1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2017 NXP Semiconductors
4  * Copyright (C) 2017 Bin Meng <bmeng.cn@gmail.com>
5  */
6 
7 #include <blk.h>
8 #include <bootdev.h>
9 #include <cpu_func.h>
10 #include <dm.h>
11 #include <errno.h>
12 #include <log.h>
13 #include <malloc.h>
14 #include <memalign.h>
15 #include <time.h>
16 #include <dm/device-internal.h>
17 #include <linux/compat.h>
18 #include "nvme.h"
19 
20 #define NVME_Q_DEPTH		2
21 #define NVME_AQ_DEPTH		2
22 #define NVME_SQ_SIZE(depth)	(depth * sizeof(struct nvme_command))
23 #define NVME_CQ_SIZE(depth)	(depth * sizeof(struct nvme_completion))
24 #define NVME_CQ_ALLOCATION	ALIGN(NVME_CQ_SIZE(NVME_Q_DEPTH), \
25 				      ARCH_DMA_MINALIGN)
26 #define ADMIN_TIMEOUT		60
27 #define IO_TIMEOUT		30
28 #define MAX_PRP_POOL		512
29 
nvme_wait_csts(struct nvme_dev * dev,u32 mask,u32 val)30 static int nvme_wait_csts(struct nvme_dev *dev, u32 mask, u32 val)
31 {
32 	int timeout;
33 	ulong start;
34 
35 	/* Timeout field in the CAP register is in 500 millisecond units */
36 	timeout = NVME_CAP_TIMEOUT(dev->cap) * 500;
37 
38 	start = get_timer(0);
39 	while (get_timer(start) < timeout) {
40 		if ((readl(&dev->bar->csts) & mask) == val)
41 			return 0;
42 	}
43 
44 	return -ETIME;
45 }
46 
nvme_setup_prps(struct nvme_dev * dev,u64 * prp2,int total_len,u64 dma_addr)47 static int nvme_setup_prps(struct nvme_dev *dev, u64 *prp2,
48 			   int total_len, u64 dma_addr)
49 {
50 	u32 page_size = dev->page_size;
51 	int offset = dma_addr & (page_size - 1);
52 	u64 *prp_pool;
53 	int length = total_len;
54 	int i, nprps;
55 	u32 prps_per_page = page_size >> 3;
56 	u32 num_pages;
57 
58 	length -= (page_size - offset);
59 
60 	if (length <= 0) {
61 		*prp2 = 0;
62 		return 0;
63 	}
64 
65 	if (length)
66 		dma_addr += (page_size - offset);
67 
68 	if (length <= page_size) {
69 		*prp2 = dma_addr;
70 		return 0;
71 	}
72 
73 	nprps = DIV_ROUND_UP(length, page_size);
74 	num_pages = DIV_ROUND_UP(nprps - 1, prps_per_page - 1);
75 
76 	if (nprps > dev->prp_entry_num) {
77 		free(dev->prp_pool);
78 		/*
79 		 * Always increase in increments of pages.  It doesn't waste
80 		 * much memory and reduces the number of allocations.
81 		 */
82 		dev->prp_pool = memalign(page_size, num_pages * page_size);
83 		if (!dev->prp_pool) {
84 			printf("Error: malloc prp_pool fail\n");
85 			return -ENOMEM;
86 		}
87 		dev->prp_entry_num = num_pages * (prps_per_page - 1) + 1;
88 	}
89 
90 	prp_pool = dev->prp_pool;
91 	i = 0;
92 	while (nprps) {
93 		if ((i == (prps_per_page - 1)) && nprps > 1) {
94 			*(prp_pool + i) = cpu_to_le64((ulong)prp_pool +
95 					page_size);
96 			i = 0;
97 			prp_pool += page_size;
98 		}
99 		*(prp_pool + i++) = cpu_to_le64(dma_addr);
100 		dma_addr += page_size;
101 		nprps--;
102 	}
103 	*prp2 = (ulong)dev->prp_pool;
104 
105 	flush_dcache_range((ulong)dev->prp_pool, (ulong)dev->prp_pool +
106 			   num_pages * page_size);
107 
108 	return 0;
109 }
110 
nvme_get_cmd_id(void)111 static __le16 nvme_get_cmd_id(void)
112 {
113 	static unsigned short cmdid;
114 
115 	return cpu_to_le16((cmdid < USHRT_MAX) ? cmdid++ : 0);
116 }
117 
nvme_read_completion_status(struct nvme_queue * nvmeq,u16 index)118 static u16 nvme_read_completion_status(struct nvme_queue *nvmeq, u16 index)
119 {
120 	/*
121 	 * Single CQ entries are always smaller than a cache line, so we
122 	 * can't invalidate them individually. However CQ entries are
123 	 * read only by the CPU, so it's safe to always invalidate all of them,
124 	 * as the cache line should never become dirty.
