1 // SPDX-License-Identifier: BSD-3-Clause AND GPL-2.0
2 /*
3  * Clock and reset drivers for Qualcomm platforms Global Clock
4  * Controller (GCC).
5  *
6  * (C) Copyright 2015 Mateusz Kulikowski <mateusz.kulikowski@gmail.com>
7  * (C) Copyright 2020 Sartura Ltd. (reset driver)
8  *     Author: Robert Marko <robert.marko@sartura.hr>
9  * (C) Copyright 2022 Linaro Ltd. (reset driver)
10  *     Author: Sumit Garg <sumit.garg@linaro.org>
11  *
12  * Based on Little Kernel driver, simplified
13  */
14 
15 #include <clk-uclass.h>
16 #include <linux/clk-provider.h>
17 #include <dm.h>
18 #include <dm/device-internal.h>
19 #include <dm/lists.h>
20 #include <errno.h>
21 #include <asm/io.h>
22 #include <linux/bug.h>
23 #include <linux/delay.h>
24 #include <linux/bitops.h>
25 #include <linux/iopoll.h>
26 #include <reset-uclass.h>
27 #include <power-domain-uclass.h>
28 
29 #include "clock-qcom.h"
30 
31 /* CBCR register fields */
32 #define CBCR_BRANCH_ENABLE_BIT  BIT(0)
33 #define CBCR_BRANCH_OFF_BIT     BIT(31)
34 
35 #define GDSC_SW_COLLAPSE_MASK		BIT(0)
36 #define GDSC_POWER_DOWN_COMPLETE	BIT(15)
37 #define GDSC_POWER_UP_COMPLETE		BIT(16)
38 #define GDSC_PWR_ON_MASK		BIT(31)
39 #define CFG_GDSCR_OFFSET		0x4
40 #define GDSC_STATUS_POLL_TIMEOUT_US	1500
41 
42 /* Enable clock controlled by CBC soft macro */
clk_enable_cbc(phys_addr_t cbcr)43 void clk_enable_cbc(phys_addr_t cbcr)
44 {
45 	setbits_le32(cbcr, CBCR_BRANCH_ENABLE_BIT);
46 
47 	while (readl(cbcr) & CBCR_BRANCH_OFF_BIT)
48 		;
49 }
50 
clk_enable_gpll0(phys_addr_t base,const struct pll_vote_clk * gpll0)51 void clk_enable_gpll0(phys_addr_t base, const struct pll_vote_clk *gpll0)
52 {
53 	if (readl(base + gpll0->status) & gpll0->status_bit)
54 		return; /* clock already enabled */
55 
56 	setbits_le32(base + gpll0->ena_vote, gpll0->vote_bit);
57 
58 	while ((readl(base + gpll0->status) & gpll0->status_bit) == 0)
59 		;
60 }
61 
62 #define BRANCH_ON_VAL (0)
63 #define BRANCH_NOC_FSM_ON_VAL BIT(29)
64 #define BRANCH_CHECK_MASK GENMASK(31, 28)
65 
clk_enable_vote_clk(phys_addr_t base,const struct vote_clk * vclk)66 void clk_enable_vote_clk(phys_addr_t base, const struct vote_clk *vclk)
67 {
68 	u32 val;
69 
70 	setbits_le32(base + vclk->ena_vote, vclk->vote_bit);
71 	do {
72 		val = readl(base + vclk->cbcr_reg);
73 		val &= BRANCH_CHECK_MASK;
74 	} while ((val != BRANCH_ON_VAL) && (val != BRANCH_NOC_FSM_ON_VAL));
75 }
76 
qcom_gate_clk_en(const struct msm_clk_priv * priv,unsigned long id)77 int qcom_gate_clk_en(const struct msm_clk_priv *priv, unsigned long id)
78 {
79 	if (id >= priv->data->num_clks || priv->data->clks[id].reg == 0) {
80 		log_err("gcc@%#08llx: unknown clock ID %lu!\n",
81 			priv->base, id);
82 		return -ENOENT;
83 	}
84 
85 	setbits_le32(priv->base + priv->data->clks[id].reg, priv->data->clks[id].en_val);
86 	if (priv->data->clks[id].cbcr_reg) {
87 		unsigned int count;
88 		u32 val;
89 
90 		for (count = 0; count < 200; count++) {
91 			val = readl(priv->base + priv->data->clks[id].cbcr_reg);
