1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Copyright (c) 2013 Google, Inc
4  *
5  * (C) Copyright 2012
6  * Pavel Herrmann <morpheus.ibis@gmail.com>
7  * Marek Vasut <marex@denx.de>
8  */
9 
10 #ifndef _DM_DEVICE_H
11 #define _DM_DEVICE_H
12 
13 #include <dm/ofnode.h>
14 #include <dm/tag.h>
15 #include <dm/uclass-id.h>
16 #include <fdtdec.h>
17 #include <linker_lists.h>
18 #include <linux/kernel.h>
19 #include <linux/list.h>
20 #include <linux/printk.h>
21 
22 struct driver_info;
23 
24 /* Driver is active (probed). Cleared when it is removed */
25 #define DM_FLAG_ACTIVATED		(1 << 0)
26 
27 /* DM is responsible for allocating and freeing plat */
28 #define DM_FLAG_ALLOC_PDATA		(1 << 1)
29 
30 /* DM should init this device prior to relocation */
31 #define DM_FLAG_PRE_RELOC		(1 << 2)
32 
33 /* DM is responsible for allocating and freeing parent_plat */
34 #define DM_FLAG_ALLOC_PARENT_PDATA	(1 << 3)
35 
36 /* DM is responsible for allocating and freeing uclass_plat */
37 #define DM_FLAG_ALLOC_UCLASS_PDATA	(1 << 4)
38 
39 /* Allocate driver private data on a DMA boundary */
40 #define DM_FLAG_ALLOC_PRIV_DMA		(1 << 5)
41 
42 /* Device is bound */
43 #define DM_FLAG_BOUND			(1 << 6)
44 
45 /* Device name is allocated and should be freed on unbind() */
46 #define DM_FLAG_NAME_ALLOCED		(1 << 7)
47 
48 /* Device has platform data provided by of-platdata */
49 #define DM_FLAG_OF_PLATDATA		(1 << 8)
50 
51 /*
52  * Call driver remove function to stop currently active DMA transfers or
53  * give DMA buffers back to the HW / controller. This may be needed for
54  * some drivers to do some final stage cleanup before the OS is called
55  * (U-Boot exit)
56  */
57 #define DM_FLAG_ACTIVE_DMA		(1 << 9)
58 
59 /*
60  * Call driver remove function to do some final configuration, before
61  * U-Boot exits and the OS is started
62  */
63 #define DM_FLAG_OS_PREPARE		(1 << 10)
64 
65 /* DM does not enable/disable the power domains corresponding to this device */
66 #define DM_FLAG_DEFAULT_PD_CTRL_OFF	(1 << 11)
67 
68 /* Driver plat has been read. Cleared when the device is removed */
69 #define DM_FLAG_PLATDATA_VALID		(1 << 12)
70 
71 /*
72  * Device is removed without switching off its power domain. This might
73  * be required, i. e. for serial console (debug) output when booting OS.
74  */
75 #define DM_FLAG_LEAVE_PD_ON		(1 << 13)
76 
77 /*
78  * Device is vital to the operation of other devices. It is possible to remove
79  * removed this device after all regular devices are removed. This is useful
80  * e.g. for clock, which need to be active during the device-removal phase.
81  */
82 #define DM_FLAG_VITAL			(1 << 14)
83 
84 /* Device must be probed after it was bound. This flag is per-device and does
85  * nothing if set on a U_BOOT_DRIVER() definition. Apply it with
86  * dev_or_flags(dev, DM_FLAG_PROBE_AFTER_BIND) in the devices bind function.
87  */
88 #define DM_FLAG_PROBE_AFTER_BIND	(1 << 15)
89 
90 /*
91  * One or multiple of these flags are passed to device_remove() so that
92  * a selective device removal as specified by the remove-stage and the
93  * driver flags can be done.
94  *
95  * DO NOT use these flags in your driver's @flags value...
96  *	use the above DM_FLAG_... values instead
97  */
98 enum {
99 	/* Normal remove, remove all devices */
100 	DM_REMOVE_NORMAL	= 1 << 0,
101 
102 	/* Remove devices with active DMA */
103 	DM_REMOVE_ACTIVE_DMA	= DM_FLAG_ACTIVE_DMA,
104 
105 	/* Remove devices which need some final OS preparation steps */
106 	DM_REMOVE_OS_PREPARE	= DM_FLAG_OS_PREPARE,
107 
108 	/* Remove only devices that are not marked vital */
109 	DM_REMOVE_NON_VITAL	= DM_FLAG_VITAL,
110 
111 	/* Remove devices with any active flag */
112 	DM_REMOVE_ACTIVE_ALL	= DM_REMOVE_ACTIVE_DMA | DM_REMOVE_OS_PREPARE,
113 
114 	/* Don't power down any attached power domains */
115 	DM_REMOVE_NO_PD		= 1 << 1,
116 };
117 
118 /**
119  * struct udevice - An instance of a driver
120  *
121  * This holds information about a device, which is a driver bound to a
122  * particular port or peripheral (essentially a driver instance).