125 	 */
126 	ulong start = (ulong)&nvmeq->cqes[0];
127 	ulong stop = start + NVME_CQ_ALLOCATION;
128 
129 	invalidate_dcache_range(start, stop);
130 
131 	return readw(&(nvmeq->cqes[index].status));
132 }
133 
134 /**
135  * nvme_submit_cmd() - copy a command into a queue and ring the doorbell
136  *
137  * @nvmeq:	The queue to use
138  * @cmd:	The command to send
139  */
nvme_submit_cmd(struct nvme_queue * nvmeq,struct nvme_command * cmd)140 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
141 {
142 	struct nvme_ops *ops;
143 	u16 tail = nvmeq->sq_tail;
144 
145 	memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
146 	flush_dcache_range((ulong)&nvmeq->sq_cmds[tail],
147 			   (ulong)&nvmeq->sq_cmds[tail] + sizeof(*cmd));
148 
149 	ops = (struct nvme_ops *)nvmeq->dev->udev->driver->ops;
150 	if (ops && ops->submit_cmd) {
151 		ops->submit_cmd(nvmeq, cmd);
152 		return;
153 	}
154 
155 	if (++tail == nvmeq->q_depth)
156 		tail = 0;
157 	writel(tail, nvmeq->q_db);
158 	nvmeq->sq_tail = tail;
159 }
160 
nvme_submit_sync_cmd(struct nvme_queue * nvmeq,struct nvme_command * cmd,u32 * result,unsigned timeout)161 static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
162 				struct nvme_command *cmd,
163 				u32 *result, unsigned timeout)
164 {
165 	struct nvme_ops *ops;
166 	u16 head = nvmeq->cq_head;
167 	u16 phase = nvmeq->cq_phase;
168 	u16 status;
169 	ulong start_time;
170 	ulong timeout_us = timeout * 100000;
171 
172 	cmd->common.command_id = nvme_get_cmd_id();
173 	nvme_submit_cmd(nvmeq, cmd);
174 
175 	start_time = timer_get_us();
176 
177 	for (;;) {
178 		status = nvme_read_completion_status(nvmeq, head);
179 		if ((status & 0x01) == phase)
180 			break;
181 		if (timeout_us > 0 && (timer_get_us() - start_time)
182 		    >= timeout_us)
183 			return -ETIMEDOUT;
184 	}
185 
186 	ops = (struct nvme_ops *)nvmeq->dev->udev->driver->ops;
187 	if (ops && ops->complete_cmd)
188 		ops->complete_cmd(nvmeq, cmd);
189 
190 	status >>= 1;
191 	if (status) {
192 		printf("ERROR: status = %x, phase = %d, head = %d\n",
193 		       status, phase, head);
194 		status = 0;
195 		if (++head == nvmeq->q_depth) {
196 			head = 0;
197 			phase = !phase;
198 		}
199 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
200 		nvmeq->cq_head = head;
201 		nvmeq->cq_phase = phase;
202 
203 		return -EIO;
204 	}
205 
206 	if (result)
207 		*result = readl(&(nvmeq->cqes[head].result));
208 
209 	if (++head == nvmeq->q_depth) {
210 		head = 0;
211 		phase = !phase;
212 	}
213 	writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
214 	nvmeq->cq_head = head;
215 	nvmeq->cq_phase = phase;
216 
217 	return status;
218 }
219 
nvme_submit_admin_cmd(struct nvme_dev * dev,struct nvme_command * cmd,u32 * result)220 static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
221 				 u32 *result)
222 {
223 	return nvme_submit_sync_cmd(dev->queues[NVME_ADMIN_Q], cmd,
224 				    result, ADMIN_TIMEOUT);
225 }
226 
nvme_alloc_queue(struct nvme_dev * dev,int qid,int depth)227 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev,
228 					   int qid, int depth)
229 {
230 	struct nvme_ops *ops;
231 	struct nvme_queue *nvmeq = malloc(sizeof(*nvmeq));
232 	if (!nvmeq)
233 		return NULL;
234 	memset(nvmeq, 0, sizeof(*nvmeq));
235 
236 	nvmeq->cqes = (void *)memalign(4096, NVME_CQ_ALLOCATION);
237 	if (!nvmeq->cqes)
238 		goto free_nvmeq;
239 	memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(depth));
240 
241 	nvmeq->sq_cmds = (void *)memalign(4096, NVME_SQ_SIZE(depth));
242 	if (!nvmeq->sq_cmds)
243 		goto free_queue;
244 	memset((void *)nvmeq->sq_cmds, 0, NVME_SQ_SIZE(depth));
245 
246 	nvmeq->dev = dev;
247 
248 	nvmeq->cq_head = 0;
249 	nvmeq->cq_phase = 1;
250 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
251 	nvmeq->q_depth = depth;
252 	nvmeq->qid = qid;
253 	dev->queue_count++;
254 	dev->queues[qid] = nvmeq;
255 
256 	ops = (struct nvme_ops *)dev->udev->driver->ops;
257 	if (ops && ops->setup_queue)
