1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (c) 2012 The Chromium OS Authors.
4  *
5  * TSC calibration codes are adapted from Linux kernel
6  * arch/x86/kernel/tsc_msr.c and arch/x86/kernel/tsc.c
7  */
8 
9 #include <bootstage.h>
10 #include <dm.h>
11 #include <log.h>
12 #include <malloc.h>
13 #include <time.h>
14 #include <timer.h>
15 #include <asm/cpu.h>
16 #include <asm/global_data.h>
17 #include <asm/io.h>
18 #include <asm/i8254.h>
19 #include <asm/ibmpc.h>
20 #include <asm/msr.h>
21 #include <asm/u-boot-x86.h>
22 #include <linux/delay.h>
23 
24 #define MAX_NUM_FREQS	9
25 
26 #define INTEL_FAM6_SKYLAKE_MOBILE	0x4E
27 #define INTEL_FAM6_ATOM_GOLDMONT	0x5C /* Apollo Lake */
28 #define INTEL_FAM6_SKYLAKE_DESKTOP	0x5E
29 #define INTEL_FAM6_ATOM_GOLDMONT_X	0x5F /* Denverton */
30 #define INTEL_FAM6_KABYLAKE_MOBILE	0x8E
31 #define INTEL_FAM6_KABYLAKE_DESKTOP	0x9E
32 
33 DECLARE_GLOBAL_DATA_PTR;
34 
35 /*
36  * native_calibrate_tsc
37  * Determine TSC frequency via CPUID, else return 0.
38  */
native_calibrate_tsc(void)39 static unsigned long native_calibrate_tsc(void)
40 {
41 	struct cpuid_result tsc_info;
42 	unsigned int crystal_freq;
43 
44 	if (gd->arch.x86_vendor != X86_VENDOR_INTEL)
45 		return 0;
46 
47 	if (cpuid_eax(0) < 0x15)
48 		return 0;
49 
50 	tsc_info = cpuid(0x15);
51 
52 	if (tsc_info.ebx == 0 || tsc_info.eax == 0)
53 		return 0;
54 
55 	crystal_freq = tsc_info.ecx / 1000;
56 	if (!CONFIG_IS_ENABLED(X86_TSC_TIMER_NATIVE) && !crystal_freq) {
57 		switch (gd->arch.x86_model) {
58 		case INTEL_FAM6_SKYLAKE_MOBILE:
59 		case INTEL_FAM6_SKYLAKE_DESKTOP:
60 		case INTEL_FAM6_KABYLAKE_MOBILE:
61 		case INTEL_FAM6_KABYLAKE_DESKTOP:
62 			crystal_freq = 24000;	/* 24.0 MHz */
63 			break;
64 		case INTEL_FAM6_ATOM_GOLDMONT_X:
65 			crystal_freq = 25000;	/* 25.0 MHz */
66 			break;
67 		case INTEL_FAM6_ATOM_GOLDMONT:
68 			crystal_freq = 19200;	/* 19.2 MHz */
69 			break;
70 		default:
71 			return 0;
72 		}
73 	}
74 
75 	return (crystal_freq * tsc_info.ebx / tsc_info.eax) / 1000;
76 }
77 
cpu_mhz_from_cpuid(void)78 static unsigned long cpu_mhz_from_cpuid(void)
79 {
80 	if (gd->arch.x86_vendor != X86_VENDOR_INTEL)
81 		return 0;
82 
83 	if (cpuid_eax(0) < 0x16)
84 		return 0;
85 
86 	return cpuid_eax(0x15);
87 }
88 
89 /*
90  * According to Intel 64 and IA-32 System Programming Guide,
91  * if MSR_PERF_STAT[31] is set, the maximum resolved bus ratio can be
92  * read in MSR_PLATFORM_ID[12:8], otherwise in MSR_PERF_STAT[44:40].
93  * Unfortunately some Intel Atom SoCs aren't quite compliant to this,
94  * so we need manually differentiate SoC families. This is what the
95  * field msr_plat does.
