1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2015-2016 Marvell International Ltd.
4  */
5 
6 #include <fdt_support.h>
7 #include <log.h>
8 #include <asm/global_data.h>
9 #include <asm/io.h>
10 #include <asm/arch/cpu.h>
11 #include <asm/arch/soc.h>
12 #include <linux/delay.h>
13 #include <phy.h>
14 
15 #include "comphy_a3700.h"
16 
17 DECLARE_GLOBAL_DATA_PTR;
18 
19 struct comphy_mux_data a3700_comphy_mux_data[] = {
20 	/* Lane 0 */
21 	{
22 		4,
23 		{
24 			{ COMPHY_TYPE_UNCONNECTED,	0x0 },
25 			{ COMPHY_TYPE_SGMII1,	0x0 },
26 			{ COMPHY_TYPE_USB3_HOST0,	0x1 },
27 			{ COMPHY_TYPE_USB3_DEVICE,	0x1 }
28 		}
29 	},
30 	/* Lane 1 */
31 	{
32 		3,
33 		{
34 			{ COMPHY_TYPE_UNCONNECTED,	0x0},
35 			{ COMPHY_TYPE_SGMII0,	0x0},
36 			{ COMPHY_TYPE_PEX0,	0x1}
37 		}
38 	},
39 	/* Lane 2 */
40 	{
41 		4,
42 		{
43 			{ COMPHY_TYPE_UNCONNECTED,	0x0},
44 			{ COMPHY_TYPE_SATA0,	0x0},
45 			{ COMPHY_TYPE_USB3_HOST0,	0x1},
46 			{ COMPHY_TYPE_USB3_DEVICE,	0x1}
47 		}
48 	},
49 };
50 
51 struct sgmii_phy_init_data_fix {
52 	u16 addr;
53 	u16 value;
54 };
55 
56 /* Changes to 40M1G25 mode data required for running 40M3G125 init mode */
57 static struct sgmii_phy_init_data_fix sgmii_phy_init_fix[] = {
58 	{0x005, 0x07CC}, {0x015, 0x0000}, {0x01B, 0x0000}, {0x01D, 0x0000},
59 	{0x01E, 0x0000}, {0x01F, 0x0000}, {0x020, 0x0000}, {0x021, 0x0030},
60 	{0x026, 0x0888}, {0x04D, 0x0152}, {0x04F, 0xA020}, {0x050, 0x07CC},
61 	{0x053, 0xE9CA}, {0x055, 0xBD97}, {0x071, 0x3015}, {0x076, 0x03AA},
62 	{0x07C, 0x0FDF}, {0x0C2, 0x3030}, {0x0C3, 0x8000}, {0x0E2, 0x5550},
63 	{0x0E3, 0x12A4}, {0x0E4, 0x7D00}, {0x0E6, 0x0C83}, {0x101, 0xFCC0},
64 	{0x104, 0x0C10}
65 };
66 
67 /* 40M1G25 mode init data */
68 static u16 sgmii_phy_init[512] = {
69 	/* 0       1       2       3       4       5       6       7 */
70 	/*-----------------------------------------------------------*/
71 	/* 8       9       A       B       C       D       E       F */
72 	0x3110, 0xFD83, 0x6430, 0x412F, 0x82C0, 0x06FA, 0x4500, 0x6D26,	/* 00 */
73 	0xAFC0, 0x8000, 0xC000, 0x0000, 0x2000, 0x49CC, 0x0BC9, 0x2A52,	/* 08 */
74 	0x0BD2, 0x0CDE, 0x13D2, 0x0CE8, 0x1149, 0x10E0, 0x0000, 0x0000,	/* 10 */
75 	0x0000, 0x0000, 0x0000, 0x0001, 0x0000, 0x4134, 0x0D2D, 0xFFFF,	/* 18 */
76 	0xFFE0, 0x4030, 0x1016, 0x0030, 0x0000, 0x0800, 0x0866, 0x0000,	/* 20 */
77 	0x0000, 0x0000, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF,	/* 28 */
78 	0xFFFF, 0xFFFF, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/* 30 */
79 	0x0000, 0x0000, 0x000F, 0x6A62, 0x1988, 0x3100, 0x3100, 0x3100,	/* 38 */
80 	0x3100, 0xA708, 0x2430, 0x0830, 0x1030, 0x4610, 0xFF00, 0xFF00,	/* 40 */
81 	0x0060, 0x1000, 0x0400, 0x0040, 0x00F0, 0x0155, 0x1100, 0xA02A,	/* 48 */
82 	0x06FA, 0x0080, 0xB008, 0xE3ED, 0x5002, 0xB592, 0x7A80, 0x0001,	/* 50 */
83 	0x020A, 0x8820, 0x6014, 0x8054, 0xACAA, 0xFC88, 0x2A02, 0x45CF,	/* 58 */
84 	0x000F, 0x1817, 0x2860, 0x064F, 0x0000, 0x0204, 0x1800, 0x6000,	/* 60 */
85 	0x810F, 0x4F23, 0x4000, 0x4498, 0x0850, 0x0000, 0x000E, 0x1002,	/* 68 */
86 	0x9D3A, 0x3009, 0xD066, 0x0491, 0x0001, 0x6AB0, 0x0399, 0x3780,	/* 70 */
87 	0x0040, 0x5AC0, 0x4A80, 0x0000, 0x01DF, 0x0000, 0x0007, 0x0000,	/* 78 */
88 	0x2D54, 0x00A1, 0x4000, 0x0100, 0xA20A, 0x0000, 0x0000, 0x0000,	/* 80 */
89 	0x0000, 0x0000, 0x0000, 0x7400, 0x0E81, 0x1000, 0x1242, 0x0210,	/* 88 */
90 	0x80DF, 0x0F1F, 0x2F3F, 0x4F5F, 0x6F7F, 0x0F1F, 0x2F3F, 0x4F5F,	/* 90 */
91 	0x6F7F, 0x4BAD, 0x0000, 0x0000, 0x0800, 0x0000, 0x2400, 0xB651,	/* 98 */
92 	0xC9E0, 0x4247, 0x0A24, 0x0000, 0xAF19, 0x1004, 0x0000, 0x0000,	/* A0 */
93 	0x0000, 0x0013, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/* A8 */
94 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/* B0 */
95 	0x0000, 0x0000, 0x0000, 0x0060, 0x0000, 0x0000, 0x0000, 0x0000,	/* B8 */
96 	0x0000, 0x0000, 0x3010, 0xFA00, 0x0000, 0x0000, 0x0000, 0x0003,	/* C0 */
97 	0x1618, 0x8200, 0x8000, 0x0400, 0x050F, 0x0000, 0x0000, 0x0000,	/* C8 */
98 	0x4C93, 0x0000, 0x1000, 0x1120, 0x0010, 0x1242, 0x1242, 0x1E00,	/* D0 */
99 	0x0000, 0x0000, 0x0000, 0x00F8, 0x0000, 0x0041, 0x0800, 0x0000,	/* D8 */
100 	0x82A0, 0x572E, 0x2490, 0x14A9, 0x4E00, 0x0000, 0x0803, 0x0541,	/* E0 */
101 	0x0C15, 0x0000, 0x0000, 0x0400, 0x2626, 0x0000, 0x0000, 0x4200,	/* E8 */
102 	0x0000, 0xAA55, 0x1020, 0x0000, 0x0000, 0x5010, 0x0000, 0x0000,	/* F0 */
103 	0x0000, 0x0000, 0x5000, 0x0000, 0x0000, 0x0000, 0x02F2, 0x0000,	/* F8 */
104 	0x101F, 0xFDC0, 0x4000, 0x8010, 0x0110, 0x0006, 0x0000, 0x0000,	/*100 */
105 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*108 */
106 	0x04CF, 0x0000, 0x04CF, 0x0000, 0x04CF, 0x0000, 0x04C6, 0x0000,	/*110 */
107 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*118 */