258 		ops->setup_queue(nvmeq);
259 
260 	return nvmeq;
261 
262  free_queue:
263 	free((void *)nvmeq->cqes);
264  free_nvmeq:
265 	free(nvmeq);
266 
267 	return NULL;
268 }
269 
nvme_delete_queue(struct nvme_dev * dev,u8 opcode,u16 id)270 static int nvme_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
271 {
272 	struct nvme_command c;
273 
274 	memset(&c, 0, sizeof(c));
275 	c.delete_queue.opcode = opcode;
276 	c.delete_queue.qid = cpu_to_le16(id);
277 
278 	return nvme_submit_admin_cmd(dev, &c, NULL);
279 }
280 
nvme_delete_sq(struct nvme_dev * dev,u16 sqid)281 static int nvme_delete_sq(struct nvme_dev *dev, u16 sqid)
282 {
283 	return nvme_delete_queue(dev, nvme_admin_delete_sq, sqid);
284 }
285 
nvme_delete_cq(struct nvme_dev * dev,u16 cqid)286 static int nvme_delete_cq(struct nvme_dev *dev, u16 cqid)
287 {
288 	return nvme_delete_queue(dev, nvme_admin_delete_cq, cqid);
289 }
290 
nvme_enable_ctrl(struct nvme_dev * dev)291 static int nvme_enable_ctrl(struct nvme_dev *dev)
292 {
293 	dev->ctrl_config &= ~NVME_CC_SHN_MASK;
294 	dev->ctrl_config |= NVME_CC_ENABLE;
295 	writel(dev->ctrl_config, &dev->bar->cc);
296 
297 	return nvme_wait_csts(dev, NVME_CSTS_RDY, NVME_CSTS_RDY);
298 }
299 
nvme_disable_ctrl(struct nvme_dev * dev)300 static int nvme_disable_ctrl(struct nvme_dev *dev)
301 {
302 	dev->ctrl_config &= ~NVME_CC_SHN_MASK;
303 	dev->ctrl_config &= ~NVME_CC_ENABLE;
304 	writel(dev->ctrl_config, &dev->bar->cc);
305 
306 	return nvme_wait_csts(dev, NVME_CSTS_RDY, 0);
307 }
308 
nvme_shutdown_ctrl(struct nvme_dev * dev)309 static int nvme_shutdown_ctrl(struct nvme_dev *dev)
310 {
311 	dev->ctrl_config &= ~NVME_CC_SHN_MASK;
312 	dev->ctrl_config |= NVME_CC_SHN_NORMAL;
313 	writel(dev->ctrl_config, &dev->bar->cc);
314 
315 	return nvme_wait_csts(dev, NVME_CSTS_SHST_MASK, NVME_CSTS_SHST_CMPLT);
316 }
317 
nvme_free_queue(struct nvme_queue * nvmeq)318 static void nvme_free_queue(struct nvme_queue *nvmeq)
319 {
320 	free((void *)nvmeq->cqes);
321 	free(nvmeq->sq_cmds);
322 	free(nvmeq);
323 }
324 
nvme_free_queues(struct nvme_dev * dev,int lowest)325 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
326 {
327 	int i;
328 
329 	for (i = dev->queue_count - 1; i >= lowest; i--) {
330 		struct nvme_queue *nvmeq = dev->queues[i];
331 		dev->queue_count--;
332 		dev->queues[i] = NULL;
333 		nvme_free_queue(nvmeq);
334 	}
335 }
336 
nvme_init_queue(struct nvme_queue * nvmeq,u16 qid)337 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
338 {
339 	struct nvme_dev *dev = nvmeq->dev;
340 
341 	nvmeq->sq_tail = 0;
342 	nvmeq->cq_head = 0;
343 	nvmeq->cq_phase = 1;
344 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
345 	memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(nvmeq->q_depth));
346 	flush_dcache_range((ulong)nvmeq->cqes,
347 			   (ulong)nvmeq->cqes + NVME_CQ_ALLOCATION);
348 	dev->online_queues++;
349 }
350 
nvme_configure_admin_queue(struct nvme_dev * dev)351 static int nvme_configure_admin_queue(struct nvme_dev *dev)
352 {
353 	int result;
354 	u32 aqa;
355 	u64 cap = dev->cap;
356 	struct nvme_queue *nvmeq;
357 	/* most architectures use 4KB as the page size */
358 	unsigned page_shift = 12;
359 	unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
360 	unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
361 
362 	if (page_shift < dev_page_min) {
363 		debug("Device minimum page size (%u) too large for host (%u)\n",
364 		      1 << dev_page_min, 1 << page_shift);
365 		return -ENODEV;
366 	}
367 
368 	if (page_shift > dev_page_max) {
369 		debug("Device maximum page size (%u) smaller than host (%u)\n",
370 		      1 << dev_page_max, 1 << page_shift);
371 		page_shift = dev_page_max;
372 	}
373 
374 	result = nvme_disable_ctrl(dev);
375 	if (result < 0)
376 		return result;
377 
378 	nvmeq = dev->queues[NVME_ADMIN_Q];
379 	if (!nvmeq) {
380 		nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
381 		if (!nvmeq)
382 			return -ENOMEM;
383 	}
384 
