1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * (C) Copyright 2007
4  * Sascha Hauer, Pengutronix
5  *
6  * (C) Copyright 2009 Freescale Semiconductor, Inc.
7  */
8 
9 #include <bootm.h>
10 #include <dm.h>
11 #include <init.h>
12 #include <log.h>
13 #include <net.h>
14 #include <netdev.h>
15 #include <linux/errno.h>
16 #include <asm/io.h>
17 #include <asm/arch/imx-regs.h>
18 #include <asm/arch/clock.h>
19 #include <asm/arch/sys_proto.h>
20 #include <asm/arch/crm_regs.h>
21 #include <asm/mach-imx/boot_mode.h>
22 #include <imx_thermal.h>
23 #include <ipu_pixfmt.h>
24 #include <thermal.h>
25 #include <sata.h>
26 #include <dm/device-internal.h>
27 #include <dm/uclass-internal.h>
28 
29 #ifdef CONFIG_FSL_ESDHC_IMX
30 #include <fsl_esdhc_imx.h>
31 #endif
32 
33 static u32 reset_cause = -1;
34 
get_imx_reset_cause(void)35 u32 get_imx_reset_cause(void)
36 {
37 	struct src *src_regs = (struct src *)SRC_BASE_ADDR;
38 
39 	if (reset_cause == -1) {
40 		reset_cause = readl(&src_regs->srsr);
41 /* preserve the value for U-Boot proper */
42 #if !defined(CONFIG_XPL_BUILD)
43 		writel(reset_cause, &src_regs->srsr);
44 #endif
45 	}
46 
47 	return reset_cause;
48 }
49 
50 #if defined(CONFIG_DISPLAY_CPUINFO) && !defined(CONFIG_XPL_BUILD)
get_reset_cause(void)51 static char *get_reset_cause(void)
52 {
53 	switch (get_imx_reset_cause()) {
54 	case 0x00001:
55 	case 0x00011:
56 		return "POR";
57 	case 0x00004:
58 		return "CSU";
59 	case 0x00008:
60 		return "IPP USER";
61 	case 0x00010:
62 #ifdef	CONFIG_MX7
63 		return "WDOG1";
64 #else
65 		return "WDOG";
66 #endif
67 	case 0x00020:
68 		return "JTAG HIGH-Z";
69 	case 0x00040:
70 		return "JTAG SW";
71 	case 0x00080:
72 		return "WDOG3";
73 #ifdef CONFIG_MX7
74 	case 0x00100:
75 		return "WDOG4";
76 	case 0x00200:
77 		return "TEMPSENSE";
78 #elif defined(CONFIG_IMX8M)
79 	case 0x00100:
80 		return "WDOG2";
81 	case 0x00200:
82 		return "TEMPSENSE";
83 #else
84 	case 0x00100:
85 		return "TEMPSENSE";
86 	case 0x10000:
87 		return "WARM BOOT";
88 #endif
89 	default:
90 		return "unknown reset";
91 	}
92 }
93 #endif
94 
95 #if defined(CONFIG_DISPLAY_CPUINFO) && !defined(CONFIG_XPL_BUILD)
96 
get_imx_type(u32 imxtype)97 const char *get_imx_type(u32 imxtype)
98 {
99 	switch (imxtype) {
100 	case MXC_CPU_IMX8MP:
101 		return "8MP[8]";	/* Quad-core version of the imx8mp */
102 	case MXC_CPU_IMX8MPD:
103 		return "8MP Dual[3]";	/* Dual-core version of the imx8mp */
104 	case MXC_CPU_IMX8MPL:
105 		return "8MP Lite[4]";	/* Quad-core Lite version of the imx8mp */
106 	case MXC_CPU_IMX8MP6:
107 		return "8MP[6]";	/* Quad-core version of the imx8mp, NPU fused */
108 	case MXC_CPU_IMX8MPUL:
109 		return "8MP UltraLite";	/* Quad-core UltraLite version of the imx8mp */
110 	case MXC_CPU_IMX8MN:
111 		return "8MNano Quad"; /* Quad-core version */
112 	case MXC_CPU_IMX8MND:
113 		return "8MNano Dual"; /* Dual-core version */
114 	case MXC_CPU_IMX8MNS:
115 		return "8MNano Solo"; /* Single-core version */
116 	case MXC_CPU_IMX8MNL:
117 		return "8MNano QuadLite"; /* Quad-core Lite version */
118 	case MXC_CPU_IMX8MNDL:
119 		return "8MNano DualLite"; /* Dual-core Lite version */
120 	case MXC_CPU_IMX8MNSL:
121 		return "8MNano SoloLite";/* Single-core Lite version of the imx8mn */
122 	case MXC_CPU_IMX8MNUQ:
123 		return "8MNano UltraLite Quad";/* Quad-core UltraLite version of the imx8mn */
124 	case MXC_CPU_IMX8MNUD:
125 		return "8MNano UltraLite Dual";/* Dual-core UltraLite version of the imx8mn */
126 	case MXC_CPU_IMX8MNUS:
127 		return "8MNano UltraLite Solo";/* Single-core UltraLite version of the imx8mn */
128 	case MXC_CPU_IMX8MM:
129 		return "8MMQ";	/* Quad-core version of the imx8mm */
130 	case MXC_CPU_IMX8MML:
131 		return "8MMQL";	/* Quad-core Lite version of the imx8mm */
132 	case MXC_CPU_IMX8MMD:
133 		return "8MMD";	/* Dual-core version of the imx8mm */
134 	case MXC_CPU_IMX8MMDL:
135 		return "8MMDL";	/* Dual-core Lite version of the imx8mm */
136 	case MXC_CPU_IMX8MMS:
137 		return "8MMS";	/* Single-core version of the imx8mm */
138 	case MXC_CPU_IMX8MMSL:
139 		return "8MMSL";	/* Single-core Lite version of the imx8mm */
140 	case MXC_CPU_IMX8MQ:
141 		return "8MQ";	/* Quad-core version of the imx8mq */
142 	case MXC_CPU_IMX8MQL:
143 		return "8MQLite";	/* Quad-core Lite version of the imx8mq */
144 	case MXC_CPU_IMX8MD:
145 		return "8MD";	/* Dual-core version of the imx8mq */
146 	case MXC_CPU_MX7S:
147 		return "7S";	/* Single-core version of the mx7 */
148 	case MXC_CPU_MX7D:
149 		return "7D";	/* Dual-core version of the mx7 */
150 	case MXC_CPU_MX6QP:
151 		return "6QP";	/* Quad-Plus version of the mx6 */
152 	case MXC_CPU_MX6DP:
153 		return "6DP";	/* Dual-Plus version of the mx6 */
154 	case MXC_CPU_MX6Q:
155 		return "6Q";	/* Quad-core version of the mx6 */
156 	case MXC_CPU_MX6D:
157 		return "6D";	/* Dual-core version of the mx6 */
158 	case MXC_CPU_MX6DL:
159 		return "6DL";	/* Dual Lite version of the mx6 */
160 	case MXC_CPU_MX6SOLO:
161 		return "6SOLO";	/* Solo version of the mx6 */
162 	case MXC_CPU_MX6SL:
163 		return "6SL";	/* Solo-Lite version of the mx6 */
164 	case MXC_CPU_MX6SLL:
165 		return "6SLL";	/* SLL version of the mx6 */
166 	case MXC_CPU_MX6SX:
167 		return "6SX";   /* SoloX version of the mx6 */
168 	case MXC_CPU_MX6UL:
169 		return "6UL";   /* Ultra-Lite version of the mx6 */
170 	case MXC_CPU_MX6ULL:
171 		return "6ULL";	/* ULL version of the mx6 */
172 	case MXC_CPU_MX6ULZ:
173 		return "6ULZ";	/* ULZ version of the mx6 */
174 	case MXC_CPU_MX51:
175 		return "51";
176 	case MXC_CPU_MX53:
177 		return "53";
178 	default:
179 		return "??";
180 	}
181 }
182 
print_cpuinfo(void)183 int print_cpuinfo(void)
184 {
185 	u32 cpurev;
186 	__maybe_unused u32 max_freq;
187 
188 	cpurev = get_cpu_rev();
189 
190 #if defined(CONFIG_IMX_THERMAL) || defined(CONFIG_IMX_TMU)
191 	struct udevice *thermal_dev;
