1 #ifndef _I386_BITOPS_H
2 #define _I386_BITOPS_H
3
4 /*
5 * Copyright 1992, Linus Torvalds.
6 */
7
8 /*
9 * These have to be done with inline assembly: that way the bit-setting
10 * is guaranteed to be atomic. All bit operations return 0 if the bit
11 * was cleared before the operation and != 0 if it was not.
12 *
13 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
14 */
15
16 #include <asm-generic/bitops/fls.h>
17 #include <asm-generic/bitops/__fls.h>
18 #include <asm-generic/bitops/fls64.h>
19
20 #ifdef CONFIG_SMP
21 #define LOCK_PREFIX "lock ; "
22 #else
23 #define LOCK_PREFIX ""
24 #endif
25
26 #define ADDR (*(volatile long *) addr)
27
28 /**
29 * set_bit - Atomically set a bit in memory
30 * @nr: the bit to set
31 * @addr: the address to start counting from
32 *
33 * This function is atomic and may not be reordered. See __set_bit()
34 * if you do not require the atomic guarantees.
35 * Note that @nr may be almost arbitrarily large; this function is not
36 * restricted to acting on a single-word quantity.
37 */
set_bit(int nr,volatile void * addr)38 static __inline__ void set_bit(int nr, volatile void * addr)
39 {
40 __asm__ __volatile__( LOCK_PREFIX
41 "btsl %1,%0"
42 :"=m" (ADDR)
43 :"Ir" (nr));
44 }
45
46 /**
47 * __set_bit - Set a bit in memory
48 * @nr: the bit to set
49 * @addr: the address to start counting from
50 *
51 * Unlike set_bit(), this function is non-atomic and may be reordered.
52 * If it's called on the same region of memory simultaneously, the effect
53 * may be that only one operation succeeds.
54 */
__set_bit(int nr,volatile void * addr)55 static __inline__ void __set_bit(int nr, volatile void * addr)
56 {
57 __asm__(
58 "btsl %1,%0"
59 :"=m" (ADDR)
60 :"Ir" (nr));
61 }
62
63 #define PLATFORM__SET_BIT
64
65 /**
66 * clear_bit - Clears a bit in memory
67 * @nr: Bit to clear
68 * @addr: Address to start counting from
69 *
70 * clear_bit() is atomic and may not be reordered. However, it does
71 * not contain a memory barrier, so if it is used for locking purposes,
72 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
73 * in order to ensure changes are visible on other processors.
74 */
clear_bit(int nr,volatile void * addr)75 static __inline__ void clear_bit(int nr, volatile void * addr)
76 {
77 __asm__ __volatile__( LOCK_PREFIX
78 "btrl %1,%0"
79 :"=m" (ADDR)
80 :"Ir" (nr));
81 }
82 #define smp_mb__before_clear_bit() barrier()
83 #define smp_mb__after_clear_bit() barrier()
84
85 /**
86 * __change_bit - Toggle a bit in memory
87 * @nr: the bit to set
88 * @addr: the address to start counting from
89 *
90 * Unlike change_bit(), this function is non-atomic and may be reordered.
91 * If it's called on the same region of memory simultaneously, the effect
92 * may be that only one operation succeeds.
93 */
__change_bit(int nr,volatile void * addr)94 static __inline__ void __change_bit(int nr, volatile void * addr)
95 {
96 __asm__ __volatile__(
97 "btcl %1,%0"
98 :"=m" (ADDR)
99 :"Ir" (nr));
100 }
101
102 /**
103 * change_bit - Toggle a bit in memory
104 * @nr: Bit to clear
105 * @addr: Address to start counting from
106 *
107 * change_bit() is atomic and may not be reordered.
108 * Note that @nr may be almost arbitrarily large; this function is not
109 * restricted to acting on a single-word quantity.
110 */
change_bit(int nr,volatile void * addr)111 static __inline__ void change_bit(int nr, volatile void * addr)
112 {
113 __asm__ __volatile__( LOCK_PREFIX
114 "btcl %1,%0"
115 :"=m" (ADDR)
116 :"Ir" (nr));
117 }
118
119 /**
120 * test_and_set_bit - Set a bit and return its old value
121 * @nr: Bit to set
122 * @addr: Address to count from
123 *
124 * This operation is atomic and cannot be reordered.
125 * It also implies a memory barrier.
126 */
test_and_set_bit(int nr,volatile void * addr)127 static __inline__ int test_and_set_bit(int nr, volatile void * addr)
128 {
129 int oldbit;
130
131 __asm__ __volatile__( LOCK_PREFIX
132 "btsl %2,%1\n\tsbbl %0,%0"
133 :"=r" (oldbit),"=m" (ADDR)
134 :"Ir" (nr) : "memory");
135 return oldbit;
136 }
137
138 /**
139 * __test_and_set_bit - Set a bit and return its old value
140 * @nr: Bit to set
141 * @addr: Address to count from
142 *
143 * This operation is non-atomic and can be reordered.