96  */
97 struct freq_desc {
98 	u8 x86_family;	/* CPU family */
99 	u8 x86_model;	/* model */
100 	/* 2: use 100MHz, 1: use MSR_PLATFORM_INFO, 0: MSR_IA32_PERF_STATUS */
101 	u8 msr_plat;
102 	u32 freqs[MAX_NUM_FREQS];
103 };
104 
105 static struct freq_desc freq_desc_tables[] = {
106 	/* PNW */
107 	{ 6, 0x27, 0, { 0, 0, 0, 0, 0, 99840, 0, 83200, 0 } },
108 	/* CLV+ */
109 	{ 6, 0x35, 0, { 0, 133200, 0, 0, 0, 99840, 0, 83200, 0 } },
110 	/* TNG - Intel Atom processor Z3400 series */
111 	{ 6, 0x4a, 1, { 0, 100000, 133300, 0, 0, 0, 0, 0, 0 } },
112 	/* VLV2 - Intel Atom processor E3000, Z3600, Z3700 series */
113 	{ 6, 0x37, 1, { 83300, 100000, 133300, 116700, 80000, 0, 0, 0, 0 } },
114 	/* ANN - Intel Atom processor Z3500 series */
115 	{ 6, 0x5a, 1, { 83300, 100000, 133300, 100000, 0, 0, 0, 0, 0 } },
116 	/* AMT - Intel Atom processor X7-Z8000 and X5-Z8000 series */
117 	{ 6, 0x4c, 1, { 83300, 100000, 133300, 116700,
118 			80000, 93300, 90000, 88900, 87500 } },
119 	/* Ivybridge */
120 	{ 6, 0x3a, 2, { 0, 0, 0, 0, 0, 0, 0, 0, 0 } },
121 };
122 
match_cpu(u8 family,u8 model)123 static int match_cpu(u8 family, u8 model)
124 {
125 	int i;
126 
127 	for (i = 0; i < ARRAY_SIZE(freq_desc_tables); i++) {
128 		if ((family == freq_desc_tables[i].x86_family) &&
129 		    (model == freq_desc_tables[i].x86_model))
130 			return i;
131 	}
132 
133 	return -1;
134 }
135 
136 /* Map CPU reference clock freq ID(0-7) to CPU reference clock freq(KHz) */
137 #define id_to_freq(cpu_index, freq_id) \
138 	(freq_desc_tables[cpu_index].freqs[freq_id])
139 
140 /*
141  * TSC on Intel Atom SoCs capable of determining TSC frequency by MSR is
142  * reliable and the frequency is known (provided by HW).
143  *
144  * On these platforms PIT/HPET is generally not available so calibration won't
145  * work at all and there is no other clocksource to act as a watchdog for the
146  * TSC, so we have no other choice than to trust it.
147  *
148  * Returns the TSC frequency in MHz or 0 if HW does not provide it.
149  */
cpu_mhz_from_msr(void)150 static unsigned long __maybe_unused cpu_mhz_from_msr(void)
151 {
152 	u32 lo, hi, ratio, freq_id, freq;
153 	unsigned long res;
154 	int cpu_index;
155 
156 	if (gd->arch.x86_vendor != X86_VENDOR_INTEL)
157 		return 0;
158 
159 	cpu_index = match_cpu(gd->arch.x86, gd->arch.x86_model);
160 	if (cpu_index < 0)
161 		return 0;
162 
163 	if (freq_desc_tables[cpu_index].msr_plat) {
164 		rdmsr(MSR_PLATFORM_INFO, lo, hi);
165 		ratio = (lo >> 8) & 0xff;
166 	} else {
167 		rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
168 		ratio = (hi >> 8) & 0x1f;
169 	}
170 	debug("Maximum core-clock to bus-clock ratio: 0x%x\n", ratio);
171 
172 	if (freq_desc_tables[cpu_index].msr_plat == 2) {
173 		/* TODO: Figure out how best to deal with this */
174 		freq = 100000;
175 		debug("Using frequency: %u KHz\n", freq);
176 	} else {
177 		/* Get FSB FREQ ID */
178 		rdmsr(MSR_FSB_FREQ, lo, hi);
179 		freq_id = lo & 0x7;
180 		freq = id_to_freq(cpu_index, freq_id);
181 		debug("Resolved frequency ID: %u, frequency: %u KHz\n",
182 		      freq_id, freq);
183 	}
184 
185 	/* TSC frequency = maximum resolved freq * maximum resolved bus ratio */
186 	res = freq * ratio / 1000;
187 	debug("TSC runs at %lu MHz\n", res);
188 
189 	return res;
190 }
191 
192 /*
193  * This reads the current MSB of the PIT counter, and
194  * checks if we are running on sufficiently fast and
195  * non-virtualized hardware.