192 	int cpu_tmp, minc, maxc, ret;
193 
194 	printf("CPU:   Freescale i.MX%s rev%d.%d",
195 	       get_imx_type((cpurev & 0x1FF000) >> 12),
196 	       (cpurev & 0x000F0) >> 4,
197 	       (cpurev & 0x0000F) >> 0);
198 	max_freq = get_cpu_speed_grade_hz();
199 	if (!max_freq || max_freq == mxc_get_clock(MXC_ARM_CLK)) {
200 		printf(" at %dMHz\n", mxc_get_clock(MXC_ARM_CLK) / 1000000);
201 	} else {
202 		printf(" %d MHz (running at %d MHz)\n", max_freq / 1000000,
203 		       mxc_get_clock(MXC_ARM_CLK) / 1000000);
204 	}
205 #else
206 	printf("CPU:   Freescale i.MX%s rev%d.%d at %d MHz\n",
207 		get_imx_type((cpurev & 0x1FF000) >> 12),
208 		(cpurev & 0x000F0) >> 4,
209 		(cpurev & 0x0000F) >> 0,
210 		mxc_get_clock(MXC_ARM_CLK) / 1000000);
211 #endif
212 
213 #if defined(CONFIG_IMX_THERMAL) || defined(CONFIG_IMX_TMU)
214 	puts("CPU:   ");
215 	switch (get_cpu_temp_grade(&minc, &maxc)) {
216 	case TEMP_AUTOMOTIVE:
217 		puts("Automotive temperature grade ");
218 		break;
219 	case TEMP_INDUSTRIAL:
220 		puts("Industrial temperature grade ");
221 		break;
222 	case TEMP_EXTCOMMERCIAL:
223 		puts("Extended Commercial temperature grade ");
224 		break;
225 	default:
226 		puts("Commercial temperature grade ");
227 		break;
228 	}
229 	printf("(%dC to %dC)", minc, maxc);
230 	ret = uclass_get_device(UCLASS_THERMAL, 0, &thermal_dev);
231 	if (!ret) {
232 		ret = thermal_get_temp(thermal_dev, &cpu_tmp);
233 
234 		if (!ret)
235 			printf(" at %dC", cpu_tmp);
236 		else
237 			debug(" - invalid sensor data\n");
238 	} else {
239 		debug(" - invalid sensor device\n");
240 	}
241 	puts("\n");
242 #endif
243 
244 	printf("Reset cause: %s\n", get_reset_cause());
245 	return 0;
246 }
247 #endif
248 
cpu_eth_init(struct bd_info * bis)249 int cpu_eth_init(struct bd_info *bis)
250 {
251 	int rc = -ENODEV;
252 
253 #if defined(CONFIG_FEC_MXC)
254 	rc = fecmxc_initialize(bis);
255 #endif
256 
257 	return rc;
258 }
259 
260 #ifdef CONFIG_FSL_ESDHC_IMX
261 /*
262  * Initializes on-chip MMC controllers.
263  * to override, implement board_mmc_init()
264  */
cpu_mmc_init(struct bd_info * bis)265 int cpu_mmc_init(struct bd_info *bis)
266 {
267 	return fsl_esdhc_mmc_init(bis);
268 }
269 #endif
270 
271 #if !(defined(CONFIG_MX7) || defined(CONFIG_IMX8M))
get_ahb_clk(void)272 u32 get_ahb_clk(void)
273 {
274 	struct mxc_ccm_reg *imx_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
275 	u32 reg, ahb_podf;
276 
277 	reg = __raw_readl(&imx_ccm->cbcdr);
278 	reg &= MXC_CCM_CBCDR_AHB_PODF_MASK;
279 	ahb_podf = reg >> MXC_CCM_CBCDR_AHB_PODF_OFFSET;
280 
281 	return get_periph_clk() / (ahb_podf + 1);
282 }
283 #endif
284 
arch_preboot_os(void)285 void arch_preboot_os(void)
286 {
287 #if defined(CONFIG_IMX_AHCI)
288 	struct udevice *dev;
289 	int rc;
290 
291 	rc = uclass_find_device(UCLASS_AHCI, 0, &dev);
292 	if (!rc && dev) {
293 		rc = device_remove(dev, DM_REMOVE_NORMAL);
294 		if (rc)
295 			printf("Cannot remove SATA device '%s' (err=%d)\n",