123  *
124  * A device will come into existence through a 'bind' call, either due to
125  * a U_BOOT_DRVINFO() macro (in which case plat is non-NULL) or a node
126  * in the device tree (in which case of_offset is >= 0). In the latter case
127  * we translate the device tree information into plat in a function
128  * implemented by the driver of_to_plat method (called just before the
129  * probe method if the device has a device tree node.
130  *
131  * All three of plat, priv and uclass_priv can be allocated by the
132  * driver, or you can use the auto members of struct driver and
133  * struct uclass_driver to have driver model do this automatically.
134  *
135  * @driver: The driver used by this device
136  * @name: Name of device, typically the FDT node name
137  * @plat_: Configuration data for this device (do not access outside driver
138  *	model)
139  * @parent_plat_: The parent bus's configuration data for this device (do not
140  *	access outside driver model)
141  * @uclass_plat_: The uclass's configuration data for this device (do not access
142  *	outside driver model)
143  * @driver_data: Driver data word for the entry that matched this device with
144  *		its driver
145  * @parent: Parent of this device, or NULL for the top level device
146  * @priv_: Private data for this device (do not access outside driver model)
147  * @uclass: Pointer to uclass for this device
148  * @uclass_priv_: The uclass's private data for this device (do not access
149  *	outside driver model)
150  * @parent_priv_: The parent's private data for this device (do not access
151  *	outside driver model)
152  * @uclass_node: Used by uclass to link its devices
153  * @child_head: List of children of this device
154  * @sibling_node: Next device in list of all devices
155  * @flags_: Flags for this device `DM_FLAG_...` (do not access outside driver
156  *	model)
157  * @seq_: Allocated sequence number for this device (-1 = none). This is set up
158  * when the device is bound and is unique within the device's uclass. If the
159  * device has an alias in the devicetree then that is used to set the sequence
160  * number. Otherwise, the next available number is used. Sequence numbers are
161  * used by certain commands that need device to be numbered (e.g. 'mmc dev').
162  * (do not access outside driver model)
163  * @node_: Reference to device tree node for this device (do not access outside
164  *	driver model)
165  * @devres_head: List of memory allocations associated with this device.
166  *		When CONFIG_DEVRES is enabled, devm_kmalloc() and friends will
167  *		add to this list. Memory so-allocated will be freed
168  *		automatically when the device is removed / unbound
169  * @dma_offset: Offset between the physical address space (CPU's) and the
170  *		device's bus address space
171  * @iommu: IOMMU device associated with this device
172  */
173 struct udevice {
174 	const struct driver *driver;
175 	const char *name;
176 	void *plat_;
177 	void *parent_plat_;
178 	void *uclass_plat_;
179 	ulong driver_data;
180 	struct udevice *parent;
181 	void *priv_;
182 	struct uclass *uclass;
183 	void *uclass_priv_;
184 	void *parent_priv_;
185 	struct list_head uclass_node;
186 	struct list_head child_head;
187 	struct list_head sibling_node;
188 #if !CONFIG_IS_ENABLED(OF_PLATDATA_RT)
189 	u32 flags_;
190 #endif
191 	int seq_;
192 #if CONFIG_IS_ENABLED(OF_REAL)
193 	ofnode node_;
194 #endif
195 #if CONFIG_IS_ENABLED(DEVRES)
196 	struct list_head devres_head;
197 #endif
198 #if CONFIG_IS_ENABLED(DM_DMA)
199 	ulong dma_offset;
200 #endif
201 #if CONFIG_IS_ENABLED(IOMMU)
202 	struct udevice *iommu;
203 #endif
204 };
205 
dm_udevice_size(void)206 static inline int dm_udevice_size(void)
207 {
208 	if (CONFIG_IS_ENABLED(OF_PLATDATA_RT))
209 		return ALIGN(sizeof(struct udevice), CONFIG_LINKER_LIST_ALIGN);
210 
211 	return sizeof(struct udevice);
212 }
213 
214 /**
215  * struct udevice_rt - runtime information set up by U-Boot
216  *
217  * This is only used with OF_PLATDATA_RT
218  *
219  * There is one of these for every udevice in the linker list, indexed by
220  * the udevice_info idx value.
