1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * (C) Copyright 2016 Google, Inc
4  */
5 
6 #include <clk-uclass.h>
7 #include <dm.h>
8 #include <log.h>
9 #include <asm/global_data.h>
10 #include <asm/io.h>
11 #include <asm/arch/scu_ast2500.h>
12 #include <dm/lists.h>
13 #include <dt-bindings/clock/aspeed-clock.h>
14 #include <dt-bindings/reset/ast2500-reset.h>
15 #include <linux/delay.h>
16 #include <linux/err.h>
17 
18 /*
19  * MAC Clock Delay settings, taken from Aspeed SDK
20  */
21 #define RGMII_TXCLK_ODLY		8
22 #define RMII_RXCLK_IDLY		2
23 
24 /*
25  * TGMII Clock Duty constants, taken from Aspeed SDK
26  */
27 #define RGMII2_TXCK_DUTY	0x66
28 #define RGMII1_TXCK_DUTY	0x64
29 
30 #define D2PLL_DEFAULT_RATE	(250 * 1000 * 1000)
31 
32 /*
33  * AXI/AHB clock selection, taken from Aspeed SDK
34  */
35 #define SCU_HWSTRAP_AXIAHB_DIV_SHIFT    9
36 #define SCU_HWSTRAP_AXIAHB_DIV_MASK     (0x7 << SCU_HWSTRAP_AXIAHB_DIV_SHIFT)
37 
38 DECLARE_GLOBAL_DATA_PTR;
39 
40 /*
41  * Clock divider/multiplier configuration struct.
42  * For H-PLL and M-PLL the formula is
43  * (Output Frequency) = CLKIN * ((M + 1) / (N + 1)) / (P + 1)
44  * M - Numerator
45  * N - Denumerator
46  * P - Post Divider
47  * They have the same layout in their control register.
48  *
49  * D-PLL and D2-PLL have extra divider (OD + 1), which is not
50  * yet needed and ignored by clock configurations.
51  */
52 struct ast2500_div_config {
53 	unsigned int num;
54 	unsigned int denum;
55 	unsigned int post_div;
56 };
57 
58 /*
59  * Get the rate of the M-PLL clock from input clock frequency and
60  * the value of the M-PLL Parameter Register.
61  */
ast2500_get_mpll_rate(ulong clkin,u32 mpll_reg)62 static ulong ast2500_get_mpll_rate(ulong clkin, u32 mpll_reg)
63 {
64 	const ulong num = (mpll_reg & SCU_MPLL_NUM_MASK) >> SCU_MPLL_NUM_SHIFT;
65 	const ulong denum = (mpll_reg & SCU_MPLL_DENUM_MASK)
66 			>> SCU_MPLL_DENUM_SHIFT;
67 	const ulong post_div = (mpll_reg & SCU_MPLL_POST_MASK)
68 			>> SCU_MPLL_POST_SHIFT;
69 
70 	return (clkin * ((num + 1) / (denum + 1))) / (post_div + 1);
71 }
72 
73 /*
74  * Get the rate of the H-PLL clock from input clock frequency and
75  * the value of the H-PLL Parameter Register.
76  */
ast2500_get_hpll_rate(ulong clkin,u32 hpll_reg)77 static ulong ast2500_get_hpll_rate(ulong clkin, u32 hpll_reg)
78 {
79 	const ulong num = (hpll_reg & SCU_HPLL_NUM_MASK) >> SCU_HPLL_NUM_SHIFT;
80 	const ulong denum = (hpll_reg & SCU_HPLL_DENUM_MASK)
81 			>> SCU_HPLL_DENUM_SHIFT;
82 	const ulong post_div = (hpll_reg & SCU_HPLL_POST_MASK)
83 			>> SCU_HPLL_POST_SHIFT;
84 
85 	return (clkin * ((num + 1) / (denum + 1))) / (post_div + 1);
86 }
87 
ast2500_get_clkin(struct ast2500_scu * scu)88 static ulong ast2500_get_clkin(struct ast2500_scu *scu)
89 {
90 	return readl(&scu->hwstrap) & SCU_HWSTRAP_CLKIN_25MHZ
91 			? 25 * 1000 * 1000 : 24 * 1000 * 1000;
92 }
93 
ast2500_get_hclk(ulong clkin,struct ast2500_scu * scu)94 static u32 ast2500_get_hclk(ulong clkin, struct ast2500_scu *scu)
95 {
96 	u32 hpll_reg = readl(&scu->h_pll_param);
97 	ulong axi_div = 2;
98 	u32 rate;
99 	ulong ahb_div = 1 + ((readl(&scu->hwstrap)
100 			      & SCU_HWSTRAP_AXIAHB_DIV_MASK)
101 			     >> SCU_HWSTRAP_AXIAHB_DIV_SHIFT);
102 
103 	rate = ast2500_get_hpll_rate(clkin, hpll_reg);
104 
105 	return (rate / axi_div / ahb_div);
106 }
107 
108 /**
109  * Get current rate or uart clock
110  *
111  * @scu SCU registers
112  * @uart_index UART index, 1-5
113  *
114  * Return: current setting for uart clock rate
115  */
ast2500_get_uart_clk_rate(struct ast2500_scu * scu,int uart_index)116 static ulong ast2500_get_uart_clk_rate(struct ast2500_scu *scu, int uart_index)
117 {
118 	/*
119 	 * ast2500 datasheet is very confusing when it comes to UART clocks,
120 	 * especially when CLKIN = 25 MHz. The settings are in
121 	 * different registers and it is unclear how they interact.
