1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (c) 2016-2017 Micron Technology, Inc.
4  *
5  *  Authors:
6  *	Peter Pan <peterpandong@micron.com>
7  */
8 #ifndef __LINUX_MTD_SPINAND_H
9 #define __LINUX_MTD_SPINAND_H
10 
11 #ifndef __UBOOT__
12 #include <linux/mutex.h>
13 #include <linux/bitops.h>
14 #include <linux/device.h>
15 #include <linux/mtd/mtd.h>
16 #include <linux/mtd/nand.h>
17 #include <linux/spi/spi.h>
18 #include <linux/spi/spi-mem.h>
19 #else
20 #include <linux/bitops.h>
21 #include <spi-mem.h>
22 #include <linux/mtd/nand.h>
23 #endif
24 
25 /**
26  * Standard SPI NAND flash operations
27  */
28 
29 #define SPINAND_RESET_OP						\
30 	SPI_MEM_OP(SPI_MEM_OP_CMD(0xff, 1),				\
31 		   SPI_MEM_OP_NO_ADDR,					\
32 		   SPI_MEM_OP_NO_DUMMY,					\
33 		   SPI_MEM_OP_NO_DATA)
34 
35 #define SPINAND_WR_EN_DIS_OP(enable)					\
36 	SPI_MEM_OP(SPI_MEM_OP_CMD((enable) ? 0x06 : 0x04, 1),		\
37 		   SPI_MEM_OP_NO_ADDR,					\
38 		   SPI_MEM_OP_NO_DUMMY,					\
39 		   SPI_MEM_OP_NO_DATA)
40 
41 #define SPINAND_READID_OP(naddr, ndummy, buf, len)			\
42 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x9f, 1),				\
43 		   SPI_MEM_OP_ADDR(naddr, 0, 1),			\
44 		   SPI_MEM_OP_DUMMY(ndummy, 1),				\
45 		   SPI_MEM_OP_DATA_IN(len, buf, 1))
46 
47 #define SPINAND_SET_FEATURE_OP(reg, valptr)				\
48 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x1f, 1),				\
49 		   SPI_MEM_OP_ADDR(1, reg, 1),				\
50 		   SPI_MEM_OP_NO_DUMMY,					\
51 		   SPI_MEM_OP_DATA_OUT(1, valptr, 1))
52 
53 #define SPINAND_GET_FEATURE_OP(reg, valptr)				\
54 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x0f, 1),				\
55 		   SPI_MEM_OP_ADDR(1, reg, 1),				\
56 		   SPI_MEM_OP_NO_DUMMY,					\
57 		   SPI_MEM_OP_DATA_IN(1, valptr, 1))
58 
59 #define SPINAND_BLK_ERASE_OP(addr)					\
60 	SPI_MEM_OP(SPI_MEM_OP_CMD(0xd8, 1),				\
61 		   SPI_MEM_OP_ADDR(3, addr, 1),				\
62 		   SPI_MEM_OP_NO_DUMMY,					\
63 		   SPI_MEM_OP_NO_DATA)
64 
65 #define SPINAND_PAGE_READ_OP(addr)					\
66 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x13, 1),				\
67 		   SPI_MEM_OP_ADDR(3, addr, 1),				\
68 		   SPI_MEM_OP_NO_DUMMY,					\
69 		   SPI_MEM_OP_NO_DATA)
70 
71 #define SPINAND_PAGE_READ_FROM_CACHE_OP(fast, addr, ndummy, buf, len)	\
72 	SPI_MEM_OP(SPI_MEM_OP_CMD(fast ? 0x0b : 0x03, 1),		\
73 		   SPI_MEM_OP_ADDR(2, addr, 1),				\
74 		   SPI_MEM_OP_DUMMY(ndummy, 1),				\
75 		   SPI_MEM_OP_DATA_IN(len, buf, 1))
76 
77 #define SPINAND_PAGE_READ_FROM_CACHE_OP_3A(fast, addr, ndummy, buf, len) \
78 	SPI_MEM_OP(SPI_MEM_OP_CMD(fast ? 0x0b : 0x03, 1),		\
79 		   SPI_MEM_OP_ADDR(3, addr, 1),				\
80 		   SPI_MEM_OP_DUMMY(ndummy, 1),				\
81 		   SPI_MEM_OP_DATA_IN(len, buf, 1))
82 
83 #define SPINAND_PAGE_READ_FROM_CACHE_X2_OP(addr, ndummy, buf, len)	\
84 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x3b, 1),				\
85 		   SPI_MEM_OP_ADDR(2, addr, 1),				\