221  *
222  * @flags_: Flags for this device `DM_FLAG_...` (do not access outside driver
223  *	model)
224  */
225 struct udevice_rt {
226 	u32 flags_;
227 };
228 
229 /* Maximum sequence number supported and associated string length */
230 #define DM_MAX_SEQ	999
231 #define DM_MAX_SEQ_STR	3
232 
233 /* Returns the operations for a device */
234 #define device_get_ops(dev)	((dev)->driver->ops)
235 
236 #if CONFIG_IS_ENABLED(OF_PLATDATA_RT)
237 u32 dev_get_flags(const struct udevice *dev);
238 void dev_or_flags(const struct udevice *dev, u32 or);
239 void dev_bic_flags(const struct udevice *dev, u32 bic);
240 #else
dev_get_flags(const struct udevice * dev)241 static inline u32 dev_get_flags(const struct udevice *dev)
242 {
243 	return dev->flags_;
244 }
245 
dev_or_flags(struct udevice * dev,u32 or)246 static inline void dev_or_flags(struct udevice *dev, u32 or)
247 {
248 	dev->flags_ |= or;
249 }
250 
dev_bic_flags(struct udevice * dev,u32 bic)251 static inline void dev_bic_flags(struct udevice *dev, u32 bic)
252 {
253 	dev->flags_ &= ~bic;
254 }
255 #endif /* OF_PLATDATA_RT */
256 
257 /**
258  * dev_ofnode() - get the DT node reference associated with a udevice
259  *
260  * @dev:	device to check
261  * Return: reference of the device's DT node
262  */
dev_ofnode(const struct udevice * dev)263 static inline __attribute_const__ ofnode dev_ofnode(const struct udevice *dev)
264 {
265 #if CONFIG_IS_ENABLED(OF_REAL)
266 	return dev->node_;
267 #else
268 	return ofnode_null();
269 #endif
270 }
271 
272 /* Returns non-zero if the device is active (probed and not removed) */
273 #define device_active(dev)	(dev_get_flags(dev) & DM_FLAG_ACTIVATED)
274 
275 #if CONFIG_IS_ENABLED(DM_DMA)
276 #define dev_set_dma_offset(_dev, _offset)	_dev->dma_offset = _offset
277 #define dev_get_dma_offset(_dev)		_dev->dma_offset
278 #else
279 #define dev_set_dma_offset(_dev, _offset)
280 #define dev_get_dma_offset(_dev)		0
281 #endif
282 
dev_of_offset(const struct udevice * dev)283 static inline __attribute_const__ int dev_of_offset(const struct udevice *dev)
284 {
285 #if CONFIG_IS_ENABLED(OF_REAL)
286 	return ofnode_to_offset(dev_ofnode(dev));
287 #else
288 	return -1;
289 #endif
290 }
291 
dev_has_ofnode(const struct udevice * dev)292 static inline __attribute_const__ bool dev_has_ofnode(const struct udevice *dev)
293 {
294 #if CONFIG_IS_ENABLED(OF_REAL)
295 	return ofnode_valid(dev_ofnode(dev));
296 #else
297 	return false;
298 #endif
299 }
300 
dev_set_ofnode(struct udevice * dev,ofnode node)301 static inline void dev_set_ofnode(struct udevice *dev, ofnode node)
302 {
303 #if CONFIG_IS_ENABLED(OF_REAL)
304 	dev->node_ = node;
305 #endif
306 }
307 
dev_seq(const struct udevice * dev)308 static inline int dev_seq(const struct udevice *dev)
309 {
310 	return dev->seq_;
311 }
312 
313 /**
314  * struct udevice_id - Lists the compatible strings supported by a driver
315  * @compatible: Compatible string
316  * @data: Data for this compatible string
317  */
318 struct udevice_id {
319 	const char *compatible;
320 	ulong data;
321 };
322 
323 #if CONFIG_IS_ENABLED(OF_REAL)
324 #define of_match_ptr(_ptr)	(_ptr)
325 #else
326 #define of_match_ptr(_ptr)	NULL
327 #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
328 
329 /**
330  * struct driver - A driver for a feature or peripheral
331  *
332  * This holds methods for setting up a new device, and also removing it.
333  * The device needs information to set itself up - this is provided either
334  * by plat or a device tree node (which we find by looking up
335  * matching compatible strings with of_match).
336  *
337  * Drivers all belong to a uclass, representing a class of devices of the
338  * same type. Common elements of the drivers can be implemented in the uclass,
339  * or the uclass can provide a consistent interface to the drivers within
340  * it.
341  *
342  * @name: Device name
343  * @id: Identifies the uclass we belong to
344  * @of_match: List of compatible strings to match, and any identifying data
345  * for each.
346  * @bind: Called to bind a device to its driver
347  * @probe: Called to probe a device, i.e. activate it
348  * @remove: Called to remove a device, i.e. de-activate it
349  * @unbind: Called to unbind a device from its driver
350  * @of_to_plat: Called before probe to decode device tree data
351  * @child_post_bind: Called after a new child has been bound
352  * @child_pre_probe: Called before a child device is probed. The device has
353  * memory allocated but it has not yet been probed.
354  * @child_post_remove: Called after a child device is removed. The device
355  * has memory allocated but its device_remove() method has been called.
356  * @priv_auto: If non-zero this is the size of the private data
357  * to be allocated in the device's ->priv pointer. If zero, then the driver
358  * is responsible for allocating any data required.
359  * @plat_auto: If non-zero this is the size of the
360  * platform data to be allocated in the device's ->plat pointer.
361  * This is typically only useful for device-tree-aware drivers (those with
362  * an of_match), since drivers which use plat will have the data
363  * provided in the U_BOOT_DRVINFO() instantiation.
364  * @per_child_auto: Each device can hold private data owned by
365  * its parent. If required this will be automatically allocated if this
366  * value is non-zero.
367  * @per_child_plat_auto: A bus likes to store information about
368  * its children. If non-zero this is the size of this data, to be allocated
369  * in the child's parent_plat pointer.
370  * @ops: Driver-specific operations. This is typically a list of function
371  * pointers defined by the driver, to implement driver functions required by
372  * the uclass.