92 			val &= BRANCH_CHECK_MASK;
93 			if (val == BRANCH_ON_VAL || val == BRANCH_NOC_FSM_ON_VAL)
94 				break;
95 			udelay(1);
96 		}
97 		if (WARN(count == 200, "WARNING: Clock @ %#lx [%#010x] stuck at off\n",
98 			 priv->data->clks[id].cbcr_reg, val))
99 			return -EBUSY;
100 	}
101 	return 0;
102 }
103 
104 #define APPS_CMD_RCGR_UPDATE BIT(0)
105 
106 /* Update clock command via CMD_RCGR */
clk_bcr_update(phys_addr_t apps_cmd_rcgr)107 void clk_bcr_update(phys_addr_t apps_cmd_rcgr)
108 {
109 	u32 count;
110 	setbits_le32(apps_cmd_rcgr, APPS_CMD_RCGR_UPDATE);
111 
112 	/* Wait for frequency to be updated. */
113 	for (count = 0; count < 50000; count++) {
114 		if (!(readl(apps_cmd_rcgr) & APPS_CMD_RCGR_UPDATE))
115 			break;
116 		udelay(1);
117 	}
118 	WARN(count == 50000, "WARNING: RCG @ %#llx [%#010x] stuck at off\n",
119 	     apps_cmd_rcgr, readl(apps_cmd_rcgr));
120 }
121 
122 #define CFG_SRC_DIV_MASK	0b11111
123 #define CFG_SRC_SEL_SHIFT	8
124 #define CFG_SRC_SEL_MASK	(0x7 << CFG_SRC_SEL_SHIFT)
125 #define CFG_MODE_SHIFT		12
126 #define CFG_MODE_MASK		(0x3 << CFG_MODE_SHIFT)
127 #define CFG_MODE_DUAL_EDGE	(0x2 << CFG_MODE_SHIFT)
128 #define CFG_HW_CLK_CTRL_MASK	BIT(20)
129 
130 /*
131  * root set rate for clocks with half integer and MND divider
132  * div should be pre-calculated ((div * 2) - 1)
133  */
clk_rcg_set_rate_mnd(phys_addr_t base,uint32_t cmd_rcgr,int div,int m,int n,int source,u8 mnd_width)134 void clk_rcg_set_rate_mnd(phys_addr_t base, uint32_t cmd_rcgr,
135 			  int div, int m, int n, int source, u8 mnd_width)
136 {
137 	u32 cfg;
138 	/* M value for MND divider. */
139 	u32 m_val = m;
140 	u32 n_minus_m = n - m;
141 	/* NOT(N-M) value for MND divider. */
142 	u32 n_val = ~n_minus_m * !!(n);
143 	/* NOT 2D value for MND divider. */
144 	u32 d_val = ~(clamp_t(u32, n, m, n_minus_m));
145 	u32 mask = BIT(mnd_width) - 1;
146 
147 	debug("m %#x n %#x d %#x div %#x mask %#x\n", m_val, n_val, d_val, div, mask);
148 
149 	/* Program MND values */
150 	writel(m_val & mask, base + cmd_rcgr + RCG_M_REG);
151 	writel(n_val & mask, base + cmd_rcgr + RCG_N_REG);
152 	writel(d_val & mask, base + cmd_rcgr + RCG_D_REG);
153 
154 	/* setup src select and divider */
155 	cfg  = readl(base + cmd_rcgr + RCG_CFG_REG);
156 	cfg &= ~(CFG_SRC_SEL_MASK | CFG_MODE_MASK | CFG_HW_CLK_CTRL_MASK |
157 		 CFG_SRC_DIV_MASK);
158 	cfg |= source & CFG_SRC_SEL_MASK; /* Select clock source */
159 
160 	if (div)
161 		cfg |= div & CFG_SRC_DIV_MASK;
162 
163 	if (n && n != m)
164 		cfg |= CFG_MODE_DUAL_EDGE;
165 
166 	writel(cfg, base + cmd_rcgr + RCG_CFG_REG); /* Write new clock configuration */
167 
168 	/* Inform h/w to start using the new config. */
169 	clk_bcr_update(base + cmd_rcgr);
170 }
171 
172 /* root set rate for clocks with half integer and mnd_width=0 */
clk_rcg_set_rate(phys_addr_t base,uint32_t cmd_rcgr,int div,int source)173 void clk_rcg_set_rate(phys_addr_t base, uint32_t cmd_rcgr, int div,
174 		      int source)
175 {
176 	u32 cfg;
177 
178 	/* setup src select and divider */