108 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*120 */
109 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*128 */
110 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*130 */
111 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*138 */
112 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*140 */
113 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*148 */
114 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*150 */
115 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*158 */
116 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*160 */
117 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*168 */
118 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*170 */
119 	0x0000, 0x0000, 0x0000, 0x00F0, 0x08A2, 0x3112, 0x0A14, 0x0000,	/*178 */
120 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*180 */
121 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*188 */
122 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*190 */
123 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*198 */
124 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*1A0 */
125 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*1A8 */
126 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*1B0 */
127 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*1B8 */
128 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*1C0 */
129 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*1C8 */
130 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*1D0 */
131 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*1D8 */
132 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*1E0 */
133 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*1E8 */
134 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*1F0 */
135 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000	/*1F8 */
136 };
137 
138 /*
139  * comphy_poll_reg
140  *
141  * return: 1 on success, 0 on timeout
142  */
comphy_poll_reg(void * addr,u32 val,u32 mask,u8 op_type)143 static u32 comphy_poll_reg(void *addr, u32 val, u32 mask, u8 op_type)
144 {
145 	u32 rval = 0xDEAD, timeout;
146 
147 	for (timeout = PLL_LOCK_TIMEOUT; timeout > 0; timeout--) {
148 		if (op_type == POLL_16B_REG)
149 			rval = readw(addr);	/* 16 bit */
150 		else
151 			rval = readl(addr) ;	/* 32 bit */
152 
153 		if ((rval & mask) == val)
154 			return 1;
155 
156 		udelay(10000);
157 	}
158 
159 	debug("Time out waiting (%p = %#010x)\n", addr, rval);
160 	return 0;
161 }
162 
163 /*
164  * comphy_pcie_power_up
165  *
166  * return: 1 if PLL locked (OK), 0 otherwise (FAIL)
167  */
comphy_pcie_power_up(u32 speed,u32 invert)168 static int comphy_pcie_power_up(u32 speed, u32 invert)
169 {
170 	int ret;
171 
172 	debug_enter();
173 
174 	/*
175 	 * 1. Enable max PLL.
176 	 */
177 	reg_set16(phy_addr(PCIE, LANE_CFG1), bf_use_max_pll_rate, 0);
178 
179 	/*
180 	 * 2. Select 20 bit SERDES interface.
181 	 */
182 	reg_set16(phy_addr(PCIE, GLOB_CLK_SRC_LO), bf_cfg_sel_20b, 0);
183 
184 	/*
185 	 * 3. Force to use reg setting for PCIe mode
186 	 */
187 	reg_set16(phy_addr(PCIE, MISC_REG1), bf_sel_bits_pcie_force, 0);
188 
189 	/*
190 	 * 4. Change RX wait
191 	 */
192 	reg_set16(phy_addr(PCIE, PWR_MGM_TIM1), 0x10C, 0xFFFF);
193 
194 	/*
195 	 * 5. Enable idle sync
196 	 */
197 	reg_set16(phy_addr(PCIE, UNIT_CTRL), 0x60 | rb_idle_sync_en, 0xFFFF);
198 
199 	/*
200 	 * 6. Enable the output of 100M/125M/500M clock
201 	 */
202 	reg_set16(phy_addr(PCIE, MISC_REG0),
203 		  0xA00D | rb_clk500m_en | rb_txdclk_2x_sel | rb_clk100m_125m_en, 0xFFFF);
204 
205 	/*
206 	 * 7. Enable TX
207 	 */
208 	reg_set(PCIE_REF_CLK_ADDR, 0x1342, 0xFFFFFFFF);
209 
210 	/*
211 	 * 8. Check crystal jumper setting and program the Power and PLL
212 	 *    Control accordingly
213 	 */
214 	if (get_ref_clk() == 40) {
215 		/* 40 MHz */
216 		reg_set16(phy_addr(PCIE, PWR_PLL_CTRL), 0xFC63, 0xFFFF);
217 	} else {
218 		/* 25 MHz */
219 		reg_set16(phy_addr(PCIE, PWR_PLL_CTRL), 0xFC62, 0xFFFF);
220 	}
221 
222 	/*
223 	 * 9. Override Speed_PLL value and use MAC PLL
224 	 */
225 	reg_set16(phy_addr(PCIE, KVCO_CAL_CTRL), 0x0040 | rb_use_max_pll_rate,
226 		  0xFFFF);
227 
228 	/*
229 	 * 10. Check the Polarity invert bit
230 	 */
231 	if (invert & COMPHY_POLARITY_TXD_INVERT)
232 		reg_set16(phy_addr(PCIE, SYNC_PATTERN), phy_txd_inv, 0);
233 	else
234 		reg_set16(phy_addr(PCIE, SYNC_PATTERN), 0, phy_txd_inv);
235 
236 	if (invert & COMPHY_POLARITY_RXD_INVERT)
237 		reg_set16(phy_addr(PCIE, SYNC_PATTERN), phy_rxd_inv, 0);
238 	else
239 		reg_set16(phy_addr(PCIE, SYNC_PATTERN), 0, phy_rxd_inv);
240 
241 	/*
242 	 * 11. Release SW reset
243 	 */
244 	reg_set16(phy_addr(PCIE, GLOB_PHY_CTRL0),
245 		  rb_mode_core_clk_freq_sel | rb_mode_pipe_width_32,