296 				dev->name, rc);
297 	}
298 #endif
299 
300 #if defined(CONFIG_SATA)
301 	if (!is_mx6sdl()) {
302 		sata_remove(0);
303 #if defined(CONFIG_MX6)
304 		disable_sata_clock();
305 #endif
306 	}
307 #endif
308 #if defined(CONFIG_VIDEO_IPUV3)
309 	/* disable video before launching O/S */
310 	ipuv3_fb_shutdown();
311 #endif
312 #if defined(CONFIG_VIDEO_MXS) && !defined(CONFIG_VIDEO)
313 	lcdif_power_down();
314 #endif
315 }
316 
317 #ifndef CONFIG_IMX8M
set_chipselect_size(int const cs_size)318 void set_chipselect_size(int const cs_size)
319 {
320 	unsigned int reg;
321 	struct iomuxc *iomuxc_regs = (struct iomuxc *)IOMUXC_BASE_ADDR;
322 	reg = readl(&iomuxc_regs->gpr[1]);
323 
324 	switch (cs_size) {
325 	case CS0_128:
326 		reg &= ~0x7;	/* CS0=128MB, CS1=0, CS2=0, CS3=0 */
327 		reg |= 0x5;
328 		break;
329 	case CS0_64M_CS1_64M:
330 		reg &= ~0x3F;	/* CS0=64MB, CS1=64MB, CS2=0, CS3=0 */
331 		reg |= 0x1B;
332 		break;
333 	case CS0_64M_CS1_32M_CS2_32M:
334 		reg &= ~0x1FF;	/* CS0=64MB, CS1=32MB, CS2=32MB, CS3=0 */
335 		reg |= 0x4B;
336 		break;
337 	case CS0_32M_CS1_32M_CS2_32M_CS3_32M:
338 		reg &= ~0xFFF;  /* CS0=32MB, CS1=32MB, CS2=32MB, CS3=32MB */
339 		reg |= 0x249;
340 		break;
341 	default:
342 		printf("Unknown chip select size: %d\n", cs_size);
343 		break;
344 	}
345 
346 	writel(reg, &iomuxc_regs->gpr[1]);
347 }
348 #endif
349 
350 #if defined(CONFIG_MX7) || defined(CONFIG_IMX8M)
351 /*
352  * OCOTP_TESTER3[9:8] (see Fusemap Description Table offset 0x440)
353  * defines a 2-bit SPEED_GRADING
354  */
355 #define OCOTP_TESTER3_SPEED_SHIFT	8
356 enum cpu_speed {
357 	OCOTP_TESTER3_SPEED_GRADE0,
358 	OCOTP_TESTER3_SPEED_GRADE1,
359 	OCOTP_TESTER3_SPEED_GRADE2,
360 	OCOTP_TESTER3_SPEED_GRADE3,
361 	OCOTP_TESTER3_SPEED_GRADE4,
362 };
363 
get_cpu_speed_grade_hz(void)364 u32 get_cpu_speed_grade_hz(void)
365 {
366 	struct ocotp_regs *ocotp = (struct ocotp_regs *)OCOTP_BASE_ADDR;
367 	struct fuse_bank *bank = &ocotp->bank[1];
368 	struct fuse_bank1_regs *fuse =
369 		(struct fuse_bank1_regs *)bank->fuse_regs;
370 	uint32_t val;
371 
372 	val = readl(&fuse->tester3);
373 	val >>= OCOTP_TESTER3_SPEED_SHIFT;
374 
375 	if (is_imx8mn() || is_imx8mp()) {
376 		val &= 0xf;
377 		return 2300000000 - val * 100000000;
378 	}
379 
380 	if (is_imx8mm())
381 		val &= 0x7;
382 	else
383 		val &= 0x3;
384 
385 	switch(val) {
386 	case OCOTP_TESTER3_SPEED_GRADE0:
387 		return 800000000;
388 	case OCOTP_TESTER3_SPEED_GRADE1:
389 		return (is_mx7() ? 500000000 : (is_imx8mq() ? 1000000000 : 1200000000));
390 	case OCOTP_TESTER3_SPEED_GRADE2:
391 		return (is_mx7() ? 1000000000 : (is_imx8mq() ? 1300000000 : 1600000000));
392 	case OCOTP_TESTER3_SPEED_GRADE3:
393 		return (is_mx7() ? 1200000000 : (is_imx8mq() ? 1500000000 : 1800000000));
394 	case OCOTP_TESTER3_SPEED_GRADE4:
395 		return 2000000000;
396 	}
397 
398 	return 0;
399 }
400 
401 /*
402  * OCOTP_TESTER3[7:6] (see Fusemap Description Table offset 0x440)