179 	cfg  = readl(base + cmd_rcgr + RCG_CFG_REG);
180 	cfg &= ~(CFG_SRC_SEL_MASK | CFG_MODE_MASK | CFG_HW_CLK_CTRL_MASK);
181 	cfg |= source & CFG_CLK_SRC_MASK; /* Select clock source */
182 
183 	/*
184 	 * Set the divider; HW permits fraction dividers (+0.5), but
185 	 * for simplicity, we will support integers only
186 	 */
187 	if (div)
188 		cfg |= (2 * div - 1) & CFG_SRC_DIV_MASK;
189 
190 	writel(cfg, base + cmd_rcgr + RCG_CFG_REG); /* Write new clock configuration */
191 
192 	/* Inform h/w to start using the new config. */
193 	clk_bcr_update(base + cmd_rcgr);
194 }
195 
196 #define PHY_MUX_MASK		GENMASK(1, 0)
197 #define PHY_MUX_PHY_SRC		0
198 #define PHY_MUX_REF_SRC		2
199 
clk_phy_mux_enable(phys_addr_t base,uint32_t cmd_rcgr,bool enabled)200 void clk_phy_mux_enable(phys_addr_t base, uint32_t cmd_rcgr, bool enabled)
201 {
202 	u32 cfg;
203 
204 	/* setup src select and divider */
205 	cfg  = readl(base + cmd_rcgr);
206 	cfg &= ~(PHY_MUX_MASK);
207 	if (enabled)
208 		cfg |= FIELD_PREP(PHY_MUX_MASK, PHY_MUX_PHY_SRC);
209 	else
210 		cfg |= FIELD_PREP(PHY_MUX_MASK, PHY_MUX_REF_SRC);
211 
212 	writel(cfg, base + cmd_rcgr);
213 }
214 
qcom_find_freq(const struct freq_tbl * f,uint rate)215 const struct freq_tbl *qcom_find_freq(const struct freq_tbl *f, uint rate)
216 {
217 	if (!f)
218 		return NULL;
219 
220 	if (!f->freq)
221 		return f;
222 
223 	for (; f->freq; f++)
224 		if (rate <= f->freq)
225 			return f;
226 
227 	/* Default to our fastest rate */
228 	return f - 1;
229 }
230 
msm_clk_probe(struct udevice * dev)231 static int msm_clk_probe(struct udevice *dev)
232 {
233 	struct msm_clk_data *data = (struct msm_clk_data *)dev_get_driver_data(dev);
234 	struct msm_clk_priv *priv = dev_get_priv(dev);
235 
236 	priv->base = dev_read_addr(dev);
237 	if (priv->base == FDT_ADDR_T_NONE)
238 		return -EINVAL;
239 
240 	priv->data = data;
241 
242 	return 0;
243 }
244 
msm_clk_set_rate(struct clk * clk,ulong rate)245 static ulong msm_clk_set_rate(struct clk *clk, ulong rate)
246 {
247 	struct msm_clk_data *data = (struct msm_clk_data *)dev_get_driver_data(clk->dev);
248 
249 	if (data->set_rate)
250 		return data->set_rate(clk, rate);
251 
252 	return 0;
253 }
254 
msm_clk_enable(struct clk * clk)255 static int msm_clk_enable(struct clk *clk)
256 {
257 	struct msm_clk_data *data = (struct msm_clk_data *)dev_get_driver_data(clk->dev);
258 
259 	if (data->enable)
260 		return data->enable(clk);
261 
262 	return 0;
263 }
264 
dump_gplls(struct udevice * dev,phys_addr_t base)265 static void dump_gplls(struct udevice *dev, phys_addr_t base)
266 {
267 	struct msm_clk_data *data = (struct msm_clk_data *)dev_get_driver_data(dev);
268 	u32 i;
269 	bool locked;
270 	u64 l, a, xo_rate = 19200000;
271 	struct clk *clk = NULL;
272 	struct udevice *xodev;
273 	const phys_addr_t *gplls = data->dbg_pll_addrs;
274 
275 	uclass_foreach_dev_probe(UCLASS_CLK, xodev) {
276 		if (!strcmp(xodev->name, "xo-board") || !strcmp(xodev->name, "xo_board")) {
277 			clk = dev_get_clk_ptr(xodev);
278 			break;