196  *
197  * Our expectations are:
198  *
199  *  - the PIT is running at roughly 1.19MHz
200  *
201  *  - each IO is going to take about 1us on real hardware,
202  *    but we allow it to be much faster (by a factor of 10) or
203  *    _slightly_ slower (ie we allow up to a 2us read+counter
204  *    update - anything else implies a unacceptably slow CPU
205  *    or PIT for the fast calibration to work.
206  *
207  *  - with 256 PIT ticks to read the value, we have 214us to
208  *    see the same MSB (and overhead like doing a single TSC
209  *    read per MSB value etc).
210  *
211  *  - We're doing 2 reads per loop (LSB, MSB), and we expect
212  *    them each to take about a microsecond on real hardware.
213  *    So we expect a count value of around 100. But we'll be
214  *    generous, and accept anything over 50.
215  *
216  *  - if the PIT is stuck, and we see *many* more reads, we
217  *    return early (and the next caller of pit_expect_msb()
218  *    then consider it a failure when they don't see the
219  *    next expected value).
220  *
221  * These expectations mean that we know that we have seen the
222  * transition from one expected value to another with a fairly
223  * high accuracy, and we didn't miss any events. We can thus
224  * use the TSC value at the transitions to calculate a pretty
225  * good value for the TSC frequencty.
226  */
pit_verify_msb(unsigned char val)227 static inline int pit_verify_msb(unsigned char val)
228 {
229 	/* Ignore LSB */
230 	inb(0x42);
231 	return inb(0x42) == val;
232 }
233 
pit_expect_msb(unsigned char val,u64 * tscp,unsigned long * deltap)234 static inline int pit_expect_msb(unsigned char val, u64 *tscp,
235 				 unsigned long *deltap)
236 {
237 	int count;
238 	u64 tsc = 0, prev_tsc = 0;
239 
240 	for (count = 0; count < 50000; count++) {
241 		if (!pit_verify_msb(val))
242 			break;
243 		prev_tsc = tsc;
244 		tsc = rdtsc();
245 	}
246 	*deltap = rdtsc() - prev_tsc;
247 	*tscp = tsc;
248 
249 	/*
250 	 * We require _some_ success, but the quality control
251 	 * will be based on the error terms on the TSC values.
252 	 */
253 	return count > 5;
254 }
255 
256 /*
257  * How many MSB values do we want to see? We aim for
258  * a maximum error rate of 500ppm (in practice the
259  * real error is much smaller), but refuse to spend
260  * more than 50ms on it.
261  */
262 #define MAX_QUICK_PIT_MS 50
263 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
264 
quick_pit_calibrate(void)265 static unsigned long __maybe_unused quick_pit_calibrate(void)
266 {
267 	int i;
268 	u64 tsc, delta;
269 	unsigned long d1, d2;
270 
271 	/* Set the Gate high, disable speaker */
272 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
273 
274 	/*
275 	 * Counter 2, mode 0 (one-shot), binary count
276 	 *
277 	 * NOTE! Mode 2 decrements by two (and then the
278 	 * output is flipped each time, giving the same
279 	 * final output frequency as a decrement-by-one),
280 	 * so mode 0 is much better when looking at the
281 	 * individual counts.