122 	 *
123 	 * This has only been tested with default settings and CLKIN = 24 MHz.
124 	 */
125 	ulong uart_clkin;
126 
127 	if (readl(&scu->misc_ctrl2) &
128 	    (1 << (uart_index - 1 + SCU_MISC2_UARTCLK_SHIFT)))
129 		uart_clkin = 192 * 1000 * 1000;
130 	else
131 		uart_clkin = 24 * 1000 * 1000;
132 
133 	if (readl(&scu->misc_ctrl1) & SCU_MISC_UARTCLK_DIV13)
134 		uart_clkin /= 13;
135 
136 	return uart_clkin;
137 }
138 
ast2500_clk_get_rate(struct clk * clk)139 static ulong ast2500_clk_get_rate(struct clk *clk)
140 {
141 	struct ast2500_clk_priv *priv = dev_get_priv(clk->dev);
142 	ulong clkin = ast2500_get_clkin(priv->scu);
143 	ulong rate;
144 
145 	switch (clk->id) {
146 	case ASPEED_CLK_HPLL:
147 		/*
148 		 * This ignores dynamic/static slowdown of ARMCLK and may
149 		 * be inaccurate.
150 		 */
151 		rate = ast2500_get_hpll_rate(clkin,
152 					     readl(&priv->scu->h_pll_param));
153 		break;
154 	case ASPEED_CLK_MPLL:
155 		rate = ast2500_get_mpll_rate(clkin,
156 					     readl(&priv->scu->m_pll_param));
157 		break;
158 	case ASPEED_CLK_APB:
159 		{
160 			ulong apb_div = 4 + 4 * ((readl(&priv->scu->clk_sel1)
161 						  & SCU_PCLK_DIV_MASK)
162 						 >> SCU_PCLK_DIV_SHIFT);
163 			rate = ast2500_get_hpll_rate(clkin,
164 						     readl(&priv->
165 							   scu->h_pll_param));
166 			rate = rate / apb_div;
167 		}
168 		break;
169 	case ASPEED_CLK_AHB:
170 		rate = ast2500_get_hclk(clkin, priv->scu);
171 		break;
172 	case ASPEED_CLK_SDIO:
173 		{
174 			ulong apb_div = 4 + 4 * ((readl(&priv->scu->clk_sel1)
175 						  & SCU_SDCLK_DIV_MASK)
176 						 >> SCU_SDCLK_DIV_SHIFT);
177 			rate = ast2500_get_hpll_rate(clkin,
178 						     readl(&priv->
179 							   scu->h_pll_param));
180 			rate = rate / apb_div;
181 		}
182 		break;
183 	case ASPEED_CLK_GATE_UART1CLK:
184 		rate = ast2500_get_uart_clk_rate(priv->scu, 1);
185 		break;
186 	case ASPEED_CLK_GATE_UART2CLK:
187 		rate = ast2500_get_uart_clk_rate(priv->scu, 2);
188 		break;
189 	case ASPEED_CLK_GATE_UART3CLK:
190 		rate = ast2500_get_uart_clk_rate(priv->scu, 3);
191 		break;
192 	case ASPEED_CLK_GATE_UART4CLK:
193 		rate = ast2500_get_uart_clk_rate(priv->scu, 4);
194 		break;
195 	case ASPEED_CLK_GATE_UART5CLK:
196 		rate = ast2500_get_uart_clk_rate(priv->scu, 5);
197 		break;
198 	default:
199 		debug("%s: unknown clk %ld\n", __func__, clk->id);
200 		return -ENOENT;
201 	}
202 
203 	return rate;
204 }
205 
206 struct ast2500_clock_config {
207 	ulong input_rate;
208 	ulong rate;
209 	struct ast2500_div_config cfg;
210 };
211 
212 static const struct ast2500_clock_config ast2500_clock_config_defaults[] = {
213 	{ 24000000, 250000000, { .num = 124, .denum = 1, .post_div = 5 } },
214 };
215 
ast2500_get_clock_config_default(ulong input_rate,ulong requested_rate,struct ast2500_div_config * cfg)216 static bool ast2500_get_clock_config_default(ulong input_rate,
