1 /****************************************************************************
2 *
3 *                        BIOS emulator and interface
4 *                      to Realmode X86 Emulator Library
5 *
6 *  Copyright (C) 2007 Freescale Semiconductor, Inc.
7 *  Jason Jin <Jason.jin@freescale.com>
8 *
9 *               Copyright (C) 1996-1999 SciTech Software, Inc.
10 *
11 *  ========================================================================
12 *
13 *  Permission to use, copy, modify, distribute, and sell this software and
14 *  its documentation for any purpose is hereby granted without fee,
15 *  provided that the above copyright notice appear in all copies and that
16 *  both that copyright notice and this permission notice appear in
17 *  supporting documentation, and that the name of the authors not be used
18 *  in advertising or publicity pertaining to distribution of the software
19 *  without specific, written prior permission.  The authors makes no
20 *  representations about the suitability of this software for any purpose.
21 *  It is provided "as is" without express or implied warranty.
22 *
23 *  THE AUTHORS DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
24 *  INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
25 *  EVENT SHALL THE AUTHORS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
26 *  CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
27 *  USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
28 *  OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
29 *  PERFORMANCE OF THIS SOFTWARE.
30 *
31 *  ========================================================================
32 *
33 * Language:     ANSI C
34 * Environment:  Any
35 * Developer:    Kendall Bennett
36 *
37 * Description:  Module implementing the BIOS specific functions.
38 *
39 *		Jason ported this file to u-boot to run the ATI video card
40 *		video BIOS.
41 *
42 ****************************************************************************/
43 
44 #define __io
45 #include <asm/io.h>
46 #include "biosemui.h"
47 
48 /*----------------------------- Implementation ----------------------------*/
49 
50 /****************************************************************************
51 PARAMETERS:
52 intno   - Interrupt number being serviced
53 
54 REMARKS:
55 Handler for undefined interrupts.
56 ****************************************************************************/
undefined_intr(int intno)57 static void X86API undefined_intr(int intno)
58 {
59 	if (BE_rdw(intno * 4 + 2) == BIOS_SEG) {
60 		DB(printf("biosEmu: undefined interrupt %xh called!\n", intno);)
61 	} else
62 		X86EMU_prepareForInt(intno);
63 }
64 
65 /****************************************************************************
66 PARAMETERS:
67 intno   - Interrupt number being serviced
68 
69 REMARKS:
70 This function handles the default system BIOS Int 10h (the default is stored
71 in the Int 42h vector by the system BIOS at bootup). We only need to handle
72 a small number of special functions used by the BIOS during POST time.
73 ****************************************************************************/
int42(int intno)74 static void X86API int42(int intno)
75 {
76 	if (M.x86.R_AH == 0x12 && M.x86.R_BL == 0x32) {
77 		if (M.x86.R_AL == 0) {
78 			/* Enable CPU accesses to video memory */
79 			PM_outpb(0x3c2, PM_inpb(0x3cc) | (u8) 0x02);
80 			return;
81 		} else if (M.x86.R_AL == 1) {
82 			/* Disable CPU accesses to video memory */
83 			PM_outpb(0x3c2, PM_inpb(0x3cc) & (u8) ~ 0x02);
84 			return;
85 		}
86 #ifdef CONFIG_X86EMU_DEBUG
87 		else {
88 			printf("int42: unknown function AH=0x12, BL=0x32, AL=%#02x\n",
89 			     M.x86.R_AL);
90 		}
91 #endif
92 	}
93 #ifdef CONFIG_X86EMU_DEBUG
94 	else {
95 		printf("int42: unknown function AH=%#02x, AL=%#02x, BL=%#02x\n",
96 		     M.x86.R_AH, M.x86.R_AL, M.x86.R_BL);
97 	}
98 #endif
99 }
100 
101 /****************************************************************************
102 PARAMETERS:
103 intno   - Interrupt number being serviced
104 
105 REMARKS:
106 This function handles the default system BIOS Int 10h. If the POST code
107 has not yet re-vectored the Int 10h BIOS interrupt vector, we handle this
108 by simply calling the int42 interrupt handler above. Very early in the
109 BIOS POST process, the vector gets replaced and we simply let the real
110 mode interrupt handler process the interrupt.
111 ****************************************************************************/
int10(int intno)112 static void X86API int10(int intno)
113 {
114 	if (BE_rdw(intno * 4 + 2) == BIOS_SEG)
115 		int42(intno);
116 	else
117 		X86EMU_prepareForInt(intno);
118 }
119 
120 /* Result codes returned by the PCI BIOS */
121 
122 #define SUCCESSFUL          0x00
123 #define FUNC_NOT_SUPPORT    0x81
124 #define BAD_VENDOR_ID       0x83
125 #define DEVICE_NOT_FOUND    0x86
126 #define BAD_REGISTER_NUMBER 0x87
127 #define SET_FAILED          0x88
128 #define BUFFER_TOO_SMALL    0x89
129 
130 /****************************************************************************
131 PARAMETERS:
132 intno   - Interrupt number being serviced
133 
134 REMARKS:
135 This function handles the default Int 1Ah interrupt handler for the real
136 mode code, which provides support for the PCI BIOS functions. Since we only
137 want to allow the real mode BIOS code *only* see the PCI config space for
138 its own device, we only return information for the specific PCI config
139 space that we have passed in to the init function. This solves problems
140 when using the BIOS to warm boot a secondary adapter when there is an
141 identical adapter before it on the bus (some BIOS'es get confused in this
142 case).