246 		  bf_soft_rst | bf_mode_refdiv);
247 
248 	/* Wait for > 55 us to allow PCLK be enabled */
249 	udelay(PLL_SET_DELAY_US);
250 
251 	/* Assert PCLK enabled */
252 	ret = comphy_poll_reg(phy_addr(PCIE, LANE_STAT1),	/* address */
253 			      rb_txdclk_pclk_en,		/* value */
254 			      rb_txdclk_pclk_en,		/* mask */
255 			      POLL_16B_REG);			/* 16bit */
256 	if (!ret)
257 		printf("Failed to lock PCIe PLL\n");
258 
259 	debug_exit();
260 
261 	/* Return the status of the PLL */
262 	return ret;
263 }
264 
265 /*
266  * reg_set_indirect
267  *
268  * return: void
269  */
reg_set_indirect(u32 reg,u16 data,u16 mask)270 static void reg_set_indirect(u32 reg, u16 data, u16 mask)
271 {
272 	reg_set(rh_vsreg_addr, reg, 0xFFFFFFFF);
273 	reg_set(rh_vsreg_data, data, mask);
274 }
275 
276 /*
277  * comphy_sata_power_up
278  *
279  * return: 1 if PLL locked (OK), 0 otherwise (FAIL)
280  */
comphy_sata_power_up(u32 invert)281 static int comphy_sata_power_up(u32 invert)
282 {
283 	int ret;
284 	u32 data = 0;
285 
286 	debug_enter();
287 
288 	/*
289 	 * 0. Check the Polarity invert bits
290 	 */
291 	if (invert & COMPHY_POLARITY_TXD_INVERT)
292 		data |= bs_txd_inv;
293 
294 	if (invert & COMPHY_POLARITY_RXD_INVERT)
295 		data |= bs_rxd_inv;
296 
297 	reg_set_indirect(vphy_sync_pattern_reg, data, bs_txd_inv | bs_rxd_inv);
298 
299 	/*
300 	 * 1. Select 40-bit data width width
301 	 */
302 	reg_set_indirect(vphy_loopback_reg0, 0x800, bs_phyintf_40bit);
303 
304 	/*
305 	 * 2. Select reference clock and PHY mode (SATA)
306 	 */
307 	if (get_ref_clk() == 40) {
308 		/* 40 MHz */
309 		reg_set_indirect(vphy_power_reg0, 0x3, 0x00FF);
310 	} else {
311 		/* 20 MHz */
312 		reg_set_indirect(vphy_power_reg0, 0x1, 0x00FF);
313 	}
314 
315 	/*
316 	 * 3. Use maximum PLL rate (no power save)
317 	 */
318 	reg_set_indirect(vphy_calctl_reg, bs_max_pll_rate, bs_max_pll_rate);
319 
320 	/*
321 	 * 4. Reset reserved bit (??)
322 	 */
323 	reg_set_indirect(vphy_reserve_reg, 0, bs_phyctrl_frm_pin);
324 
325 	/*
326 	 * 5. Set vendor-specific configuration (??)
327 	 */
328 	reg_set(rh_vs0_a, vsata_ctrl_reg, 0xFFFFFFFF);
329 	reg_set(rh_vs0_d, bs_phy_pu_pll, bs_phy_pu_pll);
330 
331 	/* Wait for > 55 us to allow PLL be enabled */
332 	udelay(PLL_SET_DELAY_US);
333 
334 	/* Assert SATA PLL enabled */
335 	reg_set(rh_vsreg_addr, vphy_loopback_reg0, 0xFFFFFFFF);
336 	ret = comphy_poll_reg(rh_vsreg_data,	/* address */
337 			      bs_pll_ready_tx,	/* value */
338 			      bs_pll_ready_tx,	/* mask */
339 			      POLL_32B_REG);	/* 32bit */
340 	if (!ret)
341 		printf("Failed to lock SATA PLL\n");
342 
343 	debug_exit();
344 
345 	return ret;
346 }
347 
348 /*
349  * usb3_reg_set16
350  *
351  * return: void
352  */
usb3_reg_set16(u32 reg,u16 data,u16 mask,u32 lane)353 static void usb3_reg_set16(u32 reg, u16 data, u16 mask, u32 lane)
354 {
355 	/*
356 	 * When Lane 2 PHY is for USB3, access the PHY registers
357 	 * through indirect Address and Data registers INDIR_ACC_PHY_ADDR
358 	 * (RD00E0178h [31:0]) and INDIR_ACC_PHY_DATA (RD00E017Ch [31:0])
359 	 * within the SATA Host Controller registers, Lane 2 base register
360 	 * offset is 0x200
361 	 */
362 
363 	if (lane == 2)
364 		reg_set_indirect(USB3PHY_LANE2_REG_BASE_OFFSET + reg, data,
365 				 mask);
366 	else
367 		reg_set16(phy_addr(USB3, reg), data, mask);
368 }
369 
370 /*
371  * comphy_usb3_power_up
372  *
373  * return: 1 if PLL locked (OK), 0 otherwise (FAIL)
374  */
comphy_usb3_power_up(u32 lane,u32 type,u32 speed,u32 invert)375 static int comphy_usb3_power_up(u32 lane, u32 type, u32 speed, u32 invert)
376 {
377 	int ret;
378 
379 	debug_enter();
380 
381 	/*
382 	 * 1. Power up OTG module
383 	 */
384 	reg_set(USB2_PHY_OTG_CTRL_ADDR, rb_pu_otg, 0);
385 
386 	/*
387 	 * 2. Set counter for 100us pulse in USB3 Host and Device
388 	 * restore default burst size limit (Reference Clock 31:24)
389 	 */
390 	reg_set(USB3_CTRPUL_VAL_REG, 0x8 << 24, rb_usb3_ctr_100ns);
391 
392 	/* 0xd005c300 = 0x1001 */
393 	/* set PRD_TXDEEMPH (3.5db de-emph) */
394 	usb3_reg_set16(LANE_CFG0, 0x1, 0xFF, lane);
395 
396 	/*
397 	 * Set BIT0: enable transmitter in high impedance mode
398 	 * Set BIT[3:4]: delay 2 clock cycles for HiZ off latency
399 	 * Set BIT6: Tx detect Rx at HiZ mode
400 	 * Unset BIT15: set to 0 to set USB3 De-emphasize level to -3.5db
401 	 *              together with bit 0 of COMPHY_REG_LANE_CFG0_ADDR
402 	 *              register
403 	 */
404 	usb3_reg_set16(LANE_CFG1,
405 		       tx_det_rx_mode | gen2_tx_data_dly_deft
406 		       | tx_elec_idle_mode_en,
407 		       prd_txdeemph1_mask | tx_det_rx_mode
408 		       | gen2_tx_data_dly_mask | tx_elec_idle_mode_en, lane);
409 