385 	aqa = nvmeq->q_depth - 1;
386 	aqa |= aqa << 16;
387 
388 	dev->page_size = 1 << page_shift;
389 
390 	dev->ctrl_config = NVME_CC_CSS_NVM;
391 	dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
392 	dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
393 	dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
394 
395 	writel(aqa, &dev->bar->aqa);
396 	nvme_writeq((ulong)nvmeq->sq_cmds, &dev->bar->asq);
397 	nvme_writeq((ulong)nvmeq->cqes, &dev->bar->acq);
398 
399 	result = nvme_enable_ctrl(dev);
400 	if (result)
401 		goto free_nvmeq;
402 
403 	nvmeq->cq_vector = 0;
404 
405 	nvme_init_queue(dev->queues[NVME_ADMIN_Q], 0);
406 
407 	return result;
408 
409  free_nvmeq:
410 	nvme_free_queues(dev, 0);
411 
412 	return result;
413 }
414 
nvme_alloc_cq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq)415 static int nvme_alloc_cq(struct nvme_dev *dev, u16 qid,
416 			    struct nvme_queue *nvmeq)
417 {
418 	struct nvme_command c;
419 	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
420 
421 	memset(&c, 0, sizeof(c));
422 	c.create_cq.opcode = nvme_admin_create_cq;
423 	c.create_cq.prp1 = cpu_to_le64((ulong)nvmeq->cqes);
424 	c.create_cq.cqid = cpu_to_le16(qid);
425 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
426 	c.create_cq.cq_flags = cpu_to_le16(flags);
427 	c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
428 
429 	return nvme_submit_admin_cmd(dev, &c, NULL);
430 }
431 
nvme_alloc_sq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq)432 static int nvme_alloc_sq(struct nvme_dev *dev, u16 qid,
433 			    struct nvme_queue *nvmeq)
434 {
435 	struct nvme_command c;
436 	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
437 
438 	memset(&c, 0, sizeof(c));
439 	c.create_sq.opcode = nvme_admin_create_sq;
440 	c.create_sq.prp1 = cpu_to_le64((ulong)nvmeq->sq_cmds);
441 	c.create_sq.sqid = cpu_to_le16(qid);
442 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
443 	c.create_sq.sq_flags = cpu_to_le16(flags);
444 	c.create_sq.cqid = cpu_to_le16(qid);
445 
446 	return nvme_submit_admin_cmd(dev, &c, NULL);
447 }
448 
nvme_identify(struct nvme_dev * dev,unsigned nsid,unsigned cns,dma_addr_t dma_addr)449 int nvme_identify(struct nvme_dev *dev, unsigned nsid,
450 		  unsigned cns, dma_addr_t dma_addr)
451 {
452 	struct nvme_command c;
453 	u32 page_size = dev->page_size;
454 	int offset = dma_addr & (page_size - 1);
455 	int length = sizeof(struct nvme_id_ctrl);
456 	int ret;
457 
458 	memset(&c, 0, sizeof(c));
459 	c.identify.opcode = nvme_admin_identify;
460 	c.identify.nsid = cpu_to_le32(nsid);
461 	c.identify.prp1 = cpu_to_le64(dma_addr);
462 
463 	length -= (page_size - offset);
464 	if (length <= 0) {
465 		c.identify.prp2 = 0;
466 	} else {
467 		dma_addr += (page_size - offset);
468 		c.identify.prp2 = cpu_to_le64(dma_addr);
469 	}
470 
471 	c.identify.cns = cpu_to_le32(cns);
472 
473 	invalidate_dcache_range(dma_addr,
474 				dma_addr + sizeof(struct nvme_id_ctrl));
475 
476 	ret = nvme_submit_admin_cmd(dev, &c, NULL);
477 	if (!ret)
478 		invalidate_dcache_range(dma_addr,
479 					dma_addr + sizeof(struct nvme_id_ctrl));
480 
481 	return ret;
482 }
483 
nvme_get_features(struct nvme_dev * dev,unsigned fid,unsigned nsid,dma_addr_t dma_addr,u32 * result)484 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
485 		      dma_addr_t dma_addr, u32 *result)
486 {
487 	struct nvme_command c;
488 	int ret;
489 
490 	memset(&c, 0, sizeof(c));
491 	c.features.opcode = nvme_admin_get_features;
492 	c.features.nsid = cpu_to_le32(nsid);
493 	c.features.prp1 = cpu_to_le64(dma_addr);
494 	c.features.fid = cpu_to_le32(fid);
495 
496 	ret = nvme_submit_admin_cmd(dev, &c, result);
497 
498 	/*
499 	 * TODO: Add some cache invalidation when a DMA buffer is involved
500 	 * in the request, here and before the command gets submitted. The
501 	 * buffer size varies by feature, also some features use a different
502 	 * field in the command packet to hold the buffer address.
