1 // SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
2 /*
3  * Copyright (C) 2019, STMicroelectronics - All Rights Reserved
4  */
5 
6 #define LOG_CATEGORY UCLASS_RTC
7 
8 #include <clk.h>
9 #include <dm.h>
10 #include <malloc.h>
11 #include <rtc.h>
12 #include <asm/io.h>
13 #include <dm/device_compat.h>
14 #include <linux/bitops.h>
15 #include <linux/iopoll.h>
16 
17 #define STM32_RTC_TR		0x00
18 #define STM32_RTC_DR		0x04
19 #define STM32_RTC_ISR		0x0C
20 #define STM32_RTC_PRER		0x10
21 #define STM32_RTC_CR		0x18
22 #define STM32_RTC_WPR		0x24
23 
24 /* STM32_RTC_TR bit fields  */
25 #define STM32_RTC_SEC_SHIFT	0
26 #define STM32_RTC_SEC		GENMASK(6, 0)
27 #define STM32_RTC_MIN_SHIFT	8
28 #define STM32_RTC_MIN		GENMASK(14, 8)
29 #define STM32_RTC_HOUR_SHIFT	16
30 #define STM32_RTC_HOUR		GENMASK(21, 16)
31 
32 /* STM32_RTC_DR bit fields */
33 #define STM32_RTC_DATE_SHIFT	0
34 #define STM32_RTC_DATE		GENMASK(5, 0)
35 #define STM32_RTC_MONTH_SHIFT	8
36 #define STM32_RTC_MONTH		GENMASK(12, 8)
37 #define STM32_RTC_WDAY_SHIFT	13
38 #define STM32_RTC_WDAY		GENMASK(15, 13)
39 #define STM32_RTC_YEAR_SHIFT	16
40 #define STM32_RTC_YEAR		GENMASK(23, 16)
41 
42 /* STM32_RTC_CR bit fields */
43 #define STM32_RTC_CR_FMT	BIT(6)
44 
45 /* STM32_RTC_ISR/STM32_RTC_ICSR bit fields */
46 #define STM32_RTC_ISR_INITS	BIT(4)
47 #define STM32_RTC_ISR_RSF	BIT(5)
48 #define STM32_RTC_ISR_INITF	BIT(6)
49 #define STM32_RTC_ISR_INIT	BIT(7)
50 
51 /* STM32_RTC_PRER bit fields */
52 #define STM32_RTC_PRER_PRED_S_SHIFT	0
53 #define STM32_RTC_PRER_PRED_S		GENMASK(14, 0)
54 #define STM32_RTC_PRER_PRED_A_SHIFT	16
55 #define STM32_RTC_PRER_PRED_A		GENMASK(22, 16)
56 
57 /* STM32_RTC_WPR key constants */
58 #define RTC_WPR_1ST_KEY		0xCA
59 #define RTC_WPR_2ND_KEY		0x53
60 #define RTC_WPR_WRONG_KEY	0xFF
61 
62 struct stm32_rtc_priv {
63 	fdt_addr_t base;
64 };
65 
stm32_rtc_get(struct udevice * dev,struct rtc_time * tm)66 static int stm32_rtc_get(struct udevice *dev, struct rtc_time *tm)
67 {
68 	struct stm32_rtc_priv *priv = dev_get_priv(dev);
69 	u32 tr, dr;
70 
71 	tr = readl(priv->base + STM32_RTC_TR);
72 	dr = readl(priv->base + STM32_RTC_DR);
73 
74 	tm->tm_sec = bcd2bin((tr & STM32_RTC_SEC) >> STM32_RTC_SEC_SHIFT);
75 	tm->tm_min = bcd2bin((tr & STM32_RTC_MIN) >> STM32_RTC_MIN_SHIFT);
76 	tm->tm_hour = bcd2bin((tr & STM32_RTC_HOUR) >> STM32_RTC_HOUR_SHIFT);
77 
78 	tm->tm_mday = bcd2bin((dr & STM32_RTC_DATE) >> STM32_RTC_DATE_SHIFT);
79 	tm->tm_mon = bcd2bin((dr & STM32_RTC_MONTH) >> STM32_RTC_MONTH_SHIFT);
80 	tm->tm_year = 2000 +
81 		      bcd2bin((dr & STM32_RTC_YEAR) >> STM32_RTC_YEAR_SHIFT);
82 	tm->tm_wday = bcd2bin((dr & STM32_RTC_WDAY) >> STM32_RTC_WDAY_SHIFT);
83 	tm->tm_yday = 0;
84 	tm->tm_isdst = 0;
85 
86 	dev_dbg(dev, "Get DATE: %4d-%02d-%02d (wday=%d)  TIME: %2d:%02d:%02d\n",
87 		tm->tm_year, tm->tm_mon, tm->tm_mday, tm->tm_wday,
88 		tm->tm_hour, tm->tm_min, tm->tm_sec);
89 
90 	return 0;
91 }
92 
stm32_rtc_unlock(struct udevice * dev)93 static void stm32_rtc_unlock(struct udevice *dev)
94 {
95 	struct stm32_rtc_priv *priv = dev_get_priv(dev);
96 
97 	writel(RTC_WPR_1ST_KEY, priv->base + STM32_RTC_WPR);
98 	writel(RTC_WPR_2ND_KEY, priv->base + STM32_RTC_WPR);
99 }
100 