410 	/* 0xd005c310 = 0x93: set Spread Spectrum Clock Enabled */
411 	usb3_reg_set16(LANE_CFG4, bf_spread_spectrum_clock_en, 0x80, lane);
412 
413 	/*
414 	 * set Override Margining Controls From the MAC: Use margining signals
415 	 * from lane configuration
416 	 */
417 	usb3_reg_set16(TEST_MODE_CTRL, rb_mode_margin_override, 0xFFFF, lane);
418 
419 	/* set Lane-to-Lane Bundle Clock Sampling Period = per PCLK cycles */
420 	/* set Mode Clock Source = PCLK is generated from REFCLK */
421 	usb3_reg_set16(GLOB_CLK_SRC_LO, 0x0, 0xFF, lane);
422 
423 	/* set G2 Spread Spectrum Clock Amplitude at 4K */
424 	usb3_reg_set16(GEN2_SETTINGS_2, g2_tx_ssc_amp, 0xF000, lane);
425 
426 	/*
427 	 * unset G3 Spread Spectrum Clock Amplitude & set G3 TX and RX Register
428 	 * Master Current Select
429 	 */
430 	usb3_reg_set16(GEN2_SETTINGS_3, 0x0, 0xFFFF, lane);
431 
432 	/*
433 	 * 3. Check crystal jumper setting and program the Power and PLL
434 	 * Control accordingly
435 	 * 4. Change RX wait
436 	 */
437 	if (get_ref_clk() == 40) {
438 		/* 40 MHz */
439 		usb3_reg_set16(PWR_PLL_CTRL, 0xFCA3, 0xFFFF, lane);
440 		usb3_reg_set16(PWR_MGM_TIM1, 0x10C, 0xFFFF, lane);
441 	} else {
442 		/* 25 MHz */
443 		usb3_reg_set16(PWR_PLL_CTRL, 0xFCA2, 0xFFFF, lane);
444 		usb3_reg_set16(PWR_MGM_TIM1, 0x107, 0xFFFF, lane);
445 	}
446 
447 	/*
448 	 * 5. Enable idle sync
449 	 */
450 	usb3_reg_set16(UNIT_CTRL, 0x60 | rb_idle_sync_en, 0xFFFF, lane);
451 
452 	/*
453 	 * 6. Enable the output of 500M clock
454 	 */
455 	usb3_reg_set16(MISC_REG0, 0xA00D | rb_clk500m_en, 0xFFFF, lane);
456 
457 	/*
458 	 * 7. Set 20-bit data width
459 	 */
460 	usb3_reg_set16(DIG_LB_EN, 0x0400, 0xFFFF, lane);
461 
462 	/*
463 	 * 8. Override Speed_PLL value and use MAC PLL
464 	 */
465 	usb3_reg_set16(KVCO_CAL_CTRL, 0x0040 | rb_use_max_pll_rate, 0xFFFF,
466 		       lane);
467 
468 	/*
469 	 * 9. Check the Polarity invert bit
470 	 */
471 	if (invert & COMPHY_POLARITY_TXD_INVERT)
472 		usb3_reg_set16(SYNC_PATTERN, phy_txd_inv, 0, lane);
473 	else
474 		usb3_reg_set16(SYNC_PATTERN, 0, phy_txd_inv, lane);
475 
476 	if (invert & COMPHY_POLARITY_RXD_INVERT)
477 		usb3_reg_set16(SYNC_PATTERN, phy_rxd_inv, 0, lane);
478 	else
479 		usb3_reg_set16(SYNC_PATTERN, 0, phy_rxd_inv, lane);
480 
481 	/*
482 	 * 10. Set max speed generation to USB3.0 5Gbps
483 	 */
484 	usb3_reg_set16(SYNC_MASK_GEN, 0x0400, 0x0C00, lane);
485 
486 	/*
487 	 * 11. Set capacitor value for FFE gain peaking to 0xF
488 	 */
489 	usb3_reg_set16(GEN3_SETTINGS_3, 0xF, 0xF, lane);
490 
491 	/*
492 	 * 12. Release SW reset
493 	 */
494 	usb3_reg_set16(GLOB_PHY_CTRL0,
495 		       rb_mode_core_clk_freq_sel | rb_mode_pipe_width_32
496 		       | 0x20, 0xFFFF, lane);
497 
498 	/* Wait for > 55 us to allow PCLK be enabled */
499 	udelay(PLL_SET_DELAY_US);
500 
501 	/* Assert PCLK enabled */
502 	if (lane == 2) {
503 		reg_set(rh_vsreg_addr,
504 			LANE_STAT1 + USB3PHY_LANE2_REG_BASE_OFFSET,
505 			0xFFFFFFFF);
506 		ret = comphy_poll_reg(rh_vsreg_data,		/* address */
507 				      rb_txdclk_pclk_en,	/* value */
508 				      rb_txdclk_pclk_en,	/* mask */
509 				      POLL_32B_REG);		/* 32bit */
510 	} else {
511 		ret = comphy_poll_reg(phy_addr(USB3, LANE_STAT1), /* address */
512 				      rb_txdclk_pclk_en,	  /* value */
513 				      rb_txdclk_pclk_en,	  /* mask */
514 				      POLL_16B_REG);		  /* 16bit */
515 	}
516 	if (!ret)
517 		printf("Failed to lock USB3 PLL\n");
518 
519 	/*
520 	 * Set Soft ID for Host mode (Device mode works with Hard ID
521 	 * detection)
522 	 */
523 	if (type == COMPHY_TYPE_USB3_HOST0) {
524 		/*
525 		 * set   BIT0: set ID_MODE of Host/Device = "Soft ID" (BIT1)
526 		 * clear BIT1: set SOFT_ID = Host
527 		 * set   BIT4: set INT_MODE = ID. Interrupt Mode: enable
528 		 *             interrupt by ID instead of using both interrupts
529 		 *             of HOST and Device ORed simultaneously
530 		 *             INT_MODE=ID in order to avoid unexpected
531 		 *             behaviour or both interrupts together
532 		 */
533 		reg_set(USB32_CTRL_BASE,
534 			usb32_ctrl_id_mode | usb32_ctrl_int_mode,
535 			usb32_ctrl_id_mode | usb32_ctrl_soft_id |
536 			usb32_ctrl_int_mode);
537 	}
538 
539 	debug_exit();
540 
541 	return ret;
542 }
543 
544 /*
545  * comphy_usb2_power_up
546  *
547  * return: 1 if PLL locked (OK), 0 otherwise (FAIL)
548  */
comphy_usb2_power_up(u8 usb32)549 static int comphy_usb2_power_up(u8 usb32)
550 {
551 	int ret;
552 
553 	debug_enter();
554 
555 	if (usb32 != 0 && usb32 != 1) {
556 		printf("invalid usb32 value: (%d), should be either 0 or 1\n",
557 		       usb32);
558 		debug_exit();
559 		return 0;
560 	}
561 
562 	/*
563 	 * 0. Setup PLL. 40MHz clock uses defaults.