373  * @flags: driver flags - see `DM_FLAG_...`
374  * @acpi_ops: Advanced Configuration and Power Interface (ACPI) operations,
375  * allowing the device to add things to the ACPI tables passed to Linux
376  */
377 struct driver {
378 	char *name;
379 	enum uclass_id id;
380 	const struct udevice_id *of_match;
381 	int (*bind)(struct udevice *dev);
382 	int (*probe)(struct udevice *dev);
383 	int (*remove)(struct udevice *dev);
384 	int (*unbind)(struct udevice *dev);
385 	int (*of_to_plat)(struct udevice *dev);
386 	int (*child_post_bind)(struct udevice *dev);
387 	int (*child_pre_probe)(struct udevice *dev);
388 	int (*child_post_remove)(struct udevice *dev);
389 	int priv_auto;
390 	int plat_auto;
391 	int per_child_auto;
392 	int per_child_plat_auto;
393 	const void *ops;	/* driver-specific operations */
394 	uint32_t flags;
395 #if CONFIG_IS_ENABLED(ACPIGEN)
396 	struct acpi_ops *acpi_ops;
397 #endif
398 };
399 
400 /**
401  * U_BOOT_DRIVER() - Declare a new U-Boot driver
402  * @__name: name of the driver
403  */
404 #define U_BOOT_DRIVER(__name)						\
405 	ll_entry_declare(struct driver, __name, driver)
406 
407 /**
408  * DM_DRIVER_GET() - Get a pointer to a given driver
409  *
410  * This is useful in code for referencing a driver at build time.
411  * Before this is used, an extern U_BOOT_DRIVER() must have been
412  * declared.
413  *
414  * @__name:	Name of the driver. This must be a valid C identifier,
415  * used by the linker_list
416  * Return: struct driver * for the driver
417  */
418 #define DM_DRIVER_GET(__name)						\
419 	ll_entry_get(struct driver, __name, driver)
420 
421 /**
422  * DM_DRIVER_REF() - Get a reference to a driver
423  *
424  * This is useful in data structures and code for referencing a driver at
425  * build time. Before this is used, an extern U_BOOT_DRIVER() must have been
426  * declared.
427  * This is like DM_DRIVER_GET, but without the extra code, so it is suitable
428  * for putting into data structures.
429  *
430  * For example::
431  *
432  *   extern U_BOOT_DRIVER(sandbox_fixed_clock);
433  *   struct driver *drvs[] = {
434  *       DM_DRIVER_REF(sandbox_fixed_clock),
435  *   };
436  *
437  * @_name:	Name of the driver. This must be a valid C identifier,
438  * used by the linker_list
439  * Return: struct driver * for the driver
440  */
441 #define DM_DRIVER_REF(_name)					\
442 	ll_entry_ref(struct driver, _name, driver)
443 
444 /**
445  * DM_DRIVER_ALIAS() - Declare a macro to state an alias for a driver name
446  *
447  * This macro will produce no code but its information will be parsed by tools
448  * like dtoc
449  *
450  * @__name:	name of driver
451  * @__alias:	alias for the driver name
452  */
453 #define DM_DRIVER_ALIAS(__name, __alias)
454 
455 /**
456  * DM_PHASE() - Declare a macro to indicate which phase of U-Boot this driver is for.
457  *
458  * This macro produces no code but its information will be parsed by dtoc. The
459  * macro can be only be used once in a driver. Put it within the U_BOOT_DRIVER()
460  * declaration, e.g.::
461  *
462  *   U_BOOT_DRIVER(cpu) = {
463  *       .name = ...
464  *       ...
465  *       DM_PHASE(tpl)
466  *   };
467  *
468  * @_phase:	Associated phase of U-Boot ("spl", "tpl")
469  */
470 #define DM_PHASE(_phase)
471 
472 /**
473  * DM_HEADER() - Declare a macro to declare a header needed for a driver.
474  *
475  * Often the correct header can be found automatically, but only for struct
476  * declarations. For enums and #defines used in the driver declaration and
477  * declared in a different header from the structs, this macro must be used.
478  *
479  * This macro produces no code but its information will be parsed by dtoc. The
480  * macro can be used multiple times with different headers, for the same driver.
481  * Put it within the U_BOOT_DRIVER() declaration, e.g.::
482  *
483  *   U_BOOT_DRIVER(cpu) = {
484  *       .name = ...
485  *       ...