503 	 * Section 5.21.1 (Set Features command) in the NVMe specification
504 	 * details the buffer requirements for each feature.
505 	 *
506 	 * At the moment there is no user of this function.
507 	 */
508 
509 	return ret;
510 }
511 
nvme_set_features(struct nvme_dev * dev,unsigned fid,unsigned dword11,dma_addr_t dma_addr,u32 * result)512 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
513 		      dma_addr_t dma_addr, u32 *result)
514 {
515 	struct nvme_command c;
516 
517 	memset(&c, 0, sizeof(c));
518 	c.features.opcode = nvme_admin_set_features;
519 	c.features.prp1 = cpu_to_le64(dma_addr);
520 	c.features.fid = cpu_to_le32(fid);
521 	c.features.dword11 = cpu_to_le32(dword11);
522 
523 	/*
524 	 * TODO: Add a cache clean (aka flush) operation when a DMA buffer is
525 	 * involved in the request. The buffer size varies by feature, also
526 	 * some features use a different field in the command packet to hold
527 	 * the buffer address. Section 5.21.1 (Set Features command) in the
528 	 * NVMe specification details the buffer requirements for each
529 	 * feature.
530 	 * At the moment the only user of this function is not using
531 	 * any DMA buffer at all.
532 	 */
533 
534 	return nvme_submit_admin_cmd(dev, &c, result);
535 }
536 
nvme_create_queue(struct nvme_queue * nvmeq,int qid)537 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
538 {
539 	struct nvme_dev *dev = nvmeq->dev;
540 	int result;
541 
542 	nvmeq->cq_vector = qid - 1;
543 	result = nvme_alloc_cq(dev, qid, nvmeq);
544 	if (result < 0)
545 		goto release_cq;
546 
547 	result = nvme_alloc_sq(dev, qid, nvmeq);
548 	if (result < 0)
549 		goto release_sq;
550 
551 	nvme_init_queue(nvmeq, qid);
552 
553 	return result;
554 
555  release_sq:
556 	nvme_delete_sq(dev, qid);
557  release_cq:
558 	nvme_delete_cq(dev, qid);
559 
560 	return result;
561 }
562 
nvme_set_queue_count(struct nvme_dev * dev,int count)563 static int nvme_set_queue_count(struct nvme_dev *dev, int count)
564 {
565 	int status;
566 	u32 result;
567 	u32 q_count = (count - 1) | ((count - 1) << 16);
568 
569 	status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES,
570 			q_count, 0, &result);
571 
572 	if (status < 0)
573 		return status;
574 	if (status > 1)
575 		return 0;
576 
577 	return min(result & 0xffff, result >> 16) + 1;
578 }
579 
nvme_create_io_queues(struct nvme_dev * dev)580 static int nvme_create_io_queues(struct nvme_dev *dev)
581 {
582 	unsigned int i;
583 	int ret;
584 
585 	for (i = dev->queue_count; i <= dev->max_qid; i++)
586 		if (!nvme_alloc_queue(dev, i, dev->q_depth))
587 			return log_msg_ret("all", -ENOMEM);
588 
589 	for (i = dev->online_queues; i <= dev->queue_count - 1; i++) {
590 		ret = nvme_create_queue(dev->queues[i], i);
591 		if (ret)
592 			return log_msg_ret("cre", ret);
593 	}
594 
595 	return 0;
596 }
597 
nvme_setup_io_queues(struct nvme_dev * dev)598 static int nvme_setup_io_queues(struct nvme_dev *dev)
599 {
600 	int nr_io_queues;
601 	int result;
602 
603 	nr_io_queues = 1;
604 	result = nvme_set_queue_count(dev, nr_io_queues);
605 	if (result <= 0) {
606 		log_debug("Cannot set queue count (err=%dE)\n", result);
607 		return result;
608 	}
609 
610 	dev->max_qid = nr_io_queues;
611 
612 	/* Free previously allocated queues */
613 	nvme_free_queues(dev, nr_io_queues + 1);