564 	 *    See "PLL Settings for Typical REFCLK" table
565 	 */
566 	if (get_ref_clk() == 25) {
567 		reg_set(USB2_PHY_BASE(usb32), 5 | (96 << 16),
568 			0x3F | (0xFF << 16) | (0x3 << 28));
569 	}
570 
571 	/*
572 	 * 1. PHY pull up and disable USB2 suspend
573 	 */
574 	reg_set(USB2_PHY_CTRL_ADDR(usb32),
575 		RB_USB2PHY_SUSPM(usb32) | RB_USB2PHY_PU(usb32), 0);
576 
577 	if (usb32 != 0) {
578 		/*
579 		 * 2. Power up OTG module
580 		 */
581 		reg_set(USB2_PHY_OTG_CTRL_ADDR, rb_pu_otg, 0);
582 
583 		/*
584 		 * 3. Configure PHY charger detection
585 		 */
586 		reg_set(USB2_PHY_CHRGR_DET_ADDR, 0,
587 			rb_cdp_en | rb_dcp_en | rb_pd_en | rb_cdp_dm_auto |
588 			rb_enswitch_dp | rb_enswitch_dm | rb_pu_chrg_dtc);
589 	}
590 
591 	/* Assert PLL calibration done */
592 	ret = comphy_poll_reg(USB2_PHY_CAL_CTRL_ADDR(usb32),
593 			      rb_usb2phy_pllcal_done,	/* value */
594 			      rb_usb2phy_pllcal_done,	/* mask */
595 			      POLL_32B_REG);		/* 32bit */
596 	if (!ret) {
597 		printf("Failed to end USB2 PLL calibration\n");
598 		goto out;
599 	}
600 
601 	/* Assert impedance calibration done */
602 	ret = comphy_poll_reg(USB2_PHY_CAL_CTRL_ADDR(usb32),
603 			      rb_usb2phy_impcal_done,	/* value */
604 			      rb_usb2phy_impcal_done,	/* mask */
605 			      POLL_32B_REG);		/* 32bit */
606 	if (!ret) {
607 		printf("Failed to end USB2 impedance calibration\n");
608 		goto out;
609 	}
610 
611 	/* Assert squetch calibration done */
612 	ret = comphy_poll_reg(USB2_PHY_RX_CHAN_CTRL1_ADDR(usb32),
613 			      rb_usb2phy_sqcal_done,	/* value */
614 			      rb_usb2phy_sqcal_done,	/* mask */
615 			      POLL_32B_REG);		/* 32bit */
616 	if (!ret) {
617 		printf("Failed to end USB2 unknown calibration\n");
618 		goto out;
619 	}
620 
621 	/* Assert PLL is ready */
622 	ret = comphy_poll_reg(USB2_PHY_PLL_CTRL0_ADDR(usb32),
623 			      rb_usb2phy_pll_ready,		/* value */
624 			      rb_usb2phy_pll_ready,		/* mask */
625 			      POLL_32B_REG);		/* 32bit */
626 
627 	if (!ret) {
628 		printf("Failed to lock USB2 PLL\n");
629 		goto out;
630 	}
631 
632 out:
633 	debug_exit();
634 
635 	return ret;
636 }
637 
638 /*
639  * comphy_emmc_power_up
640  *
641  * return: 1 if PLL locked (OK), 0 otherwise (FAIL)
642  */
comphy_emmc_power_up(void)643 static int comphy_emmc_power_up(void)
644 {
645 	debug_enter();
646 
647 	/*
648 	 * 1. Bus power ON, Bus voltage 1.8V
649 	 */
650 	reg_set(SDIO_HOST_CTRL1_ADDR, 0xB00, 0xF00);
651 
652 	/*
653 	 * 2. Set FIFO parameters
654 	 */
655 	reg_set(SDIO_SDHC_FIFO_ADDR, 0x315, 0xFFFFFFFF);
656 
657 	/*
658 	 * 3. Set Capabilities 1_2
659 	 */
660 	reg_set(SDIO_CAP_12_ADDR, 0x25FAC8B2, 0xFFFFFFFF);
661 
662 	/*
663 	 * 4. Set Endian
664 	 */
665 	reg_set(SDIO_ENDIAN_ADDR, 0x00c00000, 0);
666 
667 	/*
668 	 * 4. Init PHY
669 	 */
670 	reg_set(SDIO_PHY_TIMING_ADDR, 0x80000000, 0x80000000);
671 	reg_set(SDIO_PHY_PAD_CTRL0_ADDR, 0x50000000, 0xF0000000);
672 
673 	/*
674 	 * 5. DLL reset
675 	 */
676 	reg_set(SDIO_DLL_RST_ADDR, 0xFFFEFFFF, 0);
677 	reg_set(SDIO_DLL_RST_ADDR, 0x00010000, 0);
678 
679 	debug_exit();
680 
681 	return 1;
682 }
683 
684 /*
685  * comphy_sgmii_power_up
686  *
687  * return:
688  */
comphy_sgmii_phy_init(u32 lane,u32 speed)689 static void comphy_sgmii_phy_init(u32 lane, u32 speed)
690 {
691 	const int fix_arr_sz = ARRAY_SIZE(sgmii_phy_init_fix);
692 	int addr, fix_idx;
693 	u16 val;
694 
695 	fix_idx = 0;
696 	for (addr = 0; addr < 512; addr++) {
697 		/*
698 		 * All PHY register values are defined in full for 3.125Gbps
699 		 * SERDES speed. The values required for 1.25 Gbps are almost
700 		 * the same and only few registers should be "fixed" in
701 		 * comparison to 3.125 Gbps values. These register values are
702 		 * stored in "sgmii_phy_init_fix" array.
703 		 */
704 		if (speed != COMPHY_SPEED_1_25G &&
705 		    sgmii_phy_init_fix[fix_idx].addr == addr) {
706 			/* Use new value */
707 			val = sgmii_phy_init_fix[fix_idx].value;
708 			if (fix_idx < fix_arr_sz)
709 				fix_idx++;
710 		} else {
711 			val = sgmii_phy_init[addr];
712 		}
713 
714 		reg_set16(sgmiiphy_addr(lane, addr), val, 0xFFFF);
715 	}
716 }
717 
718 /*
719  * comphy_sgmii_power_up
720  *
721  * return: 1 if PLL locked (OK), 0 otherwise (FAIL)
722  */
comphy_sgmii_power_up(u32 lane,u32 speed,u32 invert)723 static int comphy_sgmii_power_up(u32 lane, u32 speed, u32 invert)
724 {
725 	int ret;
726 	u32 saved_selector;
727 
728 	debug_enter();
729 
730 	/*
731 	 * 1. Configure PHY to SATA/SAS mode by setting pin PIN_PIPE_SEL=0
732 	 */
733 	saved_selector = readl(COMPHY_SEL_ADDR);
734 	reg_set(COMPHY_SEL_ADDR, 0, 0xFFFFFFFF);
735 
736 	/*
737 	 * 2. Reset PHY by setting PHY input port PIN_RESET=1.