486  *       DM_HEADER(<asm/cpu.h>)
487  *   };
488  *
489  * @_hdr:	header needed for a driver
490  */
491 #define DM_HEADER(_hdr)
492 
493 /**
494  * dev_get_plat() - Get the platform data for a device
495  *
496  * This checks that dev is not NULL, but no other checks for now
497  *
498  * @dev:	Device to check
499  * Return: platform data, or NULL if none
500  */
501 void *dev_get_plat(const struct udevice *dev);
502 
503 /**
504  * dev_get_parent_plat() - Get the parent platform data for a device
505  *
506  * This checks that dev is not NULL, but no other checks for now
507  *
508  * @dev:	Device to check
509  * Return: parent's platform data, or NULL if none
510  */
511 void *dev_get_parent_plat(const struct udevice *dev);
512 
513 /**
514  * dev_get_uclass_plat() - Get the uclass platform data for a device
515  *
516  * This checks that dev is not NULL, but no other checks for now
517  *
518  * @dev:	Device to check
519  * Return: uclass's platform data, or NULL if none
520  */
521 void *dev_get_uclass_plat(const struct udevice *dev);
522 
523 /**
524  * dev_get_priv() - Get the private data for a device
525  *
526  * This checks that dev is not NULL, but no other checks for now
527  *
528  * @dev:	Device to check
529  * Return: private data, or NULL if none
530  */
531 void *dev_get_priv(const struct udevice *dev);
532 
533 /**
534  * dev_get_parent_priv() - Get the parent private data for a device
535  *
536  * The parent private data is data stored in the device but owned by the
537  * parent. For example, a USB device may have parent data which contains
538  * information about how to talk to the device over USB.
539  *
540  * This checks that dev is not NULL, but no other checks for now
541  *
542  * @dev:	Device to check
543  * Return: parent data, or NULL if none
544  */
545 void *dev_get_parent_priv(const struct udevice *dev);
546 
547 /**
548  * dev_get_uclass_priv() - Get the private uclass data for a device
549  *
550  * This checks that dev is not NULL, but no other checks for now
551  *
552  * @dev:	Device to check
553  * Return: private uclass data for this device, or NULL if none
554  */
555 void *dev_get_uclass_priv(const struct udevice *dev);
556 
557 /**
558  * dev_get_attach_ptr() - Get the value of an attached pointed tag
559  *
560  * The tag is assumed to hold a pointer, if it exists
561  *
562  * @dev: Device to look at
563  * @tag: Tag to access
564  * @return value of tag, or NULL if there is no tag of this type
565  */
566 void *dev_get_attach_ptr(const struct udevice *dev, enum dm_tag_t tag);
567 
568 /**
569  * dev_get_attach_size() - Get the size of an attached tag
570  *
571  * Core tags have an automatic-allocation mechanism where the allocated size is
572  * defined by the device, parent or uclass. This returns the size associated
573  * with a particular tag
574  *
575  * @dev: Device to look at
576  * @tag: Tag to access
577  * @return size of auto-allocated data, 0 if none
578  */
579 int dev_get_attach_size(const struct udevice *dev, enum dm_tag_t tag);
580 
581 /**
582  * dev_get_parent() - Get the parent of a device
583  *
584  * @child:	Child to check
585  * Return: parent of child, or NULL if this is the root device
586  */
587 struct udevice *dev_get_parent(const struct udevice *child);
588 
589 /**
590  * dev_get_driver_data() - get the driver data used to bind a device
591  *
592  * When a device is bound using a device tree node, it matches a
593  * particular compatible string in struct udevice_id. This function
594  * returns the associated data value for that compatible string. This is
595  * the 'data' field in struct udevice_id.
596  *
597  * As an example, consider this structure::
598  *
599  *  static const struct udevice_id tegra_i2c_ids[] = {
600  *      { .compatible = "nvidia,tegra114-i2c", .data = TYPE_114 },
601  *      { .compatible = "nvidia,tegra20-i2c", .data = TYPE_STD },
602  *      { .compatible = "nvidia,tegra20-i2c-dvc", .data = TYPE_DVC },
603  *      { }
604  *  };
605  *
606  * When driver model finds a driver for this it will store the 'data' value
607  * corresponding to the compatible string it matches. This function returns
608  * that value. This allows the driver to handle several variants of a device.
609  *
610  * For USB devices, this is the driver_info field in struct usb_device_id.
611  *
612  * @dev:	Device to check
613  * Return: driver data (0 if none is provided)
614  */
615 ulong dev_get_driver_data(const struct udevice *dev);
616 
617 /**
618  * dev_get_driver_ops() - get the device's driver's operations
619  *
620  * This checks that dev is not NULL, and returns the pointer to device's
621  * driver's operations.
622  *
623  * @dev:	Device to check
624  * Return: void pointer to driver's operations or NULL for NULL-dev or NULL-ops
625  */
626 const void *dev_get_driver_ops(const struct udevice *dev);
627 
628 /**
629  * device_get_uclass_id() - return the uclass ID of a device
630  *
631  * @dev:	Device to check
632  * Return: uclass ID for the device
633  */
634 enum uclass_id device_get_uclass_id(const struct udevice *dev);
635 
636 /**
637  * dev_get_uclass_name() - return the uclass name of a device
638  *
639  * This checks that dev is not NULL.
640  *
641  * @dev:	Device to check
642  * Return:  pointer to the uclass name for the device
643  */
644 const char *dev_get_uclass_name(const struct udevice *dev);
645 
646 /**
647  * device_get_child() - Get the child of a device by index
648  *
649  * Returns the numbered child, 0 being the first. This does not use
650  * sequence numbers, only the natural order.
651  *
652  * @parent:	Parent device to check
653  * @index:	Child index
654  * @devp:	Returns pointer to device
655  * Return:
656  * 0 if OK, -ENODEV if no such device, other error if the device fails to probe
657  */
658 int device_get_child(const struct udevice *parent, int index,
659 		     struct udevice **devp);
660 
661 /**
662  * device_get_child_count() - Get the child count of a device
663  *
664  * Returns the number of children to a device.