143 ****************************************************************************/
int1A(int unused)144 static void X86API int1A(int unused)
145 {
146 	u16 pciSlot;
147 
148 #ifdef __KERNEL__
149 	u8 interface, subclass, baseclass;
150 
151 	/* Initialise the PCI slot number */
152 	pciSlot = ((int)_BE_env.vgaInfo.bus << 8) |
153 	    ((int)_BE_env.vgaInfo.device << 3) | (int)_BE_env.vgaInfo.function;
154 #else
155 /* Fail if no PCI device information has been registered */
156 	if (!_BE_env.vgaInfo.pciInfo)
157 		return;
158 
159 	pciSlot = (u16) (_BE_env.vgaInfo.pciInfo->slot.i >> 8);
160 #endif
161 	switch (M.x86.R_AX) {
162 	case 0xB101:		/* PCI bios present? */
163 		M.x86.R_AL = 0x00;	/* no config space/special cycle generation support */
164 		M.x86.R_EDX = 0x20494350;	/* " ICP" */
165 		M.x86.R_BX = 0x0210;	/* Version 2.10 */
166 		M.x86.R_CL = 0;	/* Max bus number in system */
167 		CLEAR_FLAG(F_CF);
168 		break;
169 	case 0xB102:		/* Find PCI device */
170 		M.x86.R_AH = DEVICE_NOT_FOUND;
171 #ifdef __KERNEL__
172 		if (M.x86.R_DX == _BE_env.vgaInfo.VendorID &&
173 		    M.x86.R_CX == _BE_env.vgaInfo.DeviceID && M.x86.R_SI == 0) {
174 #else
175 		if (M.x86.R_DX == _BE_env.vgaInfo.pciInfo->VendorID &&
176 		    M.x86.R_CX == _BE_env.vgaInfo.pciInfo->DeviceID &&
177 		    M.x86.R_SI == 0) {
178 #endif
179 			M.x86.R_AH = SUCCESSFUL;
180 			M.x86.R_BX = pciSlot;
181 		}
182 		CONDITIONAL_SET_FLAG((M.x86.R_AH != SUCCESSFUL), F_CF);
183 		break;
184 	case 0xB103:		/* Find PCI class code */
185 		M.x86.R_AH = DEVICE_NOT_FOUND;
186 #ifdef __KERNEL__
187 		dm_pci_read_config8(_BE_env.vgaInfo.pcidev, PCI_CLASS_PROG,
188 				    &interface);
189 		dm_pci_read_config8(_BE_env.vgaInfo.pcidev, PCI_CLASS_DEVICE,
190 				    &subclass);
191 		dm_pci_read_config8(_BE_env.vgaInfo.pcidev,
192 				    PCI_CLASS_DEVICE + 1, &baseclass);
193 		if (M.x86.R_CL == interface && M.x86.R_CH == subclass
194 		    && (u8) (M.x86.R_ECX >> 16) == baseclass) {
195 #else
196 		if (M.x86.R_CL == _BE_env.vgaInfo.pciInfo->Interface &&
197 		    M.x86.R_CH == _BE_env.vgaInfo.pciInfo->SubClass &&
198 		    (u8) (M.x86.R_ECX >> 16) ==
199 		    _BE_env.vgaInfo.pciInfo->BaseClass) {
200 #endif
201 			M.x86.R_AH = SUCCESSFUL;
202 			M.x86.R_BX = pciSlot;
203 		}
204 		CONDITIONAL_SET_FLAG((M.x86.R_AH != SUCCESSFUL), F_CF);
205 		break;
206 	case 0xB108:		/* Read configuration byte */
207 		M.x86.R_AH = BAD_REGISTER_NUMBER;
208 		if (M.x86.R_BX == pciSlot) {
209 			M.x86.R_AH = SUCCESSFUL;
210 #ifdef __KERNEL__
211 			dm_pci_read_config8(_BE_env.vgaInfo.pcidev, M.x86.R_DI,
212 					    &M.x86.R_CL);
213 #else
214 			M.x86.R_CL =
215 			    (u8) PCI_accessReg(M.x86.R_DI, 0, PCI_READ_BYTE,
216 					       _BE_env.vgaInfo.pciInfo);
217 #endif
218 		}
219 		CONDITIONAL_SET_FLAG((M.x86.R_AH != SUCCESSFUL), F_CF);
220 		break;
221 	case 0xB109:		/* Read configuration word */
222 		M.x86.R_AH = BAD_REGISTER_NUMBER;
223 		if (M.x86.R_BX == pciSlot) {
224 			M.x86.R_AH = SUCCESSFUL;
225 #ifdef __KERNEL__
226 			dm_pci_read_config16(_BE_env.vgaInfo.pcidev, M.x86.R_DI,
227 					     &M.x86.R_CX);
228 #else
229 			M.x86.R_CX =
230 			    (u16) PCI_accessReg(M.x86.R_DI, 0, PCI_READ_WORD,
231 						_BE_env.vgaInfo.pciInfo);