738 	 * 3. Set PHY input port PIN_TX_IDLE=1, PIN_PU_IVREF=1 to keep
739 	 *    PHY TXP/TXN output to idle state during PHY initialization
740 	 * 4. Set PHY input port PIN_PU_PLL=0, PIN_PU_RX=0, PIN_PU_TX=0.
741 	 */
742 	reg_set(COMPHY_PHY_CFG1_ADDR(lane),
743 		rb_pin_reset_comphy | rb_pin_tx_idle | rb_pin_pu_iveref,
744 		rb_pin_reset_core | rb_pin_pu_pll |
745 		rb_pin_pu_rx | rb_pin_pu_tx);
746 
747 	/*
748 	 * 5. Release reset to the PHY by setting PIN_RESET=0.
749 	 */
750 	reg_set(COMPHY_PHY_CFG1_ADDR(lane), 0, rb_pin_reset_comphy);
751 
752 	/*
753 	 * 7. Set PIN_PHY_GEN_TX[3:0] and PIN_PHY_GEN_RX[3:0] to decide
754 	 *    COMPHY bit rate
755 	 */
756 	if (speed == COMPHY_SPEED_3_125G) { /* 3.125 GHz */
757 		reg_set(COMPHY_PHY_CFG1_ADDR(lane),
758 			(0x8 << rf_gen_rx_sel_shift) |
759 			(0x8 << rf_gen_tx_sel_shift),
760 			rf_gen_rx_select | rf_gen_tx_select);
761 
762 	} else if (speed == COMPHY_SPEED_1_25G) { /* 1.25 GHz */
763 		reg_set(COMPHY_PHY_CFG1_ADDR(lane),
764 			(0x6 << rf_gen_rx_sel_shift) |
765 			(0x6 << rf_gen_tx_sel_shift),
766 			rf_gen_rx_select | rf_gen_tx_select);
767 	} else {
768 		printf("Unsupported COMPHY speed!\n");
769 		return 0;
770 	}
771 
772 	/*
773 	 * 8. Wait 1mS for bandgap and reference clocks to stabilize;
774 	 *    then start SW programming.
775 	 */
776 	mdelay(10);
777 
778 	/* 9. Program COMPHY register PHY_MODE */
779 	reg_set16(sgmiiphy_addr(lane, PWR_PLL_CTRL),
780 		  PHY_MODE_SGMII << rf_phy_mode_shift, rf_phy_mode_mask);
781 
782 	/*
783 	 * 10. Set COMPHY register REFCLK_SEL to select the correct REFCLK
784 	 *     source
785 	 */
786 	reg_set16(sgmiiphy_addr(lane, MISC_REG0), 0, rb_ref_clk_sel);
787 
788 	/*
789 	 * 11. Set correct reference clock frequency in COMPHY register
790 	 *     REF_FREF_SEL.
791 	 */
792 	if (get_ref_clk() == 40) {
793 		reg_set16(sgmiiphy_addr(lane, PWR_PLL_CTRL),
794 			  0x4 << rf_ref_freq_sel_shift, rf_ref_freq_sel_mask);
795 	} else {
796 		/* 25MHz */
797 		reg_set16(sgmiiphy_addr(lane, PWR_PLL_CTRL),
798 			  0x1 << rf_ref_freq_sel_shift, rf_ref_freq_sel_mask);
799 	}
800 
801 	/* 12. Program COMPHY register PHY_GEN_MAX[1:0] */
802 	/*
803 	 * This step is mentioned in the flow received from verification team.
804 	 * However the PHY_GEN_MAX value is only meaningful for other
805 	 * interfaces (not SGMII). For instance, it selects SATA speed
806 	 * 1.5/3/6 Gbps or PCIe speed  2.5/5 Gbps
807 	 */
808 
809 	/*
810 	 * 13. Program COMPHY register SEL_BITS to set correct parallel data
811 	 *     bus width
812 	 */
813 	/* 10bit */
814 	reg_set16(sgmiiphy_addr(lane, DIG_LB_EN), 0, rf_data_width_mask);
815 
816 	/*
817 	 * 14. As long as DFE function needs to be enabled in any mode,
818 	 *     COMPHY register DFE_UPDATE_EN[5:0] shall be programmed to 0x3F
819 	 *     for real chip during COMPHY power on.
820 	 */
821 	/*
822 	 * The step 14 exists (and empty) in the original initialization flow
823 	 * obtained from the verification team. According to the functional
824 	 * specification DFE_UPDATE_EN already has the default value 0x3F
825 	 */
826 
827 	/*
828 	 * 15. Program COMPHY GEN registers.
829 	 *     These registers should be programmed based on the lab testing
830 	 *     result to achieve optimal performance. Please contact the CEA
831 	 *     group to get the related GEN table during real chip bring-up.
832 	 *     We only requred to run though the entire registers programming
833 	 *     flow defined by "comphy_sgmii_phy_init" when the REF clock is
834 	 *     40 MHz. For REF clock 25 MHz the default values stored in PHY
835 	 *     registers are OK.
836 	 */
837 	debug("Running C-DPI phy init %s mode\n",
838 	      speed == COMPHY_SPEED_3_125G ? "2G5" : "1G");
839 	if (get_ref_clk() == 40)
840 		comphy_sgmii_phy_init(lane, speed);
841 
842 	/*
843 	 * 16. [Simulation Only] should not be used for real chip.
844 	 *     By pass power up calibration by programming EXT_FORCE_CAL_DONE
845 	 *     (R02h[9]) to 1 to shorten COMPHY simulation time.
846 	 */
847 	/*
848 	 * 17. [Simulation Only: should not be used for real chip]
849 	 *     Program COMPHY register FAST_DFE_TIMER_EN=1 to shorten RX
850 	 *     training simulation time.
851 	 */
852 
853 	/*
854 	 * 18. Check the PHY Polarity invert bit
855 	 */
856 	if (invert & COMPHY_POLARITY_TXD_INVERT)
857 		reg_set16(sgmiiphy_addr(lane, SYNC_PATTERN), phy_txd_inv, 0);
858 	else
859 		reg_set16(sgmiiphy_addr(lane, SYNC_PATTERN), 0, phy_txd_inv);
860 
861 	if (invert & COMPHY_POLARITY_RXD_INVERT)
862 		reg_set16(sgmiiphy_addr(lane, SYNC_PATTERN), phy_rxd_inv, 0);
863 	else
864 		reg_set16(sgmiiphy_addr(lane, SYNC_PATTERN), 0, phy_rxd_inv);
865 
866 	/*
867 	 * 19. Set PHY input ports PIN_PU_PLL, PIN_PU_TX and PIN_PU_RX to 1
868 	 *     to start PHY power up sequence. All the PHY register
869 	 *     programming should be done before PIN_PU_PLL=1. There should be
870 	 *     no register programming for normal PHY operation from this point.