665  *
666  * @parent:	Parent device to check
667  */
668 int device_get_child_count(const struct udevice *parent);
669 
670 /**
671  * device_get_decendent_count() - Get the total number of decendents of a device
672  *
673  * Returns the total number of decendents, including all children
674  *
675  * @parent:	Parent device to check
676  */
677 int device_get_decendent_count(const struct udevice *parent);
678 
679 /**
680  * device_find_child_by_seq() - Find a child device based on a sequence
681  *
682  * This searches for a device with the given seq.
683  *
684  * @parent: Parent device
685  * @seq: Sequence number to find (0=first)
686  * @devp: Returns pointer to device (there is only one per for each seq).
687  * Set to NULL if none is found
688  * Return: 0 if OK, -ENODEV if not found
689  */
690 int device_find_child_by_seq(const struct udevice *parent, int seq,
691 			     struct udevice **devp);
692 
693 /**
694  * device_get_child_by_seq() - Get a child device based on a sequence
695  *
696  * If an active device has this sequence it will be returned. If there is no
697  * such device then this will check for a device that is requesting this
698  * sequence.
699  *
700  * The device is probed to activate it ready for use.
701  *
702  * @parent: Parent device
703  * @seq: Sequence number to find (0=first)
704  * @devp: Returns pointer to device (there is only one per for each seq)
705  * Set to NULL if none is found
706  * Return: 0 if OK, -ve on error
707  */
708 int device_get_child_by_seq(const struct udevice *parent, int seq,
709 			    struct udevice **devp);
710 
711 /**
712  * device_find_child_by_of_offset() - Find a child device based on FDT offset
713  *
714  * Locates a child device by its device tree offset.
715  *
716  * @parent: Parent device
717  * @of_offset: Device tree offset to find
718  * @devp: Returns pointer to device if found, otherwise this is set to NULL
719  * Return: 0 if OK, -ve on error
720  */
721 int device_find_child_by_of_offset(const struct udevice *parent, int of_offset,
722 				   struct udevice **devp);
723 
724 /**
725  * device_get_child_by_of_offset() - Get a child device based on FDT offset
726  *
727  * Locates a child device by its device tree offset.
728  *
729  * The device is probed to activate it ready for use.
730  *
731  * @parent: Parent device
732  * @of_offset: Device tree offset to find
733  * @devp: Returns pointer to device if found, otherwise this is set to NULL
734  * Return: 0 if OK, -ve on error
735  */
736 int device_get_child_by_of_offset(const struct udevice *parent, int of_offset,
737 				  struct udevice **devp);
738 
739 /**
740  * device_find_global_by_ofnode() - Get a device based on ofnode
741  *
742  * Locates a device by its device tree ofnode, searching globally throughout
743  * the all driver model devices.
744  *
745  * The device is NOT probed
746  *
747  * @node: Device tree ofnode to find
748  * @devp: Returns pointer to device if found, otherwise this is set to NULL
749  * Return: 0 if OK, -ve on error
750  */
751 
752 int device_find_global_by_ofnode(ofnode node, struct udevice **devp);
753 
754 /**
755  * device_get_global_by_ofnode() - Get a device based on ofnode
756  *
757  * Locates a device by its device tree ofnode, searching globally throughout
758  * the all driver model devices.
759  *
760  * The device is probed to activate it ready for use.
761  *
762  * @node: Device tree ofnode to find
763  * @devp: Returns pointer to device if found, otherwise this is set to NULL
764  * Return: 0 if OK, -ve on error
765  */
766 int device_get_global_by_ofnode(ofnode node, struct udevice **devp);
767 
768 /**
769  * device_get_by_ofplat_idx() - Get a device based on of-platdata index
770  *
771  * Locates a device by either its struct driver_info index, or its
772  * struct udevice index. The latter is used with OF_PLATDATA_INST, since we have
773  * a list of build-time instantiated struct udevice records, The former is used
774  * with !OF_PLATDATA_INST since in that case we have a list of
775  * struct driver_info records.
776  *
777  * The index number is written into the idx field of struct phandle_1_arg, etc.
778  * It is the position of this driver_info/udevice in its linker list.
779  *
780  * The device is probed to activate it ready for use.
781  *
782  * @idx: Index number of the driver_info/udevice structure (0=first)
783  * @devp: Returns pointer to device if found, otherwise this is set to NULL
784  * Return: 0 if OK, -ve on error
785  */
786 int device_get_by_ofplat_idx(uint idx, struct udevice **devp);
787 
788 /**
789  * device_find_first_child() - Find the first child of a device
790  *
791  * @parent: Parent device to search
792  * @devp: Returns first child device, or NULL if none
793  * Return: 0
794  */
795 int device_find_first_child(const struct udevice *parent,
796 			    struct udevice **devp);
797 
798 /**
799  * device_find_next_child() - Find the next child of a device
800  *
801  * @devp: Pointer to previous child device on entry. Returns pointer to next
802  *		child device, or NULL if none
803  * Return: 0
804  */
805 int device_find_next_child(struct udevice **devp);
806 
807 /**
808  * device_find_first_inactive_child() - Find the first inactive child
809  *
810  * This is used to locate an existing child of a device which is of a given
811  * uclass.