282 	 */
283 	outb(0xb0, 0x43);
284 
285 	/* Start at 0xffff */
286 	outb(0xff, 0x42);
287 	outb(0xff, 0x42);
288 
289 	/*
290 	 * The PIT starts counting at the next edge, so we
291 	 * need to delay for a microsecond. The easiest way
292 	 * to do that is to just read back the 16-bit counter
293 	 * once from the PIT.
294 	 */
295 	pit_verify_msb(0);
296 
297 	if (pit_expect_msb(0xff, &tsc, &d1)) {
298 		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
299 			if (!pit_expect_msb(0xff-i, &delta, &d2))
300 				break;
301 
302 			delta -= tsc;
303 
304 			/*
305 			 * Extrapolate the error and fail fast if the error will
306 			 * never be below 500 ppm.
307 			 */
308 			if (i == 1 &&
309 			    d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
310 				return 0;
311 
312 			/*
313 			 * Iterate until the error is less than 500 ppm
314 			 */
315 			if (d1+d2 >= delta >> 11)
316 				continue;
317 
318 			/*
319 			 * Check the PIT one more time to verify that
320 			 * all TSC reads were stable wrt the PIT.
321 			 *
322 			 * This also guarantees serialization of the
323 			 * last cycle read ('d2') in pit_expect_msb.
324 			 */
325 			if (!pit_verify_msb(0xfe - i))
326 				break;
327 			goto success;
328 		}
329 	}
330 	debug("Fast TSC calibration failed\n");
331 	return 0;
332 
333 success:
334 	/*
335 	 * Ok, if we get here, then we've seen the
336 	 * MSB of the PIT decrement 'i' times, and the
337 	 * error has shrunk to less than 500 ppm.
338 	 *
339 	 * As a result, we can depend on there not being
340 	 * any odd delays anywhere, and the TSC reads are
341 	 * reliable (within the error).
342 	 *
343 	 * kHz = ticks / time-in-seconds / 1000;
344 	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
345 	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
346 	 */
347 	delta *= PIT_TICK_RATE;
348 	delta /= (i*256*1000);
349 	debug("Fast TSC calibration using PIT\n");
350 	return delta / 1000;
351 }
352 
353 /* Get the speed of the TSC timer in MHz */
get_tbclk_mhz(void)354 unsigned notrace long get_tbclk_mhz(void)
355 {
356 	return get_tbclk() / 1000000;
357 }
358 
get_ms_timer(void)359 static ulong get_ms_timer(void)
360 {
361 	return (get_ticks() * 1000) / get_tbclk();
362 }
363 
get_timer(ulong base)364 ulong get_timer(ulong base)
365 {
366 	return get_ms_timer() - base;
367 }
368 
timer_get_us(void)369 ulong notrace timer_get_us(void)
370 {
371 	return get_ticks() / get_tbclk_mhz();
372 }
373 
timer_get_boot_us(void)374 ulong timer_get_boot_us(void)
375 {
376 	return timer_get_us();
377 }
378 
__udelay(unsigned long usec)379 void __udelay(unsigned long usec)
380 {
381 	u64 now = get_ticks();
382 	u64 stop;
383 
384 	stop = now + (u64)usec * get_tbclk_mhz();
385 
386 	while ((int64_t)(stop - get_ticks()) > 0)
387 #if defined(CONFIG_QEMU) && defined(CONFIG_SMP)
388 		/*
389 		 * Add a 'pause' instruction on qemu target,
390 		 * to give other VCPUs a chance to run.