279 		}
280 	}
281 
282 	if (clk) {
283 		xo_rate = clk_get_rate(clk);
284 
285 		/* On SDM845 this needs to be divided by 2 for some reason */
286 		if (xo_rate && of_machine_is_compatible("qcom,sdm845"))
287 			xo_rate /= 2;
288 	} else {
289 		printf("Can't find XO clock, XO_BOARD rate may be wrong\n");
290 	}
291 
292 	printf("GPLL clocks:\n");
293 	printf("| GPLL   | LOCKED | XO_BOARD  |  PLL_L     | ALPHA          |\n");
294 	printf("+--------+--------+-----------+------------+----------------+\n");
295 	for (i = 0; i < data->num_plls; i++) {
296 		locked = !!(readl(gplls[i]) & BIT(31));
297 		l = readl(gplls[i] + 4) & (BIT(16) - 1);
298 		a = readq(gplls[i] + 40) & (BIT(16) - 1);
299 		printf("| GPLL%-2d | %-6s | %9llu * (%#-9llx + %#-13llx  * 2 ** -40 ) / 1000000\n",
300 		       i, locked ? "X" : "", xo_rate, l, a);
301 	}
302 }
303 
dump_rcgs(struct udevice * dev)304 static void dump_rcgs(struct udevice *dev)
305 {
306 	struct msm_clk_data *data = (struct msm_clk_data *)dev_get_driver_data(dev);
307 	int i;
308 	u32 cmd;
309 	u32 cfg;
310 	u32 not_n_minus_m;
311 	u32 src, m, n, div;
312 	bool root_on, d_odd;
313 
314 	printf("\nRCGs:\n");
315 
316 	/*
317 	 * Which GPLL SRC corresponds to depends on the parent map, see gcc-<soc>.c in Linux
318 	 * and find the parent map associated with the clock. Note that often there are multiple
319 	 * outputs from a single GPLL where one is actually half the rate of the other (_EVEN).
320 	 * intput_freq = associated GPLL output freq (potentially divided depending on SRC).
321 	 */
322 	printf("| NAME                             | ON | SRC | OUT_FREQ = input_freq * (m/n) * (1/d) | [CMD REG   ] |\n");
323 	printf("+----------------------------------+----+-----+---------------------------------------+--------------+\n");
324 	for (i = 0; i < data->num_rcgs; i++) {
325 		cmd = readl(data->dbg_rcg_addrs[i]);
326 		cfg = readl(data->dbg_rcg_addrs[i] + 0x4);
327 		m = readl(data->dbg_rcg_addrs[i] + 0x8);
328 		n = 0;
329 		not_n_minus_m = readl(data->dbg_rcg_addrs[i] + 0xc);
330 
331 		root_on = !(cmd & BIT(31)); // ROOT_OFF
332 		src = (cfg >> 8) & 7;
333 
334 		if (not_n_minus_m) {
335 			n = (~not_n_minus_m & 0xffff);
336 
337 			/* A clumsy assumption that this is an 8-bit MND RCG */
338 			if ((n & 0xff00) == 0xff00)
339 				n = n & 0xff;
340 
341 			n += m;
342 		}
343 
344 		div = ((cfg & 0b11111) + 1) / 2;
345 		d_odd = ((cfg & 0b11111) + 1) % 2 == 1;
346 		printf("%-34s | %-2s | %3d | input_freq * (%4d/%5d) * (1/%1d%-2s)   | [%#010x]\n",
347 		       data->dbg_rcg_names[i], root_on ? "X" : "", src,
348 		       m ?: 1, n ?: 1, div, d_odd ? ".5" : "", cmd);
349 	}
350 
351 	printf("\n");
352 }
353 
msm_dump_clks(struct udevice * dev)354 static void __maybe_unused msm_dump_clks(struct udevice *dev)
355 {
356 	struct msm_clk_data *data = (struct msm_clk_data *)dev_get_driver_data(dev);
357 	struct msm_clk_priv *priv = dev_get_priv(dev);
358 	const struct gate_clk *sclk;
359 	int val, i;
360 
361 	if (!data->clks) {