217 					     ulong requested_rate,
218 					     struct ast2500_div_config *cfg)
219 {
220 	int i;
221 
222 	for (i = 0; i < ARRAY_SIZE(ast2500_clock_config_defaults); i++) {
223 		const struct ast2500_clock_config *default_cfg =
224 			&ast2500_clock_config_defaults[i];
225 		if (default_cfg->input_rate == input_rate &&
226 		    default_cfg->rate == requested_rate) {
227 			*cfg = default_cfg->cfg;
228 			return true;
229 		}
230 	}
231 
232 	return false;
233 }
234 
235 /*
236  * @input_rate - the rate of input clock in Hz
237  * @requested_rate - desired output rate in Hz
238  * @div - this is an IN/OUT parameter, at input all fields of the config
239  * need to be set to their maximum allowed values.
240  * The result (the best config we could find), would also be returned
241  * in this structure.
242  *
243  * Return: The clock rate, when the resulting div_config is used.
244  */
ast2500_calc_clock_config(ulong input_rate,ulong requested_rate,struct ast2500_div_config * cfg)245 static ulong ast2500_calc_clock_config(ulong input_rate, ulong requested_rate,
246 				       struct ast2500_div_config *cfg)
247 {
248 	/*
249 	 * The assumption is that kHz precision is good enough and
250 	 * also enough to avoid overflow when multiplying.
251 	 */
252 	const ulong input_rate_khz = input_rate / 1000;
253 	const ulong rate_khz = requested_rate / 1000;
254 	const struct ast2500_div_config max_vals = *cfg;
255 	struct ast2500_div_config it = { 0, 0, 0 };
256 	ulong delta = rate_khz;
257 	ulong new_rate_khz = 0;
258 
259 	/*
260 	 * Look for a well known frequency first.
261 	 */
262 	if (ast2500_get_clock_config_default(input_rate, requested_rate, cfg))
263 		return requested_rate;
264 
265 	for (; it.denum <= max_vals.denum; ++it.denum) {
266 		for (it.post_div = 0; it.post_div <= max_vals.post_div;
267 		     ++it.post_div) {
268 			it.num = (rate_khz * (it.post_div + 1) / input_rate_khz)
269 			    * (it.denum + 1);
270 			if (it.num > max_vals.num)
271 				continue;
272 
273 			new_rate_khz = (input_rate_khz
274 					* ((it.num + 1) / (it.denum + 1)))
275 			    / (it.post_div + 1);
276 
277 			/* Keep the rate below requested one. */
278 			if (new_rate_khz > rate_khz)
279 				continue;
280 
281 			if (new_rate_khz - rate_khz < delta) {
282 				delta = new_rate_khz - rate_khz;
283 				*cfg = it;
284 				if (delta == 0)
285 					return new_rate_khz * 1000;
286 			}
287 		}
288 	}
289 
290 	return new_rate_khz * 1000;
291 }
292 
ast2500_configure_ddr(struct ast2500_scu * scu,ulong rate)293 static ulong ast2500_configure_ddr(struct ast2500_scu *scu, ulong rate)
294 {
295 	ulong clkin = ast2500_get_clkin(scu);
296 	u32 mpll_reg;
297 	struct ast2500_div_config div_cfg = {
298 		.num = (SCU_MPLL_NUM_MASK >> SCU_MPLL_NUM_SHIFT),
299 		.denum = (SCU_MPLL_DENUM_MASK >> SCU_MPLL_DENUM_SHIFT),
300 		.post_div = (SCU_MPLL_POST_MASK >> SCU_MPLL_POST_SHIFT),