403  * defines a 2-bit SPEED_GRADING
404  */
405 #define OCOTP_TESTER3_TEMP_SHIFT	6
406 
407 /* iMX8MP uses OCOTP_TESTER3[6:5] for Market segment */
408 #define IMX8MP_OCOTP_TESTER3_TEMP_SHIFT	5
409 
get_cpu_temp_grade(int * minc,int * maxc)410 u32 get_cpu_temp_grade(int *minc, int *maxc)
411 {
412 	struct ocotp_regs *ocotp = (struct ocotp_regs *)OCOTP_BASE_ADDR;
413 	struct fuse_bank *bank = &ocotp->bank[1];
414 	struct fuse_bank1_regs *fuse =
415 		(struct fuse_bank1_regs *)bank->fuse_regs;
416 	uint32_t val;
417 
418 	val = readl(&fuse->tester3);
419 	if (is_imx8mp())
420 		val >>= IMX8MP_OCOTP_TESTER3_TEMP_SHIFT;
421 	else
422 		val >>= OCOTP_TESTER3_TEMP_SHIFT;
423 	val &= 0x3;
424 
425 	if (minc && maxc) {
426 		if (val == TEMP_AUTOMOTIVE) {
427 			*minc = -40;
428 			*maxc = 125;
429 		} else if (val == TEMP_INDUSTRIAL) {
430 			*minc = -40;
431 			*maxc = 105;
432 		} else if (val == TEMP_EXTCOMMERCIAL) {
433 			*minc = -20;
434 			*maxc = 105;
435 		} else {
436 			*minc = 0;
437 			*maxc = 95;
438 		}
439 	}
440 	return val;
441 }
442 #endif
443 
444 #if defined(CONFIG_MX7) || defined(CONFIG_IMX8MQ) || defined(CONFIG_IMX8MM)
get_boot_device(void)445 enum boot_device get_boot_device(void)
446 {
447 	struct bootrom_sw_info **p =
448 		(struct bootrom_sw_info **)(ulong)ROM_SW_INFO_ADDR;
449 
450 	enum boot_device boot_dev = SD1_BOOT;
451 	u8 boot_type = (*p)->boot_dev_type;
452 	u8 boot_instance = (*p)->boot_dev_instance;
453 
454 	switch (boot_type) {
455 	case BOOT_TYPE_SD:
456 		boot_dev = boot_instance + SD1_BOOT;
457 		break;
458 	case BOOT_TYPE_MMC:
459 		boot_dev = boot_instance + MMC1_BOOT;
460 		break;
461 	case BOOT_TYPE_NAND:
462 		boot_dev = NAND_BOOT;
463 		break;
464 	case BOOT_TYPE_QSPI:
465 		boot_dev = QSPI_BOOT;
466 		break;
467 	case BOOT_TYPE_WEIM:
468 		boot_dev = WEIM_NOR_BOOT;
469 		break;
470 	case BOOT_TYPE_SPINOR:
471 		boot_dev = SPI_NOR_BOOT;
472 		break;
473 	case BOOT_TYPE_USB:
474 		boot_dev = USB_BOOT;
475 		break;
476 	default:
477 #ifdef CONFIG_IMX8M
478 		if (((readl(SRC_BASE_ADDR + 0x58) & 0x00007FFF) >> 12) == 0x4)
479 			boot_dev = QSPI_BOOT;
480 #endif
481 		break;
482 	}
483 
484 	return boot_dev;
485 }
486 #endif
487 
488 #ifdef CONFIG_NXP_BOARD_REVISION
nxp_board_rev(void)489 int nxp_board_rev(void)
490 {
491 	/*
492 	 * Get Board ID information from OCOTP_GP1[15:8]
493 	 * RevA: 0x1
494 	 * RevB: 0x2
495 	 * RevC: 0x3
496 	 */
497 	struct ocotp_regs *ocotp = (struct ocotp_regs *)OCOTP_BASE_ADDR;
498 	struct fuse_bank *bank = &ocotp->bank[4];
499 	struct fuse_bank4_regs *fuse =
500 			(struct fuse_bank4_regs *)bank->fuse_regs;
501 
502 	return (readl(&fuse->gp1) >> 8 & 0x0F);
503 }
504 
nxp_board_rev_string(void)505 char nxp_board_rev_string(void)
506 {
507 	const char *rev = "A";
508 
509 	return (*rev + nxp_board_rev() - 1);
510 }
511 #endif
512 
reset_cpu(void)513 __weak void reset_cpu(void)
514 {
515 }
516