362 		printf("No clocks\n");
363 		return;
364 	}
365 
366 	printf("Gate Clocks:\n");
367 	for (i = 0; i < data->num_clks; i++) {
368 		sclk = &data->clks[i];
369 		if (!sclk->name)
370 			continue;
371 		printf("%-32s: ", sclk->name);
372 		val = readl(priv->base + sclk->reg) & sclk->en_val;
373 		printf("%s\n", val ? "ON" : "");
374 	}
375 
376 	dump_gplls(dev, priv->base);
377 	dump_rcgs(dev);
378 }
379 
380 static struct clk_ops msm_clk_ops = {
381 	.set_rate = msm_clk_set_rate,
382 	.enable = msm_clk_enable,
383 #if IS_ENABLED(CONFIG_CMD_CLK)
384 	.dump = msm_dump_clks,
385 #endif
386 };
387 
388 U_BOOT_DRIVER(qcom_clk) = {
389 	.name		= "qcom_clk",
390 	.id		= UCLASS_CLK,
391 	.ops		= &msm_clk_ops,
392 	.priv_auto	= sizeof(struct msm_clk_priv),
393 	.probe		= msm_clk_probe,
394 	.flags		= DM_FLAG_PRE_RELOC | DM_FLAG_DEFAULT_PD_CTRL_OFF,
395 };
396 
qcom_cc_bind(struct udevice * parent)397 int qcom_cc_bind(struct udevice *parent)
398 {
399 	struct msm_clk_data *data = (struct msm_clk_data *)dev_get_driver_data(parent);
400 	struct udevice *clkdev = NULL, *rstdev = NULL, *pwrdev;
401 	struct driver *drv;
402 	int ret;
403 
404 	/* Get a handle to the common clk handler */
405 	drv = lists_driver_lookup_name("qcom_clk");
406 	if (!drv)
407 		return -ENOENT;
408 
409 	/* Register the clock controller */
410 	ret = device_bind_with_driver_data(parent, drv, "qcom_clk", (ulong)data,
411 					   dev_ofnode(parent), &clkdev);
412 	if (ret)
413 		return ret;
414 
415 	if (data->resets) {
416 		/* Get a handle to the common reset handler */
417 		drv = lists_driver_lookup_name("qcom_reset");
418 		if (!drv) {
419 			ret = -ENOENT;
420 			goto unbind_clkdev;
421 		}
422 
423 		/* Register the reset controller */
424 		ret = device_bind_with_driver_data(parent, drv, "qcom_reset", (ulong)data,
425 						   dev_ofnode(parent), &rstdev);
426 		if (ret)
427 			goto unbind_clkdev;
428 	}
429 
430 	if (data->power_domains) {
431 		/* Get a handle to the common power domain handler */
432 		drv = lists_driver_lookup_name("qcom_power");
433 		if (!drv) {
434 			ret = -ENOENT;
435 			goto unbind_rstdev;
436 		}
437 		/* Register the power domain controller */
438 		ret = device_bind_with_driver_data(parent, drv, "qcom_power", (ulong)data,
439 						   dev_ofnode(parent), &pwrdev);
440 		if (ret)
441 			goto unbind_rstdev;
442 	}
443 
444 	return 0;
445 
446 unbind_rstdev:
447 	device_unbind(rstdev);
448 unbind_clkdev:
449 	device_unbind(clkdev);
450 
451 	return ret;
452 }
453 
qcom_reset_set(struct reset_ctl * rst,bool assert)454 static int qcom_reset_set(struct reset_ctl *rst, bool assert)
455 {
456 	struct msm_clk_data *data = (struct msm_clk_data *)dev_get_driver_data(rst->dev);
457 	void __iomem *base = dev_get_priv(rst->dev);
458 	const struct qcom_reset_map *map;
459 	u32 value;
460 
461 	map = &data->resets[rst->id];
462 
463 	value = readl(base + map->reg);
464 
465 	if (assert)
466 		value |= BIT(map->bit);
467 	else
468 		value &= ~BIT(map->bit);
469 
470 	writel(value, base + map->reg);