stm32_rtc_lock(struct udevice * dev)101 static void stm32_rtc_lock(struct udevice *dev)
102 {
103 	struct stm32_rtc_priv *priv = dev_get_priv(dev);
104 
105 	writel(RTC_WPR_WRONG_KEY, priv->base + STM32_RTC_WPR);
106 }
107 
stm32_rtc_enter_init_mode(struct udevice * dev)108 static int stm32_rtc_enter_init_mode(struct udevice *dev)
109 {
110 	struct stm32_rtc_priv *priv = dev_get_priv(dev);
111 	u32 isr = readl(priv->base + STM32_RTC_ISR);
112 
113 	if (!(isr & STM32_RTC_ISR_INITF)) {
114 		isr |= STM32_RTC_ISR_INIT;
115 		writel(isr, priv->base + STM32_RTC_ISR);
116 
117 		return readl_poll_timeout(priv->base + STM32_RTC_ISR,
118 					  isr,
119 					  (isr & STM32_RTC_ISR_INITF),
120 					  100000);
121 	}
122 
123 	return 0;
124 }
125 
stm32_rtc_wait_sync(struct udevice * dev)126 static int stm32_rtc_wait_sync(struct udevice *dev)
127 {
128 	struct stm32_rtc_priv *priv = dev_get_priv(dev);
129 	u32 isr = readl(priv->base + STM32_RTC_ISR);
130 
131 	isr &= ~STM32_RTC_ISR_RSF;
132 	writel(isr, priv->base + STM32_RTC_ISR);
133 
134 	/*
135 	 * Wait for RSF to be set to ensure the calendar registers are
136 	 * synchronised, it takes around 2 rtc_ck clock cycles
137 	 */
138 	return readl_poll_timeout(priv->base + STM32_RTC_ISR,
139 				  isr, (isr & STM32_RTC_ISR_RSF),
140 				  100000);
141 }
142 
stm32_rtc_exit_init_mode(struct udevice * dev)143 static void stm32_rtc_exit_init_mode(struct udevice *dev)
144 {
145 	struct stm32_rtc_priv *priv = dev_get_priv(dev);
146 	u32 isr = readl(priv->base + STM32_RTC_ISR);
147 
148 	isr &= ~STM32_RTC_ISR_INIT;
149 	writel(isr, priv->base + STM32_RTC_ISR);
150 }
151 
stm32_rtc_set_time(struct udevice * dev,u32 time,u32 date)152 static int stm32_rtc_set_time(struct udevice *dev, u32 time, u32 date)
153 {
154 	struct stm32_rtc_priv *priv = dev_get_priv(dev);
155 	int ret;
156 
157 	stm32_rtc_unlock(dev);
158 
159 	ret = stm32_rtc_enter_init_mode(dev);
160 	if (ret)
161 		goto lock;
162 
163 	writel(time, priv->base + STM32_RTC_TR);
164 	writel(date, priv->base + STM32_RTC_DR);
165 
166 	stm32_rtc_exit_init_mode(dev);
167 
168 	ret = stm32_rtc_wait_sync(dev);
169 
170 lock:
171 	stm32_rtc_lock(dev);
172 	return ret;
173 }
174 
stm32_rtc_set(struct udevice * dev,const struct rtc_time * tm)175 static int stm32_rtc_set(struct udevice *dev, const struct rtc_time *tm)
176 {
177 	u32 t, d;
178 
179 	dev_dbg(dev, "Set DATE: %4d-%02d-%02d (wday=%d)  TIME: %2d:%02d:%02d\n",
180 		tm->tm_year, tm->tm_mon, tm->tm_mday, tm->tm_wday,
181 		tm->tm_hour, tm->tm_min, tm->tm_sec);
182 
183 	if (tm->tm_year < 2000 || tm->tm_year > 2099)
184 		return -EINVAL;
185 
186 	/* Time in BCD format */
187 	t = (bin2bcd(tm->tm_sec) << STM32_RTC_SEC_SHIFT) & STM32_RTC_SEC;
188 	t |= (bin2bcd(tm->tm_min) << STM32_RTC_MIN_SHIFT) & STM32_RTC_MIN;
189 	t |= (bin2bcd(tm->tm_hour) << STM32_RTC_HOUR_SHIFT) & STM32_RTC_HOUR;
190 
191 	/* Date in BCD format */
192 	d = (bin2bcd(tm->tm_mday) << STM32_RTC_DATE_SHIFT) & STM32_RTC_DATE;
193 	d |= (bin2bcd(tm->tm_mon) << STM32_RTC_MONTH_SHIFT) & STM32_RTC_MONTH;
194 	d |= (bin2bcd(tm->tm_year - 2000) << STM32_RTC_YEAR_SHIFT) &
195 	      STM32_RTC_YEAR;
196 	d |= (bin2bcd(tm->tm_wday) << STM32_RTC_WDAY_SHIFT) & STM32_RTC_WDAY;
197 
198 	return stm32_rtc_set_time(dev, t, d);
199 }
200 