812  *
813  * The device is NOT probed
814  *
815  * @parent:	Parent device to search
816  * @uclass_id:	Uclass to look for
817  * @devp:	Returns device found, if any, else NULL
818  * Return: 0 if found, else -ENODEV
819  */
820 int device_find_first_inactive_child(const struct udevice *parent,
821 				     enum uclass_id uclass_id,
822 				     struct udevice **devp);
823 
824 /**
825  * device_find_first_child_by_uclass() - Find the first child of a device in uc
826  *
827  * @parent: Parent device to search
828  * @uclass_id:	Uclass to look for
829  * @devp: Returns first child device in that uclass, if any, else NULL
830  * Return: 0 if found, else -ENODEV
831  */
832 int device_find_first_child_by_uclass(const struct udevice *parent,
833 				      enum uclass_id uclass_id,
834 				      struct udevice **devp);
835 
836 /**
837  * device_find_child_by_namelen() - Find a child by device name
838  *
839  * @parent:	Parent device to search
840  * @name:	Name to look for
841  * @len:	Length of the name
842  * @devp:	Returns device found, if any
843  * Return: 0 if found, else -ENODEV
844  */
845 int device_find_child_by_namelen(const struct udevice *parent, const char *name,
846 				 int len, struct udevice **devp);
847 
848 /**
849  * device_find_child_by_name() - Find a child by device name
850  *
851  * @parent:	Parent device to search
852  * @name:	Name to look for
853  * @devp:	Returns device found, if any
854  * Return: 0 if found, else -ENODEV
855  */
856 int device_find_child_by_name(const struct udevice *parent, const char *name,
857 			      struct udevice **devp);
858 
859 /**
860  * device_first_child_ofdata_err() - Find the first child and reads its plat
861  *
862  * The of_to_plat() method is called on the child before it is returned,
863  * but the child is not probed.
864  *
865  * @parent: Parent to check
866  * @devp: Returns child that was found, if any
867  * Return: 0 on success, -ENODEV if no children, other -ve on error
868  */
869 int device_first_child_ofdata_err(struct udevice *parent,
870 				  struct udevice **devp);
871 
872 /*
873  * device_next_child_ofdata_err() - Find the next child and read its plat
874  *
875  * The of_to_plat() method is called on the child before it is returned,
876  * but the child is not probed.
877  *
878  * @devp: On entry, points to the previous child; on exit returns the child that
879  *	was found, if any
880  * Return: 0 on success, -ENODEV if no children, other -ve on error
881  */
882 int device_next_child_ofdata_err(struct udevice **devp);
883 
884 /**
885  * device_first_child_err() - Get the first child of a device
886  *
887  * The device returned is probed if necessary, and ready for use
888  *
889  * @parent:	Parent device to search
890  * @devp:	Returns device found, if any
891  * Return: 0 if found, -ENODEV if not, -ve error if device failed to probe
892  */
893 int device_first_child_err(struct udevice *parent, struct udevice **devp);
894 
895 /**
896  * device_next_child_err() - Get the next child of a parent device
897  *
898  * The device returned is probed if necessary, and ready for use
899  *
900  * @devp: On entry, pointer to device to lookup. On exit, returns pointer
901  * to the next sibling if no error occurred
902  * Return: 0 if found, -ENODEV if not, -ve error if device failed to probe
903  */
904 int device_next_child_err(struct udevice **devp);
905 
906 /**
907  * device_has_children() - check if a device has any children
908  *
909  * @dev:	Device to check
910  * Return: true if the device has one or more children
911  */
912 bool device_has_children(const struct udevice *dev);
913 
914 /**
915  * device_has_active_children() - check if a device has any active children
916  *
917  * @dev:	Device to check
918  * Return: true if the device has one or more children and at least one of
919  * them is active (probed).
920  */
921 bool device_has_active_children(const struct udevice *dev);
922 
923 /**
924  * device_is_last_sibling() - check if a device is the last sibling
925  *
926  * This function can be useful for display purposes, when special action needs
927  * to be taken when displaying the last sibling. This can happen when a tree
928  * view of devices is being displayed.
929  *
930  * @dev:	Device to check
931  * Return: true if there are no more siblings after this one - i.e. is it
932  * last in the list.
933  */
934 bool device_is_last_sibling(const struct udevice *dev);
935 
936 /**
937  * device_set_name() - set the name of a device
938  *
939  * This must be called in the device's bind() method and no later. Normally
940  * this is unnecessary but for probed devices which don't get a useful name
941  * this function can be helpful.
942  *
943  * The name is allocated and will be freed automatically when the device is
944  * unbound.
945  *
946  * @dev:	Device to update
947  * @name:	New name (this string is allocated new memory and attached to
948  *		the device)
949  * Return: 0 if OK, -ENOMEM if there is not enough memory to allocate the
950  * string
951  */
952 int device_set_name(struct udevice *dev, const char *name);
953 
954 /**
955  * device_set_name_alloced() - note that a device name is allocated
956  *
957  * This sets the DM_FLAG_NAME_ALLOCED flag for the device, so that when it is
958  * unbound the name will be freed. This avoids memory leaks.