871 	 */
872 	reg_set(COMPHY_PHY_CFG1_ADDR(lane),
873 		rb_pin_pu_pll | rb_pin_pu_rx | rb_pin_pu_tx,
874 		rb_pin_pu_pll | rb_pin_pu_rx | rb_pin_pu_tx);
875 
876 	/*
877 	 * 20. Wait for PHY power up sequence to finish by checking output ports
878 	 *     PIN_PLL_READY_TX=1 and PIN_PLL_READY_RX=1.
879 	 */
880 	ret = comphy_poll_reg(COMPHY_PHY_STAT1_ADDR(lane),	/* address */
881 			      rb_pll_ready_tx | rb_pll_ready_rx, /* value */
882 			      rb_pll_ready_tx | rb_pll_ready_rx, /* mask */
883 			      POLL_32B_REG);			/* 32bit */
884 	if (!ret) {
885 		printf("Failed to lock PLL for SGMII PHY %d\n", lane);
886 		goto out;
887 	}
888 
889 	/*
890 	 * 21. Set COMPHY input port PIN_TX_IDLE=0
891 	 */
892 	reg_set(COMPHY_PHY_CFG1_ADDR(lane), 0x0, rb_pin_tx_idle);
893 
894 	/*
895 	 * 22. After valid data appear on PIN_RXDATA bus, set PIN_RX_INIT=1.
896 	 *     to start RX initialization. PIN_RX_INIT_DONE will be cleared to
897 	 *     0 by the PHY. After RX initialization is done, PIN_RX_INIT_DONE
898 	 *     will be set to 1 by COMPHY. Set PIN_RX_INIT=0 after
899 	 *     PIN_RX_INIT_DONE= 1.
900 	 *     Please refer to RX initialization part for details.
901 	 */
902 	reg_set(COMPHY_PHY_CFG1_ADDR(lane), rb_phy_rx_init, 0x0);
903 
904 	ret = comphy_poll_reg(COMPHY_PHY_STAT1_ADDR(lane), /* address */
905 			      rb_rx_init_done,			/* value */
906 			      rb_rx_init_done,			/* mask */
907 			      POLL_32B_REG);			/* 32bit */
908 	if (!ret) {
909 		printf("Failed to init RX of SGMII PHY %d\n", lane);
910 		goto out;
911 	}
912 
913 	/*
914 	 * Restore saved selector.
915 	 */
916 	reg_set(COMPHY_SEL_ADDR, saved_selector, 0xFFFFFFFF);
917 
918 out:
919 	debug_exit();
920 
921 	return ret;
922 }
923 
comphy_dedicated_phys_init(void)924 void comphy_dedicated_phys_init(void)
925 {
926 	int node, usb32, ret = 1;
927 	const void *blob = gd->fdt_blob;
928 
929 	debug_enter();
930 
931 	for (usb32 = 0; usb32 <= 1; usb32++) {
932 		/*
933 		 * There are 2 UTMI PHYs in this SOC.
934 		 * One is independendent and one is paired with USB3 port (OTG)
935 		 */
936 		if (usb32 == 0) {
937 			node = fdt_node_offset_by_compatible(
938 				blob, -1, "marvell,armada-3700-ehci");
939 		} else {
940 			node = fdt_node_offset_by_compatible(
941 				blob, -1, "marvell,armada3700-xhci");
942 		}
943 
944 		if (node > 0) {
945 			if (fdtdec_get_is_enabled(blob, node)) {
946 				ret = comphy_usb2_power_up(usb32);
947 				if (!ret)
948 					printf("Failed to initialize UTMI PHY\n");
949 				else
950 					debug("UTMI PHY init succeed\n");
951 			} else {
952 				debug("USB%d node is disabled\n",
953 				      usb32 == 0 ? 2 : 3);
954 			}
955 		} else {
956 			debug("No USB%d node in DT\n", usb32 == 0 ? 2 : 3);
957 		}
958 	}
959 
960 	node = fdt_node_offset_by_compatible(blob, -1,
961 					     "marvell,armada-8k-sdhci");
962 	if (node <= 0) {
963 		node = fdt_node_offset_by_compatible(
964 			blob, -1, "marvell,armada-3700-sdhci");
965 	}
966 
967 	if (node > 0) {
968 		if (fdtdec_get_is_enabled(blob, node)) {
969 			ret = comphy_emmc_power_up();
970 			if (!ret)
971 				printf("Failed to initialize SDIO/eMMC PHY\n");
972 			else
973 				debug("SDIO/eMMC PHY init succeed\n");
974 		} else {
975 			debug("SDIO/eMMC node is disabled\n");
976 		}
977 	}  else {
978 		debug("No SDIO/eMMC node in DT\n");
979 	}
980 
981 	debug_exit();
982 }
983 
find_available_node_by_compatible(int offset,const char * compatible)984 static int find_available_node_by_compatible(int offset, const char *compatible)
985 {
986 	fdt_for_each_node_by_compatible(offset, gd->fdt_blob, offset,
987 					compatible)
988 		if (fdtdec_get_is_enabled(gd->fdt_blob, offset))
989 			return offset;
990 
991 	return -1;
992 }
993 
comphy_a3700_find_lane(const int nodes[3],int node,int port,int * lane,int * invert)994 static bool comphy_a3700_find_lane(const int nodes[3], int node,
995 				   int port, int *lane, int *invert)
996 {
997 	int res, i, j;
998 
999 	for (i = 0; ; i++) {
1000 		struct fdtdec_phandle_args args;
1001 
1002 		res = fdtdec_parse_phandle_with_args(gd->fdt_blob, node, "phys",
1003 						     "#phy-cells", 0, i, &args);
1004 		if (res)
1005 			return false;
1006 
1007 		for (j = 0; j < 3; j++) {
1008 			if (nodes[j] >= 0 && args.node == nodes[j] &&
1009 			    (args.args_count >= 1 ? args.args[0] : 0) == port) {
1010 				*lane = j;
1011 				*invert = args.args_count >= 2 ? args.args[1]
1012 							       : 0;
1013 				return true;
1014 			}
1015 		}
1016 	}
1017 
1018 	return false;
1019 }
1020 
comphy_a3700_fill_cfg(struct chip_serdes_phy_config * cfg,const int nodes[3],const char * compatible,int type)1021 static void comphy_a3700_fill_cfg(struct chip_serdes_phy_config *cfg,
1022 				  const int nodes[3], const char *compatible,
1023 				  int type)
1024 {
1025 	int node, lane, port, speed, invert;
1026 