614 	result = nvme_create_io_queues(dev);
615 	if (result)
616 		return result;
617 
618 	return 0;
619 }
620 
nvme_get_info_from_identify(struct nvme_dev * dev)621 static int nvme_get_info_from_identify(struct nvme_dev *dev)
622 {
623 	struct nvme_id_ctrl *ctrl;
624 	int ret;
625 	int shift = NVME_CAP_MPSMIN(dev->cap) + 12;
626 
627 	ctrl = memalign(dev->page_size, sizeof(struct nvme_id_ctrl));
628 	if (!ctrl)
629 		return -ENOMEM;
630 
631 	ret = nvme_identify(dev, 0, 1, (dma_addr_t)(long)ctrl);
632 	if (ret) {
633 		free(ctrl);
634 		return -EIO;
635 	}
636 
637 	dev->nn = le32_to_cpu(ctrl->nn);
638 	dev->vwc = ctrl->vwc;
639 	memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
640 	memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
641 	memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
642 	if (ctrl->mdts)
643 		dev->max_transfer_shift = (ctrl->mdts + shift);
644 	else {
645 		/*
646 		 * Maximum Data Transfer Size (MDTS) field indicates the maximum
647 		 * data transfer size between the host and the controller. The
648 		 * host should not submit a command that exceeds this transfer
649 		 * size. The value is in units of the minimum memory page size
650 		 * and is reported as a power of two (2^n).
651 		 *
652 		 * The spec also says: a value of 0h indicates no restrictions
653 		 * on transfer size. But in nvme_blk_read/write() below we have
654 		 * the following algorithm for maximum number of logic blocks
655 		 * per transfer:
656 		 *
657 		 * u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
658 		 *
659 		 * In order for lbas not to overflow, the maximum number is 15
660 		 * which means dev->max_transfer_shift = 15 + 9 (ns->lba_shift).
661 		 * Let's use 20 which provides 1MB size.
662 		 */
663 		dev->max_transfer_shift = 20;
664 	}
665 
666 	free(ctrl);
667 	return 0;
668 }
669 
nvme_get_namespace_id(struct udevice * udev,u32 * ns_id,u8 * eui64)670 int nvme_get_namespace_id(struct udevice *udev, u32 *ns_id, u8 *eui64)
671 {
672 	struct nvme_ns *ns = dev_get_priv(udev);
673 
674 	if (ns_id)
675 		*ns_id = ns->ns_id;
676 	if (eui64)
677 		memcpy(eui64, ns->eui64, sizeof(ns->eui64));
678 
679 	return 0;
680 }
681 
nvme_scan_namespace(void)682 int nvme_scan_namespace(void)
683 {
684 	struct uclass *uc;
685 	struct udevice *dev;
686 	int ret;
687 
688 	ret = uclass_get(UCLASS_NVME, &uc);
689 	if (ret)
690 		return ret;
691 
692 	uclass_foreach_dev(dev, uc) {
693 		ret = device_probe(dev);
694 		if (ret) {
695 			log_err("Failed to probe '%s': err=%dE\n", dev->name,
696 				ret);
697 			/* Bail if we ran out of memory, else keep trying */
698 			if (ret != -EBUSY)
699 				return ret;
700 		}
701 	}
702 
703 	return 0;
704 }
705 
nvme_blk_probe(struct udevice * udev)706 static int nvme_blk_probe(struct udevice *udev)
707 {
708 	struct nvme_dev *ndev = dev_get_priv(udev->parent);
709 	struct blk_desc *desc = dev_get_uclass_plat(udev);
710 	struct nvme_ns *ns = dev_get_priv(udev);
711 	u8 flbas;
712 	struct nvme_id_ns *id;
713 
714 	id = memalign(ndev->page_size, sizeof(struct nvme_id_ns));
715 	if (!id)
716 		return -ENOMEM;
717 
718 	ns->dev = ndev;
719 	/* extract the namespace id from the block device name */
720 	ns->ns_id = trailing_strtol(udev->name);
721 	if (nvme_identify(ndev, ns->ns_id, 0, (dma_addr_t)(long)id)) {