144 * If two examples of this operation race, one can appear to succeed
145 * but actually fail. You must protect multiple accesses with a lock.
146 */
__test_and_set_bit(int nr,volatile void * addr)147 static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
148 {
149 int oldbit;
150
151 __asm__(
152 "btsl %2,%1\n\tsbbl %0,%0"
153 :"=r" (oldbit),"=m" (ADDR)
154 :"Ir" (nr));
155 return oldbit;
156 }
157
158 /**
159 * test_and_clear_bit - Clear a bit and return its old value
160 * @nr: Bit to set
161 * @addr: Address to count from
162 *
163 * This operation is atomic and cannot be reordered.
164 * It also implies a memory barrier.
165 */
test_and_clear_bit(int nr,volatile void * addr)166 static __inline__ int test_and_clear_bit(int nr, volatile void * addr)
167 {
168 int oldbit;
169
170 __asm__ __volatile__( LOCK_PREFIX
171 "btrl %2,%1\n\tsbbl %0,%0"
172 :"=r" (oldbit),"=m" (ADDR)
173 :"Ir" (nr) : "memory");
174 return oldbit;
175 }
176
177 /**
178 * __test_and_clear_bit - Clear a bit and return its old value
179 * @nr: Bit to set
180 * @addr: Address to count from
181 *
182 * This operation is non-atomic and can be reordered.
183 * If two examples of this operation race, one can appear to succeed
184 * but actually fail. You must protect multiple accesses with a lock.
185 */
__test_and_clear_bit(int nr,volatile void * addr)186 static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
187 {
188 int oldbit;
189
190 __asm__(
191 "btrl %2,%1\n\tsbbl %0,%0"
192 :"=r" (oldbit),"=m" (ADDR)
193 :"Ir" (nr));
194 return oldbit;
195 }
196
197 /* WARNING: non atomic and it can be reordered! */
__test_and_change_bit(int nr,volatile void * addr)198 static __inline__ int __test_and_change_bit(int nr, volatile void * addr)
199 {
200 int oldbit;
201
202 __asm__ __volatile__(
203 "btcl %2,%1\n\tsbbl %0,%0"
204 :"=r" (oldbit),"=m" (ADDR)
205 :"Ir" (nr) : "memory");
206 return oldbit;
207 }
208
209 /**
210 * test_and_change_bit - Change a bit and return its new value
211 * @nr: Bit to set
212 * @addr: Address to count from
213 *
214 * This operation is atomic and cannot be reordered.
215 * It also implies a memory barrier.
216 */
test_and_change_bit(int nr,volatile void * addr)217 static __inline__ int test_and_change_bit(int nr, volatile void * addr)
218 {
219 int oldbit;
220
221 __asm__ __volatile__( LOCK_PREFIX
222 "btcl %2,%1\n\tsbbl %0,%0"
223 :"=r" (oldbit),"=m" (ADDR)
224 :"Ir" (nr) : "memory");
225 return oldbit;
226 }
227
228 #if 0 /* Fool kernel-doc since it doesn't do macros yet */
229 /**
230 * test_bit - Determine whether a bit is set
231 * @nr: bit number to test
232 * @addr: Address to start counting from
233 */
234 static int test_bit(int nr, const volatile void * addr);
235 #endif
236
constant_test_bit(int nr,const volatile void * addr)237 static __inline__ int constant_test_bit(int nr, const volatile void * addr)
238 {
239 return ((1UL << (nr & 31)) & (((const volatile unsigned int *) addr)[nr >> 5])) != 0;
240 }
241
variable_test_bit(int nr,volatile void * addr)242 static __inline__ int variable_test_bit(int nr, volatile void * addr)
243 {
244 int oldbit;
245
246 __asm__ __volatile__(
247 "btl %2,%1\n\tsbbl %0,%0"
248 :"=r" (oldbit)
249 :"m" (ADDR),"Ir" (nr));
250 return oldbit;
251 }
252
253 #define test_bit(nr,addr) \
254 (__builtin_constant_p(nr) ? \
255 constant_test_bit((nr),(addr)) : \
256 variable_test_bit((nr),(addr)))
257
258 /**
259 * find_first_zero_bit - find the first zero bit in a memory region
260 * @addr: The address to start the search at
261 * @size: The maximum size to search
262 *
263 * Returns the bit-number of the first zero bit, not the number of the byte
264 * containing a bit.