stm32_rtc_reset(struct udevice * dev)201 static int stm32_rtc_reset(struct udevice *dev)
202 {
203 	dev_dbg(dev, "Reset DATE\n");
204 
205 	return stm32_rtc_set_time(dev, 0, 0);
206 }
207 
stm32_rtc_init(struct udevice * dev)208 static int stm32_rtc_init(struct udevice *dev)
209 {
210 	struct stm32_rtc_priv *priv = dev_get_priv(dev);
211 	unsigned int prer, pred_a, pred_s, pred_a_max, pred_s_max, cr;
212 	unsigned int rate;
213 	struct clk clk;
214 	int ret;
215 	u32 isr = readl(priv->base + STM32_RTC_ISR);
216 
217 	if (isr & STM32_RTC_ISR_INITS)
218 		return  0;
219 
220 	ret = clk_get_by_index(dev, 1, &clk);
221 	if (ret)
222 		return ret;
223 
224 	ret = clk_enable(&clk);
225 	if (ret)
226 		return ret;
227 
228 	rate = clk_get_rate(&clk);
229 
230 	/* Find prediv_a and prediv_s to obtain the 1Hz calendar clock */
231 	pred_a_max = STM32_RTC_PRER_PRED_A >> STM32_RTC_PRER_PRED_A_SHIFT;
232 	pred_s_max = STM32_RTC_PRER_PRED_S >> STM32_RTC_PRER_PRED_S_SHIFT;
233 
234 	for (pred_a = pred_a_max; pred_a + 1 > 0; pred_a--) {
235 		pred_s = (rate / (pred_a + 1)) - 1;
236 
237 		if (((pred_s + 1) * (pred_a + 1)) == rate)
238 			break;
239 	}
240 
241 	/*
242 	 * Can't find a 1Hz, so give priority to RTC power consumption
243 	 * by choosing the higher possible value for prediv_a
244 	 */
245 	if (pred_s > pred_s_max || pred_a > pred_a_max) {
246 		pred_a = pred_a_max;
247 		pred_s = (rate / (pred_a + 1)) - 1;
248 	}
249 
250 	stm32_rtc_unlock(dev);
251 
252 	ret = stm32_rtc_enter_init_mode(dev);
253 	if (ret) {
254 		dev_err(dev,
255 			"Can't enter in init mode. Prescaler config failed.\n");
256 		goto unlock;
257 	}
258 
259 	prer = (pred_s << STM32_RTC_PRER_PRED_S_SHIFT) & STM32_RTC_PRER_PRED_S;
260 	prer |= (pred_a << STM32_RTC_PRER_PRED_A_SHIFT) & STM32_RTC_PRER_PRED_A;
261 	writel(prer, priv->base + STM32_RTC_PRER);
262 
263 	/* Force 24h time format */
264 	cr = readl(priv->base + STM32_RTC_CR);
265 	cr &= ~STM32_RTC_CR_FMT;
266 	writel(cr, priv->base + STM32_RTC_CR);
267 
268 	stm32_rtc_exit_init_mode(dev);
269 
270 	ret = stm32_rtc_wait_sync(dev);
271 
272 unlock:
273 	stm32_rtc_lock(dev);
274 
275 	if (ret)
276 		clk_disable(&clk);
277 
278 	return ret;
279 }
280 
stm32_rtc_probe(struct udevice * dev)281 static int stm32_rtc_probe(struct udevice *dev)
282 {
283 	struct stm32_rtc_priv *priv = dev_get_priv(dev);
284 	struct clk clk;
285 	int ret;
286 
287 	priv->base = dev_read_addr(dev);
288 	if (priv->base == FDT_ADDR_T_NONE)
289 		return -EINVAL;
290 
291 	ret = clk_get_by_index(dev, 0, &clk);
292 	if (ret)
293 		return ret;
294 
295 	ret = clk_enable(&clk);
296 	if (ret)
297 		return ret;
298 
299 	ret = stm32_rtc_init(dev);
300 
301 	if (ret)
302 		clk_disable(&clk);
303 
304 	return ret;
305 }
306 
307 static const struct rtc_ops stm32_rtc_ops = {
308 	.get = stm32_rtc_get,
309 	.set = stm32_rtc_set,
310 	.reset = stm32_rtc_reset,
311 };
312 
313 static const struct udevice_id stm32_rtc_ids[] = {
314 	{ .compatible = "st,stm32mp1-rtc" },
315 	{ }
316 };
317 
318 U_BOOT_DRIVER(rtc_stm32) = {
319 	.name	= "rtc-stm32",
320 	.id	= UCLASS_RTC,
321 	.probe	= stm32_rtc_probe,
322 	.of_match = stm32_rtc_ids,
323 	.ops	= &stm32_rtc_ops,
324 	.priv_auto	= sizeof(struct stm32_rtc_priv),
325 };
326