301 	};
302 
303 	ast2500_calc_clock_config(clkin, rate, &div_cfg);
304 
305 	mpll_reg = readl(&scu->m_pll_param);
306 	mpll_reg &= ~(SCU_MPLL_POST_MASK | SCU_MPLL_NUM_MASK
307 		      | SCU_MPLL_DENUM_MASK);
308 	mpll_reg |= (div_cfg.post_div << SCU_MPLL_POST_SHIFT)
309 	    | (div_cfg.num << SCU_MPLL_NUM_SHIFT)
310 	    | (div_cfg.denum << SCU_MPLL_DENUM_SHIFT);
311 
312 	ast_scu_unlock(scu);
313 	writel(mpll_reg, &scu->m_pll_param);
314 	ast_scu_lock(scu);
315 
316 	return ast2500_get_mpll_rate(clkin, mpll_reg);
317 }
318 
ast2500_configure_mac(struct ast2500_scu * scu,int index)319 static ulong ast2500_configure_mac(struct ast2500_scu *scu, int index)
320 {
321 	ulong clkin = ast2500_get_clkin(scu);
322 	ulong hpll_rate = ast2500_get_hpll_rate(clkin,
323 						readl(&scu->h_pll_param));
324 	ulong required_rate;
325 	u32 hwstrap;
326 	u32 divisor;
327 	u32 reset_bit;
328 	u32 clkstop_bit;
329 
330 	/*
331 	 * According to data sheet, for 10/100 mode the MAC clock frequency
332 	 * should be at least 25MHz and for 1000 mode at least 100MHz
333 	 */
334 	hwstrap = readl(&scu->hwstrap);
335 	if (hwstrap & (SCU_HWSTRAP_MAC1_RGMII | SCU_HWSTRAP_MAC2_RGMII))
336 		required_rate = 100 * 1000 * 1000;
337 	else
338 		required_rate = 25 * 1000 * 1000;
339 
340 	divisor = hpll_rate / required_rate;
341 
342 	if (divisor < 4) {
343 		/* Clock can't run fast enough, but let's try anyway */
344 		debug("MAC clock too slow\n");
345 		divisor = 4;
346 	} else if (divisor > 16) {
347 		/* Can't slow down the clock enough, but let's try anyway */
348 		debug("MAC clock too fast\n");
349 		divisor = 16;
350 	}
351 
352 	switch (index) {
353 	case 1:
354 		reset_bit = SCU_SYSRESET_MAC1;
355 		clkstop_bit = SCU_CLKSTOP_MAC1;
356 		break;
357 	case 2:
358 		reset_bit = SCU_SYSRESET_MAC2;
359 		clkstop_bit = SCU_CLKSTOP_MAC2;
360 		break;
361 	default:
362 		return -EINVAL;
363 	}
364 
365 	ast_scu_unlock(scu);
366 	clrsetbits_le32(&scu->clk_sel1, SCU_MACCLK_MASK,
367 			((divisor - 2) / 2) << SCU_MACCLK_SHIFT);
368 
369 	/*
370 	 * Disable MAC, start its clock and re-enable it.
371 	 * The procedure and the delays (100us & 10ms) are
372 	 * specified in the datasheet.
373 	 */
374 	setbits_le32(&scu->sysreset_ctrl1, reset_bit);
375 	udelay(100);
376 	clrbits_le32(&scu->clk_stop_ctrl1, clkstop_bit);
377 	mdelay(10);
378 	clrbits_le32(&scu->sysreset_ctrl1, reset_bit);
379 
380 	writel((RGMII2_TXCK_DUTY << SCU_CLKDUTY_RGMII2TXCK_SHIFT)
381 	       | (RGMII1_TXCK_DUTY << SCU_CLKDUTY_RGMII1TXCK_SHIFT),
382 	       &scu->clk_duty_sel);
383 
384 	ast_scu_lock(scu);
385 
386 	return required_rate;
387 }
388 
ast2500_configure_d2pll(struct ast2500_scu * scu,ulong rate)389 static ulong ast2500_configure_d2pll(struct ast2500_scu *scu, ulong rate)
390 {
391 	/*
392 	 * The values and the meaning of the next three
393 	 * parameters are undocumented. Taken from Aspeed SDK.