722 		free(id);
723 		return -EIO;
724 	}
725 
726 	memcpy(&ns->eui64, &id->eui64, sizeof(id->eui64));
727 	flbas = id->flbas & NVME_NS_FLBAS_LBA_MASK;
728 	ns->flbas = flbas;
729 	ns->lba_shift = id->lbaf[flbas].ds;
730 	list_add(&ns->list, &ndev->namespaces);
731 
732 	desc->lba = le64_to_cpu(id->nsze);
733 	desc->log2blksz = ns->lba_shift;
734 	desc->blksz = 1 << ns->lba_shift;
735 	desc->bdev = udev;
736 	memcpy(desc->vendor, ndev->vendor, sizeof(ndev->vendor));
737 	memcpy(desc->product, ndev->serial, sizeof(ndev->serial));
738 	memcpy(desc->revision, ndev->firmware_rev, sizeof(ndev->firmware_rev));
739 
740 	free(id);
741 	return 0;
742 }
743 
nvme_blk_rw(struct udevice * udev,lbaint_t blknr,lbaint_t blkcnt,void * buffer,bool read)744 static ulong nvme_blk_rw(struct udevice *udev, lbaint_t blknr,
745 			 lbaint_t blkcnt, void *buffer, bool read)
746 {
747 	struct nvme_ns *ns = dev_get_priv(udev);
748 	struct nvme_dev *dev = ns->dev;
749 	struct nvme_command c;
750 	struct blk_desc *desc = dev_get_uclass_plat(udev);
751 	int status;
752 	u64 prp2;
753 	u64 total_len = blkcnt << desc->log2blksz;
754 	u64 temp_len = total_len;
755 	uintptr_t temp_buffer = (uintptr_t)buffer;
756 
757 	u64 slba = blknr;
758 	u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
759 	u64 total_lbas = blkcnt;
760 
761 	flush_dcache_range((unsigned long)buffer,
762 			   (unsigned long)buffer + total_len);
763 
764 	c.rw.opcode = read ? nvme_cmd_read : nvme_cmd_write;
765 	c.rw.flags = 0;
766 	c.rw.nsid = cpu_to_le32(ns->ns_id);
767 	c.rw.control = 0;
768 	c.rw.dsmgmt = 0;
769 	c.rw.reftag = 0;
770 	c.rw.apptag = 0;
771 	c.rw.appmask = 0;
772 	c.rw.metadata = 0;
773 
774 	while (total_lbas) {
775 		if (total_lbas < lbas) {
776 			lbas = (u16)total_lbas;
777 			total_lbas = 0;
778 		} else {
779 			total_lbas -= lbas;
780 		}
781 
782 		if (nvme_setup_prps(dev, &prp2,
783 				    lbas << ns->lba_shift, temp_buffer))
784 			return -EIO;
785 		c.rw.slba = cpu_to_le64(slba);
786 		slba += lbas;
787 		c.rw.length = cpu_to_le16(lbas - 1);
788 		c.rw.prp1 = cpu_to_le64(temp_buffer);
789 		c.rw.prp2 = cpu_to_le64(prp2);
790 		status = nvme_submit_sync_cmd(dev->queues[NVME_IO_Q],
791 				&c, NULL, IO_TIMEOUT);
792 		if (status)
793 			break;
794 		temp_len -= (u32)lbas << ns->lba_shift;
795 		temp_buffer += lbas << ns->lba_shift;
796 	}
797 
798 	if (read)
799 		invalidate_dcache_range((unsigned long)buffer,
800 					(unsigned long)buffer + total_len);
801 
802 	return (total_len - temp_len) >> desc->log2blksz;
803 }
804 
nvme_blk_read(struct udevice * udev,lbaint_t blknr,lbaint_t blkcnt,void * buffer)805 static ulong nvme_blk_read(struct udevice *udev, lbaint_t blknr,
806 			   lbaint_t blkcnt, void *buffer)
807 {
808 	return nvme_blk_rw(udev, blknr, blkcnt, buffer, true);
809 }
810 
nvme_blk_write(struct udevice * udev,lbaint_t blknr,lbaint_t blkcnt,const void * buffer)811 static ulong nvme_blk_write(struct udevice *udev, lbaint_t blknr,
812 			    lbaint_t blkcnt, const void *buffer)
813 {
814 	return nvme_blk_rw(udev, blknr, blkcnt, (void *)buffer, false);
815 }
816 
817 static const struct blk_ops nvme_blk_ops = {
818 	.read	= nvme_blk_read,
819 	.write	= nvme_blk_write,
820 };
821 
822 U_BOOT_DRIVER(nvme_blk) = {
823 	.name	= "nvme-blk",
824 	.id	= UCLASS_BLK,
825 	.probe	= nvme_blk_probe,