959  *
960  * @dev:	Device to update
961  */
962 void device_set_name_alloced(struct udevice *dev);
963 
964 /**
965  * device_is_compatible() - check if the device is compatible with the compat
966  *
967  * This allows to check whether the device is comaptible with the compat.
968  *
969  * @dev:	udevice pointer for which compatible needs to be verified.
970  * @compat:	Compatible string which needs to verified in the given
971  *		device
972  * Return: true if OK, false if the compatible is not found
973  */
974 bool device_is_compatible(const struct udevice *dev, const char *compat);
975 
976 /**
977  * of_machine_is_compatible() - check if the machine is compatible with
978  *				the compat
979  *
980  * This allows to check whether the machine is comaptible with the compat.
981  *
982  * @compat:	Compatible string which needs to verified
983  * Return: true if OK, false if the compatible is not found
984  */
985 bool of_machine_is_compatible(const char *compat);
986 
987 /**
988  * dev_disable_by_path() - Disable a device given its device tree path
989  *
990  * @path:	The device tree path identifying the device to be disabled
991  * Return: 0 on success, -ve on error
992  */
993 int dev_disable_by_path(const char *path);
994 
995 /**
996  * dev_enable_by_path() - Enable a device given its device tree path
997  *
998  * @path:	The device tree path identifying the device to be enabled
999  * Return: 0 on success, -ve on error
1000  */
1001 int dev_enable_by_path(const char *path);
1002 
1003 /**
1004  * device_is_on_pci_bus - Test if a device is on a PCI bus
1005  *
1006  * @dev:	device to test
1007  * Return:	true if it is on a PCI bus, false otherwise
1008  */
device_is_on_pci_bus(const struct udevice * dev)1009 static inline bool device_is_on_pci_bus(const struct udevice *dev)
1010 {
1011 	return CONFIG_IS_ENABLED(PCI) && dev->parent &&
1012 		device_get_uclass_id(dev->parent) == UCLASS_PCI;
1013 }
1014 
1015 /**
1016  * device_foreach_child_safe() - iterate through child devices safely
1017  *
1018  * This allows the @pos child to be removed in the loop if required.
1019  *
1020  * @pos: struct udevice * for the current device
1021  * @next: struct udevice * for the next device
1022  * @parent: parent device to scan
1023  */
1024 #define device_foreach_child_safe(pos, next, parent)	\
1025 	list_for_each_entry_safe(pos, next, &parent->child_head, sibling_node)
1026 
1027 /**
1028  * device_foreach_child() - iterate through child devices
1029  *
1030  * @pos: struct udevice * for the current device
1031  * @parent: parent device to scan
1032  */
1033 #define device_foreach_child(pos, parent)	\
1034 	list_for_each_entry(pos, &parent->child_head, sibling_node)
1035 
1036 /**
1037  * device_foreach_child_of_to_plat() - iterate through children
1038  *
1039  * This stops when it gets an error, with @pos set to the device that failed to
1040  * read ofdata.
1041  *
1042  * This creates a for() loop which works through the available children of
1043  * a device in order from start to end. Device ofdata is read by calling
1044  * device_of_to_plat() on each one. The devices are not probed.
1045  *
1046  * @pos: struct udevice * for the current device
1047  * @parent: parent device to scan
1048  */
1049 #define device_foreach_child_of_to_plat(pos, parent)	\
1050 	for (int _ret = device_first_child_ofdata_err(parent, &pos); !_ret; \
1051 	     _ret = device_next_child_ofdata_err(&pos))
1052 
1053 /**
1054  * device_foreach_child_probe() - iterate through children, probing them
1055  *
1056  * This creates a for() loop which works through the available children of
1057  * a device in order from start to end. Devices are probed if necessary,
1058  * and ready for use.
1059  *
1060  * This stops when it gets an error, with @pos set to the device that failed to
1061  * probe
1062  *
1063  * @pos: struct udevice * for the current device
1064  * @parent: parent device to scan
1065  */
1066 #define device_foreach_child_probe(pos, parent)	\
1067 	for (int _ret = device_first_child_err(parent, &pos); !_ret; \
1068 	     _ret = device_next_child_err(&pos))
1069 
1070 /**
1071  * dm_scan_fdt_dev() - Bind child device in the device tree
1072  *
1073  * This handles device which have sub-nodes in the device tree. It scans all
1074  * sub-nodes and binds drivers for each node where a driver can be found.
1075  *
1076  * If this is called prior to relocation, only pre-relocation devices will be
1077  * bound (those marked with bootph-all in the device tree, or where
1078  * the driver has the DM_FLAG_PRE_RELOC flag set). Otherwise, all devices will
1079  * be bound.
1080  *
1081  * @dev:	Device to scan
1082  * Return: 0 if OK, -ve on error
1083  */
1084 int dm_scan_fdt_dev(struct udevice *dev);
1085 
1086 #endif
1087