394 	 *
395 	 * TODO(clg@kaod.org): the SIP and SIC values depend on the
396 	 * Numerator value
397 	 */
398 	const u32 d2_pll_ext_param = 0x2c;
399 	const u32 d2_pll_sip = 0x11;
400 	const u32 d2_pll_sic = 0x18;
401 	u32 clk_delay_settings =
402 	    (RMII_RXCLK_IDLY << SCU_MICDS_MAC1RMII_RDLY_SHIFT)
403 	    | (RMII_RXCLK_IDLY << SCU_MICDS_MAC2RMII_RDLY_SHIFT)
404 	    | (RGMII_TXCLK_ODLY << SCU_MICDS_MAC1RGMII_TXDLY_SHIFT)
405 	    | (RGMII_TXCLK_ODLY << SCU_MICDS_MAC2RGMII_TXDLY_SHIFT);
406 	struct ast2500_div_config div_cfg = {
407 		.num = SCU_D2PLL_NUM_MASK >> SCU_D2PLL_NUM_SHIFT,
408 		.denum = SCU_D2PLL_DENUM_MASK >> SCU_D2PLL_DENUM_SHIFT,
409 		.post_div = SCU_D2PLL_POST_MASK >> SCU_D2PLL_POST_SHIFT,
410 	};
411 	ulong clkin = ast2500_get_clkin(scu);
412 	ulong new_rate;
413 
414 	ast_scu_unlock(scu);
415 	writel((d2_pll_ext_param << SCU_D2PLL_EXT1_PARAM_SHIFT)
416 	       | SCU_D2PLL_EXT1_OFF
417 	       | SCU_D2PLL_EXT1_RESET, &scu->d2_pll_ext_param[0]);
418 
419 	/*
420 	 * Select USB2.0 port1 PHY clock as a clock source for GCRT.
421 	 * This would disconnect it from D2-PLL.
422 	 */
423 	clrsetbits_le32(&scu->misc_ctrl1, SCU_MISC_D2PLL_OFF,
424 			SCU_MISC_GCRT_USB20CLK);
425 
426 	new_rate = ast2500_calc_clock_config(clkin, rate, &div_cfg);
427 	writel((d2_pll_sip << SCU_D2PLL_SIP_SHIFT)
428 	       | (d2_pll_sic << SCU_D2PLL_SIC_SHIFT)
429 	       | (div_cfg.num << SCU_D2PLL_NUM_SHIFT)
430 	       | (div_cfg.denum << SCU_D2PLL_DENUM_SHIFT)
431 	       | (div_cfg.post_div << SCU_D2PLL_POST_SHIFT),
432 	       &scu->d2_pll_param);
433 
434 	clrbits_le32(&scu->d2_pll_ext_param[0],
435 		     SCU_D2PLL_EXT1_OFF | SCU_D2PLL_EXT1_RESET);
436 
437 	clrsetbits_le32(&scu->misc_ctrl2,
438 			SCU_MISC2_RGMII_HPLL | SCU_MISC2_RMII_MPLL
439 			| SCU_MISC2_RGMII_CLKDIV_MASK |
440 			SCU_MISC2_RMII_CLKDIV_MASK,
441 			(4 << SCU_MISC2_RMII_CLKDIV_SHIFT));
442 
443 	writel(clk_delay_settings | SCU_MICDS_RGMIIPLL, &scu->mac_clk_delay);
444 	writel(clk_delay_settings, &scu->mac_clk_delay_100M);
445 	writel(clk_delay_settings, &scu->mac_clk_delay_10M);
446 
447 	ast_scu_lock(scu);
448 
449 	return new_rate;
450 }
451 
452 #define SCU_CLKSTOP_SDIO 27
ast2500_enable_sdclk(struct ast2500_scu * scu)453 static ulong ast2500_enable_sdclk(struct ast2500_scu *scu)
454 {
455 	u32 reset_bit;
456 	u32 clkstop_bit;
457 
458 	reset_bit = BIT(ASPEED_RESET_SDIO);
459 	clkstop_bit = BIT(SCU_CLKSTOP_SDIO);
460 
461 	setbits_le32(&scu->sysreset_ctrl1, reset_bit);
462 	udelay(100);
463 	//enable clk
464 	clrbits_le32(&scu->clk_stop_ctrl1, clkstop_bit);
465 	mdelay(10);
466 	clrbits_le32(&scu->sysreset_ctrl1, reset_bit);
467 
468 	return 0;
469 }
470 
ast2500_clk_set_rate(struct clk * clk,ulong rate)471 static ulong ast2500_clk_set_rate(struct clk *clk, ulong rate)
472 {
473 	struct ast2500_clk_priv *priv = dev_get_priv(clk->dev);
474 
475 	ulong new_rate;
476 	switch (clk->id) {