391 		 */
392 		asm volatile("pause");
393 #else
394 		;
395 #endif
396 }
397 
tsc_timer_get_count(struct udevice * dev)398 static u64 tsc_timer_get_count(struct udevice *dev)
399 {
400 	u64 now_tick = rdtsc();
401 
402 	return now_tick - gd->arch.tsc_base;
403 }
404 
tsc_timer_ensure_setup(bool early)405 static void tsc_timer_ensure_setup(bool early)
406 {
407 	if (gd->arch.tsc_inited)
408 		return;
409 	if (IS_ENABLED(CONFIG_X86_TSC_READ_BASE))
410 		gd->arch.tsc_base = rdtsc();
411 
412 	if (!gd->arch.clock_rate) {
413 		unsigned long fast_calibrate;
414 
415 		/* deal with this being called before x86_cpu_init_f() */
416 		if (!gd->arch.x86_vendor)
417 			x86_get_identity_for_timer();
418 
419 		/**
420 		 * There is no obvious way to obtain this information from EFI
421 		 * boot services. This value was measured on a Framework Laptop
422 		 * which has a 12th Gen Intel Core
423 		 */
424 		if (IS_ENABLED(CONFIG_EFI_APP)) {
425 			fast_calibrate = 2750;
426 			goto done;
427 		}
428 		fast_calibrate = native_calibrate_tsc();
429 		if (fast_calibrate)
430 			goto done;
431 
432 		/* Reduce code size by dropping other methods */
433 		if (CONFIG_IS_ENABLED(X86_TSC_TIMER_NATIVE))
434 			panic("no timer");
435 
436 		fast_calibrate = cpu_mhz_from_cpuid();
437 		if (fast_calibrate)
438 			goto done;
439 
440 		fast_calibrate = cpu_mhz_from_msr();
441 		if (fast_calibrate)
442 			goto done;
443 
444 		fast_calibrate = quick_pit_calibrate();
445 		if (fast_calibrate)
446 			goto done;
447 
448 		if (early)
449 			gd->arch.clock_rate = CONFIG_X86_TSC_TIMER_FREQ;
450 		else
451 			return;
452 
453 done:
454 		fast_calibrate = min(fast_calibrate, 4000UL);
455 		if (!gd->arch.clock_rate)
456 			gd->arch.clock_rate = fast_calibrate * 1000000;
457 	}
458 	gd->arch.tsc_inited = true;
459 }
460 
tsc_timer_probe(struct udevice * dev)461 static int tsc_timer_probe(struct udevice *dev)
462 {
463 	struct timer_dev_priv *uc_priv = dev_get_uclass_priv(dev);
464 
465 	/* Try hardware calibration first */
466 	tsc_timer_ensure_setup(false);
467 	if (!gd->arch.clock_rate) {
468 		/*
469 		 * Use the clock frequency specified in the
470 		 * device tree as last resort
471 		 */
472 		if (!uc_priv->clock_rate)
473 			panic("TSC frequency is ZERO");
474 	} else {
475 		uc_priv->clock_rate = gd->arch.clock_rate;
476 	}
477 
478 	return 0;
479 }
480 
timer_early_get_rate(void)481 unsigned long notrace timer_early_get_rate(void)
482 {
483 	/*
484 	 * When TSC timer is used as the early timer, be warned that the timer
485 	 * clock rate can only be calibrated via some hardware ways. Specifying
486 	 * it in the device tree won't work for the early timer.
487 	 */
488 	tsc_timer_ensure_setup(true);
489 
490 	return gd->arch.clock_rate;
491 }
492 
timer_early_get_count(void)493 u64 notrace timer_early_get_count(void)
494 {
495 	tsc_timer_ensure_setup(true);
496 
497 	return rdtsc() - gd->arch.tsc_base;
498 }
499 
500 static const struct timer_ops tsc_timer_ops = {
501 	.get_count = tsc_timer_get_count,
502 };
503 
504 #if CONFIG_IS_ENABLED(OF_REAL)
505 static const struct udevice_id tsc_timer_ids[] = {
506 	{ .compatible = "x86,tsc-timer", },
507 	{ }
508 };
509 #endif
510 
511 U_BOOT_DRIVER(x86_tsc_timer) = {
512 	.name	= "x86_tsc_timer",
513 	.id	= UCLASS_TIMER,
514 	.of_match = of_match_ptr(tsc_timer_ids),
515 	.probe = tsc_timer_probe,
516 	.ops	= &tsc_timer_ops,
517 };
518