471 
472 	return 0;
473 }
474 
qcom_reset_assert(struct reset_ctl * rst)475 static int qcom_reset_assert(struct reset_ctl *rst)
476 {
477 	return qcom_reset_set(rst, true);
478 }
479 
qcom_reset_deassert(struct reset_ctl * rst)480 static int qcom_reset_deassert(struct reset_ctl *rst)
481 {
482 	return qcom_reset_set(rst, false);
483 }
484 
485 static const struct reset_ops qcom_reset_ops = {
486 	.rst_assert = qcom_reset_assert,
487 	.rst_deassert = qcom_reset_deassert,
488 };
489 
qcom_reset_probe(struct udevice * dev)490 static int qcom_reset_probe(struct udevice *dev)
491 {
492 	/* Set our priv pointer to the base address */
493 	dev_set_priv(dev, (void *)dev_read_addr(dev));
494 
495 	return 0;
496 }
497 
498 U_BOOT_DRIVER(qcom_reset) = {
499 	.name = "qcom_reset",
500 	.id = UCLASS_RESET,
501 	.ops = &qcom_reset_ops,
502 	.probe = qcom_reset_probe,
503 };
504 
qcom_power_set(struct power_domain * pwr,bool on)505 static int qcom_power_set(struct power_domain *pwr, bool on)
506 {
507 	struct msm_clk_data *data = (struct msm_clk_data *)dev_get_driver_data(pwr->dev);
508 	void __iomem *base = dev_get_priv(pwr->dev);
509 	const struct qcom_power_map *map;
510 	u32 value;
511 	int ret;
512 
513 	if (pwr->id >= data->num_power_domains)
514 		return -ENODEV;
515 
516 	map = &data->power_domains[pwr->id];
517 
518 	if (!map->reg)
519 		return -ENODEV;
520 
521 	value = readl(base + map->reg);
522 
523 	if (on)
524 		value &= ~GDSC_SW_COLLAPSE_MASK;
525 	else
526 		value |= GDSC_SW_COLLAPSE_MASK;
527 
528 	writel(value, base + map->reg);
529 
530 	if (on)
531 		ret = readl_poll_timeout(base + map->reg + CFG_GDSCR_OFFSET,
532 					 value,
533 					 (value & GDSC_POWER_UP_COMPLETE) ||
534 					 (value & GDSC_PWR_ON_MASK),
535 					 GDSC_STATUS_POLL_TIMEOUT_US);
536 
537 	else
538 		ret = readl_poll_timeout(base + map->reg + CFG_GDSCR_OFFSET,
539 					 value,
540 					 (value & GDSC_POWER_DOWN_COMPLETE) ||
541 					 !(value & GDSC_PWR_ON_MASK),
542 					 GDSC_STATUS_POLL_TIMEOUT_US);
543 
544 	if (ret == -ETIMEDOUT)
545 		printf("WARNING: GDSC %lu is stuck during power on/off\n",
546 		       pwr->id);
547 	return ret;
548 }
549 
qcom_power_on(struct power_domain * pwr)550 static int qcom_power_on(struct power_domain *pwr)
551 {
552 	return qcom_power_set(pwr, true);
553 }
554 
qcom_power_off(struct power_domain * pwr)555 static int qcom_power_off(struct power_domain *pwr)
556 {
557 	return qcom_power_set(pwr, false);
558 }
559 
560 static const struct power_domain_ops qcom_power_ops = {
561 	.on = qcom_power_on,
562 	.off = qcom_power_off,
563 };
564 
qcom_power_probe(struct udevice * dev)565 static int qcom_power_probe(struct udevice *dev)
566 {
567 	/* Set our priv pointer to the base address */
568 	dev_set_priv(dev, (void *)dev_read_addr(dev));
569 
570 	return 0;
571 }
572 
573 U_BOOT_DRIVER(qcom_power) = {
574 	.name = "qcom_power",
575 	.id = UCLASS_POWER_DOMAIN,
576 	.ops = &qcom_power_ops,
577 	.probe = qcom_power_probe,
578 	.flags = DM_FLAG_PRE_RELOC,
579 };
580