477 	case ASPEED_CLK_MPLL:
478 		new_rate = ast2500_configure_ddr(priv->scu, rate);
479 		break;
480 	case ASPEED_CLK_D2PLL:
481 		new_rate = ast2500_configure_d2pll(priv->scu, rate);
482 		break;
483 	default:
484 		debug("%s: unknown clk %ld\n", __func__, clk->id);
485 		return -ENOENT;
486 	}
487 
488 	return new_rate;
489 }
490 
ast2500_clk_enable(struct clk * clk)491 static int ast2500_clk_enable(struct clk *clk)
492 {
493 	struct ast2500_clk_priv *priv = dev_get_priv(clk->dev);
494 
495 	switch (clk->id) {
496 	case ASPEED_CLK_SDIO:
497 		if (readl(&priv->scu->clk_stop_ctrl1) & SCU_CLKSTOP_SDCLK) {
498 			ast_scu_unlock(priv->scu);
499 
500 			setbits_le32(&priv->scu->sysreset_ctrl1,
501 				     SCU_SYSRESET_SDIO);
502 			udelay(100);
503 			clrbits_le32(&priv->scu->clk_stop_ctrl1,
504 				     SCU_CLKSTOP_SDCLK);
505 			mdelay(10);
506 			clrbits_le32(&priv->scu->sysreset_ctrl1,
507 				     SCU_SYSRESET_SDIO);
508 
509 			ast_scu_lock(priv->scu);
510 		}
511 		break;
512 	/*
513 	 * For MAC clocks the clock rate is
514 	 * configured based on whether RGMII or RMII mode has been selected
515 	 * through hardware strapping.
516 	 */
517 	case ASPEED_CLK_GATE_MAC1CLK:
518 		ast2500_configure_mac(priv->scu, 1);
519 		break;
520 	case ASPEED_CLK_GATE_MAC2CLK:
521 		ast2500_configure_mac(priv->scu, 2);
522 		break;
523 	case ASPEED_CLK_D2PLL:
524 		ast2500_configure_d2pll(priv->scu, D2PLL_DEFAULT_RATE);
525 		break;
526 	case ASPEED_CLK_GATE_SDCLK:
527 		ast2500_enable_sdclk(priv->scu);
528 		break;
529 	default:
530 		debug("%s: unknown clk %ld\n", __func__, clk->id);
531 		return -ENOENT;
532 	}
533 
534 	return 0;
535 }
536 
537 struct clk_ops ast2500_clk_ops = {
538 	.get_rate = ast2500_clk_get_rate,
539 	.set_rate = ast2500_clk_set_rate,
540 	.enable = ast2500_clk_enable,
541 };
542 
ast2500_clk_of_to_plat(struct udevice * dev)543 static int ast2500_clk_of_to_plat(struct udevice *dev)
544 {
545 	struct ast2500_clk_priv *priv = dev_get_priv(dev);
546 
547 	priv->scu = devfdt_get_addr_ptr(dev);
548 	if (IS_ERR(priv->scu))
549 		return PTR_ERR(priv->scu);
550 
551 	return 0;
552 }
553 
ast2500_clk_bind(struct udevice * dev)554 static int ast2500_clk_bind(struct udevice *dev)
555 {
556 	int ret;
557 
558 	/* The reset driver does not have a device node, so bind it here */
559 	ret = device_bind_driver(gd->dm_root, "ast_sysreset", "reset", &dev);
560 	if (ret)
561 		debug("Warning: No reset driver: ret=%d\n", ret);
562 
563 	return 0;
564 }
565 
566 static const struct udevice_id ast2500_clk_ids[] = {
567 	{ .compatible = "aspeed,ast2500-scu" },
568 	{ }
569 };
570 
571 U_BOOT_DRIVER(aspeed_ast2500_scu) = {
572 	.name		= "aspeed_ast2500_scu",
573 	.id		= UCLASS_CLK,
574 	.of_match	= ast2500_clk_ids,
575 	.priv_auto	= sizeof(struct ast2500_clk_priv),
576 	.ops		= &ast2500_clk_ops,
577 	.bind		= ast2500_clk_bind,
578 	.of_to_plat		= ast2500_clk_of_to_plat,
579 };
580