826 	.ops	= &nvme_blk_ops,
827 	.priv_auto	= sizeof(struct nvme_ns),
828 };
829 
nvme_init(struct udevice * udev)830 int nvme_init(struct udevice *udev)
831 {
832 	struct nvme_dev *ndev = dev_get_priv(udev);
833 	struct nvme_id_ns *id;
834 	int ret;
835 
836 	ndev->udev = udev;
837 	INIT_LIST_HEAD(&ndev->namespaces);
838 	if (readl(&ndev->bar->csts) == -1) {
839 		ret = -EBUSY;
840 		printf("Error: %s: Controller not ready!\n", udev->name);
841 		goto free_nvme;
842 	}
843 
844 	ndev->queues = malloc(NVME_Q_NUM * sizeof(struct nvme_queue *));
845 	if (!ndev->queues) {
846 		ret = -ENOMEM;
847 		printf("Error: %s: Out of memory!\n", udev->name);
848 		goto free_nvme;
849 	}
850 	memset(ndev->queues, 0, NVME_Q_NUM * sizeof(struct nvme_queue *));
851 
852 	ndev->cap = nvme_readq(&ndev->bar->cap);
853 	ndev->q_depth = min_t(int, NVME_CAP_MQES(ndev->cap) + 1, NVME_Q_DEPTH);
854 	ndev->db_stride = 1 << NVME_CAP_STRIDE(ndev->cap);
855 	ndev->dbs = ((void __iomem *)ndev->bar) + 4096;
856 
857 	ret = nvme_configure_admin_queue(ndev);
858 	if (ret) {
859 		log_debug("Unable to configure admin queue (err=%dE)\n", ret);
860 		goto free_queue;
861 	}
862 
863 	/* Allocate after the page size is known */
864 	ndev->prp_pool = memalign(ndev->page_size, MAX_PRP_POOL);
865 	if (!ndev->prp_pool) {
866 		ret = -ENOMEM;
867 		printf("Error: %s: Out of memory!\n", udev->name);
868 		goto free_nvme;
869 	}
870 	ndev->prp_entry_num = MAX_PRP_POOL >> 3;
871 
872 	ret = nvme_setup_io_queues(ndev);
873 	if (ret) {
874 		log_debug("Unable to setup I/O queues(err=%dE)\n", ret);
875 		goto free_queue;
876 	}
877 
878 	nvme_get_info_from_identify(ndev);
879 
880 	/* Create a blk device for each namespace */
881 
882 	id = memalign(ndev->page_size, sizeof(struct nvme_id_ns));
883 	if (!id) {
884 		ret = -ENOMEM;
885 		goto free_queue;
886 	}
887 
888 	for (int i = 1; i <= ndev->nn; i++) {
889 		struct udevice *ns_udev;
890 		char name[20];
891 
892 		memset(id, 0, sizeof(*id));
893 		if (nvme_identify(ndev, i, 0, (dma_addr_t)(long)id)) {
894 			ret = -EIO;
895 			goto free_id;
896 		}
897 
898 		/* skip inactive namespace */
899 		if (!id->nsze)
900 			continue;
901 
902 		/*
903 		 * Encode the namespace id to the device name so that
904 		 * we can extract it when doing the probe.
905 		 */
906 		sprintf(name, "blk#%d", i);
907 
908 		/* The real blksz and size will be set by nvme_blk_probe() */
909 		ret = blk_create_devicef(udev, "nvme-blk", name, UCLASS_NVME,
910 					 -1, DEFAULT_BLKSZ, 0, &ns_udev);
911 		if (ret)
912 			goto free_id;
913 
914 		ret = bootdev_setup_for_sibling_blk(ns_udev, "nvme_bootdev");
915 		if (ret) {
916 			log_err("bootdev: returning err=%d\n", ret);
917 			goto free_id;
918 		}
919 
920 		ret = blk_probe_or_unbind(ns_udev);
921 		if (ret)
922 			goto free_id;
923 	}
924 
925 	free(id);
926 	return 0;
927 
928 free_id:
929 	free(id);
930 free_queue:
931 	free((void *)ndev->queues);
932 free_nvme:
933 	return ret;
934 }
935 
nvme_shutdown(struct udevice * udev)936 int nvme_shutdown(struct udevice *udev)
937 {
938 	struct nvme_dev *ndev = dev_get_priv(udev);
939 	int ret;
940 
941 	ret = nvme_shutdown_ctrl(ndev);
942 	if (ret < 0) {
943 		printf("Error: %s: Shutdown timed out!\n", udev->name);
944 		return ret;
945 	}
946 
947 	return nvme_disable_ctrl(ndev);
948 }
949