1027 	port = (type == COMPHY_TYPE_SGMII1) ? 1 : 0;
1028 
1029 	node = -1;
1030 	while (1) {
1031 		node = find_available_node_by_compatible(node, compatible);
1032 		if (node < 0)
1033 			return;
1034 
1035 		if (comphy_a3700_find_lane(nodes, node, port, &lane, &invert))
1036 			break;
1037 	}
1038 
1039 	if (cfg->comphy_map_data[lane].type != COMPHY_TYPE_UNCONNECTED) {
1040 		printf("Error: More PHYs defined for lane %d, skipping\n",
1041 		       lane);
1042 		return;
1043 	}
1044 
1045 	if (type == COMPHY_TYPE_SGMII0 || type == COMPHY_TYPE_SGMII1) {
1046 		const char *phy_mode;
1047 
1048 		phy_mode = fdt_getprop(gd->fdt_blob, node, "phy-mode", NULL);
1049 		if (phy_mode &&
1050 		    !strcmp(phy_mode,
1051 			    phy_string_for_interface(PHY_INTERFACE_MODE_2500BASEX)))
1052 			speed = COMPHY_SPEED_3_125G;
1053 		else
1054 			speed = COMPHY_SPEED_1_25G;
1055 	} else if (type == COMPHY_TYPE_SATA0) {
1056 		speed = COMPHY_SPEED_6G;
1057 	} else {
1058 		speed = COMPHY_SPEED_5G;
1059 	}
1060 
1061 	cfg->comphy_map_data[lane].type = type;
1062 	cfg->comphy_map_data[lane].speed = speed;
1063 	cfg->comphy_map_data[lane].invert = invert;
1064 }
1065 
1066 static const fdt32_t comphy_a3700_mux_lane_order[3] = {
1067 	__constant_cpu_to_be32(1),
1068 	__constant_cpu_to_be32(0),
1069 	__constant_cpu_to_be32(2),
1070 };
1071 
comphy_a3700_init_serdes_map(int node,struct chip_serdes_phy_config * cfg)1072 int comphy_a3700_init_serdes_map(int node, struct chip_serdes_phy_config *cfg)
1073 {
1074 	int comphy_nodes[3];
1075 	int child, i;
1076 
1077 	for (i = 0; i < ARRAY_SIZE(comphy_nodes); i++)
1078 		comphy_nodes[i] = -FDT_ERR_NOTFOUND;
1079 
1080 	fdt_for_each_subnode(child, gd->fdt_blob, node) {
1081 		if (!fdtdec_get_is_enabled(gd->fdt_blob, child))
1082 			continue;
1083 
1084 		i = fdtdec_get_int(gd->fdt_blob, child, "reg", -1);
1085 		if (i < 0 || i >= ARRAY_SIZE(comphy_nodes))
1086 			continue;
1087 
1088 		comphy_nodes[i] = child;
1089 	}
1090 
1091 	for (i = 0; i < ARRAY_SIZE(comphy_nodes); i++) {
1092 		cfg->comphy_map_data[i].type = COMPHY_TYPE_UNCONNECTED;
1093 		cfg->comphy_map_data[i].speed = COMPHY_SPEED_INVALID;
1094 	}
1095 
1096 	comphy_a3700_fill_cfg(cfg, comphy_nodes, "marvell,armada3700-u3d",
1097 			      COMPHY_TYPE_USB3_DEVICE);
1098 	comphy_a3700_fill_cfg(cfg, comphy_nodes, "marvell,armada3700-xhci",
1099 			      COMPHY_TYPE_USB3_HOST0);
1100 	comphy_a3700_fill_cfg(cfg, comphy_nodes, "marvell,armada-3700-pcie",
1101 			      COMPHY_TYPE_PEX0);
1102 	comphy_a3700_fill_cfg(cfg, comphy_nodes, "marvell,armada-3700-ahci",
1103 			      COMPHY_TYPE_SATA0);
1104 	comphy_a3700_fill_cfg(cfg, comphy_nodes, "marvell,armada-3700-neta",
1105 			      COMPHY_TYPE_SGMII0);
1106 	comphy_a3700_fill_cfg(cfg, comphy_nodes, "marvell,armada-3700-neta",
1107 			      COMPHY_TYPE_SGMII1);
1108 
1109 	cfg->comphy_lanes_count = 3;
1110 	cfg->comphy_mux_bitcount = 4;
1111 	cfg->comphy_mux_lane_order = comphy_a3700_mux_lane_order;
1112 
1113 	return 0;
1114 }
1115 
comphy_a3700_init(struct chip_serdes_phy_config * chip_cfg,struct comphy_map * serdes_map)1116 int comphy_a3700_init(struct chip_serdes_phy_config *chip_cfg,
1117 		      struct comphy_map *serdes_map)
1118 {
1119 	struct comphy_map *comphy_map;
1120 	u32 comphy_max_count = chip_cfg->comphy_lanes_count;
1121 	u32 lane, ret = 0;
1122 
1123 	debug_enter();
1124 
1125 	/* Initialize PHY mux */
1126 	chip_cfg->mux_data = a3700_comphy_mux_data;
1127 	comphy_mux_init(chip_cfg, serdes_map, COMPHY_SEL_ADDR);
1128 
1129 	for (lane = 0, comphy_map = serdes_map; lane < comphy_max_count;
1130 	     lane++, comphy_map++) {
1131 		debug("Initialize serdes number %d\n", lane);
1132 		debug("Serdes type = 0x%x invert=%d\n",
1133 		      comphy_map->type, comphy_map->invert);
1134 
1135 		switch (comphy_map->type) {
1136 		case COMPHY_TYPE_UNCONNECTED:
1137 			continue;
1138 			break;
1139 
1140 		case COMPHY_TYPE_PEX0:
1141 			ret = comphy_pcie_power_up(comphy_map->speed,
1142 						   comphy_map->invert);
1143 			break;
1144 
1145 		case COMPHY_TYPE_USB3_HOST0:
1146 		case COMPHY_TYPE_USB3_DEVICE:
1147 			ret = comphy_usb3_power_up(lane,
1148 						   comphy_map->type,
1149 						   comphy_map->speed,
1150 						   comphy_map->invert);
1151 			break;
1152 
1153 		case COMPHY_TYPE_SGMII0:
1154 		case COMPHY_TYPE_SGMII1:
1155 			ret = comphy_sgmii_power_up(lane, comphy_map->speed,
1156 						    comphy_map->invert);
1157 			break;
1158 
1159 		case COMPHY_TYPE_SATA0:
1160 			ret = comphy_sata_power_up(comphy_map->invert);
1161 			break;
1162 
1163 		default:
1164 			debug("Unknown SerDes type, skip initialize SerDes %d\n",
1165 			      lane);
1166 			ret = 1;
1167 			break;
1168 		}
1169 		if (!ret)
1170 			printf("PLL is not locked - Failed to initialize lane %d\n",
1171 			       lane);
1172 	}
1173 
1174 	debug_exit();
1175 	return ret;
1176 }
1177