265 */
find_first_zero_bit(void * addr,unsigned size)266 static __inline__ int find_first_zero_bit(void * addr, unsigned size)
267 {
268 int d0, d1, d2;
269 int res;
270
271 if (!size)
272 return 0;
273 /* This looks at memory. Mark it volatile to tell gcc not to move it around */
274 __asm__ __volatile__(
275 "movl $-1,%%eax\n\t"
276 "xorl %%edx,%%edx\n\t"
277 "repe; scasl\n\t"
278 "je 1f\n\t"
279 "xorl -4(%%edi),%%eax\n\t"
280 "subl $4,%%edi\n\t"
281 "bsfl %%eax,%%edx\n"
282 "1:\tsubl %%ebx,%%edi\n\t"
283 "shll $3,%%edi\n\t"
284 "addl %%edi,%%edx"
285 :"=d" (res), "=&c" (d0), "=&D" (d1), "=&a" (d2)
286 :"1" ((size + 31) >> 5), "2" (addr), "b" (addr));
287 return res;
288 }
289
290 /**
291 * find_next_zero_bit - find the first zero bit in a memory region
292 * @addr: The address to base the search on
293 * @offset: The bitnumber to start searching at
294 * @size: The maximum size to search
295 */
find_next_zero_bit(void * addr,int size,int offset)296 static __inline__ int find_next_zero_bit (void * addr, int size, int offset)
297 {
298 unsigned long * p = ((unsigned long *) addr) + (offset >> 5);
299 int set = 0, bit = offset & 31, res;
300
301 if (bit) {
302 /*
303 * Look for zero in first byte
304 */
305 __asm__("bsfl %1,%0\n\t"
306 "jne 1f\n\t"
307 "movl $32, %0\n"
308 "1:"
309 : "=r" (set)
310 : "r" (~(*p >> bit)));
311 if (set < (32 - bit))
312 return set + offset;
313 set = 32 - bit;
314 p++;
315 }
316 /*
317 * No zero yet, search remaining full bytes for a zero
318 */
319 res = find_first_zero_bit (p, size - 32 * (p - (unsigned long *) addr));
320 return (offset + set + res);
321 }
322
323 /**
324 * ffz - find first zero in word.
325 * @word: The word to search
326 *
327 * Undefined if no zero exists, so code should check against ~0UL first.
328 */
ffz(unsigned long word)329 static __inline__ unsigned long ffz(unsigned long word)
330 {
331 __asm__("bsfl %1,%0"
332 :"=r" (word)
333 :"r" (~word));
334 return word;
335 }
336
337 #ifdef __KERNEL__
338
339 /**
340 * __ffs - find first set bit in word
341 * @word: The word to search
342 *
343 * Undefined if no bit exists, so code should check against 0 first.
344 */
__ffs(unsigned long word)345 static inline unsigned long __ffs(unsigned long word)
346 {
347 __asm__("rep; bsf %1,%0"
348 : "=r" (word)
349 : "rm" (word));
350 return word;
351 }
352
353 /**
354 * ffs - find first bit set
355 * @x: the word to search
356 *
357 * This is defined the same way as
358 * the libc and compiler builtin ffs routines, therefore
359 * differs in spirit from the above ffz (man ffs).
360 */
ffs(int x)361 static __inline__ int ffs(int x)
362 {
363 int r;
364
365 __asm__("bsfl %1,%0\n\t"
366 "jnz 1f\n\t"
367 "movl $-1,%0\n"
368 "1:" : "=r" (r) : "rm" (x));
369
370 return r+1;
371 }
372 #define PLATFORM_FFS
373
__ilog2(unsigned int x)374 static inline int __ilog2(unsigned int x)
375 {
376 return generic_fls(x) - 1;
377 }
378
379 /**
380 * hweightN - returns the hamming weight of a N-bit word
381 * @x: the word to weigh
382 *
383 * The Hamming Weight of a number is the total number of bits set in it.
384 */
385
386 #define hweight32(x) generic_hweight32(x)
387 #define hweight16(x) generic_hweight16(x)
388 #define hweight8(x) generic_hweight8(x)
389
390 #endif /* __KERNEL__ */
391
392 #ifdef __KERNEL__
393
394 #define ext2_set_bit __test_and_set_bit
395 #define ext2_clear_bit __test_and_clear_bit
396 #define ext2_test_bit test_bit
397 #define ext2_find_first_zero_bit find_first_zero_bit
398 #define ext2_find_next_zero_bit find_next_zero_bit
399
400 /* Bitmap functions for the minix filesystem. */
401 #define minix_test_and_set_bit(nr,addr) __test_and_set_bit(nr,addr)
402 #define minix_set_bit(nr,addr) __set_bit(nr,addr)
403 #define minix_test_and_clear_bit(nr,addr) __test_and_clear_bit(nr,addr)
404 #define minix_test_bit(nr,addr) test_bit(nr,addr)
405 #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
406
407 #endif /* __KERNEL__ */
408
409 #endif /* _I386_BITOPS_H */
410