mux_bits,
329 			  int *divider_bits, int *type);
330 
331 /*
332  * Given a peripheral ID and clock source mux value, determine the clock_id
333  * of that peripheral's parent.
334  *
335  * This is an internal API between the core Tegra clock code and the SoC-
336  * specific clock code.
337  *
338  * @param periph_id     peripheral to query
339  * @param source        raw clock source mux value
340  * Return: the CLOCK_ID_* value @source represents
341  */
342 enum clock_id get_periph_clock_id(enum periph_id periph_id, int source);
343 
344 /**
345  * Given a peripheral ID and the required source clock, this returns which
346  * value should be programmed into the source mux for that peripheral.
347  *
348  * There is special code here to handle the one source type with 5 sources.
349  *
350  * @param periph_id     peripheral to start
351  * @param source        PLL id of required parent clock
352  * @param mux_bits      Set to number of bits in mux register: 2 or 4
353  * @param divider_bits  Set to number of divider bits (8 or 16)
354  * Return: mux value (0-4, or -1 if not found)
355  */
356 int get_periph_clock_source(enum periph_id periph_id,
357 		enum clock_id parent, int *mux_bits, int *divider_bits);
358 
359 /*
360  * Convert a device tree clock ID to our peripheral ID. They are mostly
361  * the same but we are very cautious so we check that a valid clock ID is
362  * provided.
363  *
364  * @param clk_id        Clock ID according to tegra30 device tree binding
365  * Return: peripheral ID, or PERIPH_ID_NONE if the clock ID is invalid
366  */
367 enum periph_id clk_id_to_periph_id(int clk_id);
368 
369 /*
370  * Convert a device tree clock ID to our PLL ID.
371  *
372  * @param clk_id	Clock ID according to tegra device tree binding
373  * Return: clock ID, or CLOCK_ID_NONE if the clock ID is invalid
374  */
375 enum clock_id clk_id_to_pll_id(int clk_id);
376 
377 /**
378  * Set the output frequency you want for each PLL clock.
379  * PLL output frequencies are programmed by setting their N, M and P values.
380  * The governing equations are:
381  *     VCO = (Fi / m) * n, Fo = VCO / (2^p)
382  *     where Fo is the output frequency from the PLL.
383  * Example: Set the output frequency to 216Mhz(Fo) with 12Mhz OSC(Fi)
384  *     216Mhz = ((12Mhz / m) * n) / (2^p) so n=432,m=12,p=1
385  * Please see Tegra TRM section 5.3 to get the detail for PLL Programming
386  *
387  * @param n PLL feedback divider(DIVN)
388  * @param m PLL input divider(DIVN)
389  * @param p post divider(DIVP)
390  * @param cpcon base PLL charge pump(CPCON)
391  * Return: 0 if ok, -1 on error (the requested PLL is incorrect and cannot
392  *              be overridden), 1 if PLL is already correct
393  */
394 int clock_set_rate(enum clock_id clkid, u32 n, u32 m, u32 p, u32 cpcon);
395 
396 /* return 1 if a peripheral ID is in range */
397 #define clock_type_id_isvalid(id) ((id) >= 0 && \
398 		(id) < CLOCK_TYPE_COUNT)
399 
400 /* return 1 if a periphc_internal_id is in range */
401 #define periphc_internal_id_isvalid(id) ((id) >= 0 && \
402 		(id) < PERIPHC_COUNT)
403 
404 /* SoC-specific TSC init */
405 void arch_timer_init(void);
406 
407 void tegra30_set_up_pllp(void);
408 
409 /* Number of PLL-based clocks (i.e. not OSC, MCLK or 32KHz) */
410 #define CLOCK_ID_PLL_COUNT	(CLOCK_ID_COUNT - 3)
411 
412 struct clk_pll_info {
413 	u32	m_shift:5;	/* DIVM_SHIFT */
414 	u32	n_shift:5;	/* DIVN_SHIFT */
415 	u32	p_shift:5;	/* DIVP_SHIFT */
416 	u32	kcp_shift:5;	/* KCP/cpcon SHIFT */
417 	u32	kvco_shift:5;	/* KVCO/lfcon SHIFT */
418 	u32	lock_ena:6;	/* LOCK_ENABLE/EN_LOCKDET shift */
419 	u32	rsvd:1;
420 	u32	m_mask:10;	/* DIVM_MASK */
421 	u32	n_mask:12;	/* DIVN_MASK */
422 	u32	p_mask:10;	/* DIVP_MASK or VCO_MASK */
423 	u32	kcp_mask:10;	/* KCP/CPCON MASK */
424 	u32	kvco_mask:10;	/* KVCO/LFCON MASK */
425 	u32	lock_det:6;	/* LOCK_DETECT/LOCKED shift */
426 	u32	rsvd2:6;
427 };
428 extern struct clk_pll_info tegra_pll_info_table[CLOCK_ID_PLL_COUNT];
429 
430 struct periph_clk_init {
431 	enum periph_id periph_id;
432 	enum clock_id parent_clock_id;
433 };
434 extern struct periph_clk_init periph_clk_init_table[];
435 
436 /**
437  * Enable output clock for external peripherals
438  *
439  * @param clk_id	Clock ID to output (1, 2 or 3)
440  * Return: 0 if OK. -ve on error
441  */
442 int clock_external_output(int clk_id);
443 
444 #endif  /* _TEGRA_CLOCK_H_ */
445