232 #endif
233 		}
234 		CONDITIONAL_SET_FLAG((M.x86.R_AH != SUCCESSFUL), F_CF);
235 		break;
236 	case 0xB10A:		/* Read configuration dword */
237 		M.x86.R_AH = BAD_REGISTER_NUMBER;
238 		if (M.x86.R_BX == pciSlot) {
239 			M.x86.R_AH = SUCCESSFUL;
240 #ifdef __KERNEL__
241 			dm_pci_read_config32(_BE_env.vgaInfo.pcidev,
242 					     M.x86.R_DI, &M.x86.R_ECX);
243 #else
244 			M.x86.R_ECX =
245 			    (u32) PCI_accessReg(M.x86.R_DI, 0, PCI_READ_DWORD,
246 						_BE_env.vgaInfo.pciInfo);
247 #endif
248 		}
249 		CONDITIONAL_SET_FLAG((M.x86.R_AH != SUCCESSFUL), F_CF);
250 		break;
251 	case 0xB10B:		/* Write configuration byte */
252 		M.x86.R_AH = BAD_REGISTER_NUMBER;
253 		if (M.x86.R_BX == pciSlot) {
254 			M.x86.R_AH = SUCCESSFUL;
255 #ifdef __KERNEL__
256 			dm_pci_write_config8(_BE_env.vgaInfo.pcidev,
257 					     M.x86.R_DI, M.x86.R_CL);
258 #else
259 			PCI_accessReg(M.x86.R_DI, M.x86.R_CL, PCI_WRITE_BYTE,
260 				      _BE_env.vgaInfo.pciInfo);
261 #endif
262 		}
263 		CONDITIONAL_SET_FLAG((M.x86.R_AH != SUCCESSFUL), F_CF);
264 		break;
265 	case 0xB10C:		/* Write configuration word */
266 		M.x86.R_AH = BAD_REGISTER_NUMBER;
267 		if (M.x86.R_BX == pciSlot) {
268 			M.x86.R_AH = SUCCESSFUL;
269 #ifdef __KERNEL__
270 			dm_pci_write_config32(_BE_env.vgaInfo.pcidev,
271 					      M.x86.R_DI, M.x86.R_CX);
272 #else
273 			PCI_accessReg(M.x86.R_DI, M.x86.R_CX, PCI_WRITE_WORD,
274 				      _BE_env.vgaInfo.pciInfo);
275 #endif
276 		}
277 		CONDITIONAL_SET_FLAG((M.x86.R_AH != SUCCESSFUL), F_CF);
278 		break;
279 	case 0xB10D:		/* Write configuration dword */
280 		M.x86.R_AH = BAD_REGISTER_NUMBER;
281 		if (M.x86.R_BX == pciSlot) {
282 			M.x86.R_AH = SUCCESSFUL;
283 #ifdef __KERNEL__
284 			dm_pci_write_config32(_BE_env.vgaInfo.pcidev,
285 					      M.x86.R_DI, M.x86.R_ECX);
286 #else
287 			PCI_accessReg(M.x86.R_DI, M.x86.R_ECX, PCI_WRITE_DWORD,
288 				      _BE_env.vgaInfo.pciInfo);
289 #endif
290 		}
291 		CONDITIONAL_SET_FLAG((M.x86.R_AH != SUCCESSFUL), F_CF);
292 		break;
293 	default:
294 		printf("biosEmu/bios.int1a: unknown function AX=%#04x\n",
295 		       M.x86.R_AX);
296 	}
297 }
298 
299 /****************************************************************************
300 REMARKS:
301 This function initialises the BIOS emulation functions for the specific
302 PCI display device. We insulate the real mode BIOS from any other devices
303 on the bus, so that it will work correctly thinking that it is the only
304 device present on the bus (ie: avoiding any adapters present in from of
305 the device we are trying to control).
306 ****************************************************************************/
307 #define BE_constLE_32(v)    ((((((v)&0xff00)>>8)|(((v)&0xff)<<8))<<16)|(((((v)&0xff000000)>>8)|(((v)&0x00ff0000)<<8))>>16))
308 
309 void _BE_bios_init(u32 * intrTab)
310 {
311 	int i;
312 	X86EMU_intrFuncs bios_intr_tab[256];
313 
314 	for (i = 0; i < 256; ++i) {
315 		intrTab[i] = BE_constLE_32(BIOS_SEG << 16);
316 		bios_intr_tab[i] = undefined_intr;
317 	}
318 	bios_intr_tab[0x10] = int10;
319 	bios_intr_tab[0x1A] = int1A;
320 	bios_intr_tab[0x42] = int42;
321 	bios_intr_tab[0x6D] = int10;
322 	X86EMU_setupIntrFuncs(bios_intr_tab);
323 }
324