86 		   SPI_MEM_OP_DUMMY(ndummy, 1),				\
87 		   SPI_MEM_OP_DATA_IN(len, buf, 2))
88 
89 #define SPINAND_PAGE_READ_FROM_CACHE_X2_OP_3A(addr, ndummy, buf, len)	\
90 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x3b, 1),				\
91 		   SPI_MEM_OP_ADDR(3, addr, 1),				\
92 		   SPI_MEM_OP_DUMMY(ndummy, 1),				\
93 		   SPI_MEM_OP_DATA_IN(len, buf, 2))
94 
95 #define SPINAND_PAGE_READ_FROM_CACHE_X4_OP(addr, ndummy, buf, len)	\
96 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x6b, 1),				\
97 		   SPI_MEM_OP_ADDR(2, addr, 1),				\
98 		   SPI_MEM_OP_DUMMY(ndummy, 1),				\
99 		   SPI_MEM_OP_DATA_IN(len, buf, 4))
100 
101 #define SPINAND_PAGE_READ_FROM_CACHE_X4_OP_3A(addr, ndummy, buf, len)	\
102 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x6b, 1),				\
103 		   SPI_MEM_OP_ADDR(3, addr, 1),				\
104 		   SPI_MEM_OP_DUMMY(ndummy, 1),				\
105 		   SPI_MEM_OP_DATA_IN(len, buf, 4))
106 
107 #define SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP(addr, ndummy, buf, len)	\
108 	SPI_MEM_OP(SPI_MEM_OP_CMD(0xbb, 1),				\
109 		   SPI_MEM_OP_ADDR(2, addr, 2),				\
110 		   SPI_MEM_OP_DUMMY(ndummy, 2),				\
111 		   SPI_MEM_OP_DATA_IN(len, buf, 2))
112 
113 #define SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP_3A(addr, ndummy, buf, len) \
114 	SPI_MEM_OP(SPI_MEM_OP_CMD(0xbb, 1),				\
115 		   SPI_MEM_OP_ADDR(3, addr, 2),				\
116 		   SPI_MEM_OP_DUMMY(ndummy, 2),				\
117 		   SPI_MEM_OP_DATA_IN(len, buf, 2))
118 
119 #define SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP(addr, ndummy, buf, len)	\
120 	SPI_MEM_OP(SPI_MEM_OP_CMD(0xeb, 1),				\
121 		   SPI_MEM_OP_ADDR(2, addr, 4),				\
122 		   SPI_MEM_OP_DUMMY(ndummy, 4),				\
123 		   SPI_MEM_OP_DATA_IN(len, buf, 4))
124 
125 #define SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP_3A(addr, ndummy, buf, len) \
126 	SPI_MEM_OP(SPI_MEM_OP_CMD(0xeb, 1),				\
127 		   SPI_MEM_OP_ADDR(3, addr, 4),				\
128 		   SPI_MEM_OP_DUMMY(ndummy, 4),				\
129 		   SPI_MEM_OP_DATA_IN(len, buf, 4))
130 
131 #define SPINAND_PROG_EXEC_OP(addr)					\
132 	SPI_MEM_OP(SPI_MEM_OP_CMD(0x10, 1),				\
133 		   SPI_MEM_OP_ADDR(3, addr, 1),				\
134 		   SPI_MEM_OP_NO_DUMMY,					\
135 		   SPI_MEM_OP_NO_DATA)
136 
137 #define SPINAND_PROG_LOAD(reset, addr, buf, len)			\
138 	SPI_MEM_OP(SPI_MEM_OP_CMD(reset ? 0x02 : 0x84, 1),		\
139 		   SPI_MEM_OP_ADDR(2, addr, 1),				\
140 		   SPI_MEM_OP_NO_DUMMY,					\
141 		   SPI_MEM_OP_DATA_OUT(len, buf, 1))
142 
143 #define SPINAND_PROG_LOAD_X4(reset, addr, buf, len)			\
144 	SPI_MEM_OP(SPI_MEM_OP_CMD(reset ? 0x32 : 0x34, 1),		\
145 		   SPI_MEM_OP_ADDR(2, addr, 1),				\
146 		   SPI_MEM_OP_NO_DUMMY,					\
147 		   SPI_MEM_OP_DATA_OUT(len, buf, 4))
148 
149 /**
150  * Standard SPI NAND flash commands
151  */
152 #define SPINAND_CMD_PROG_LOAD_X4		0x32
153 #define SPINAND_CMD_PROG_LOAD_RDM_DATA_X4	0x34
154 
155 /* feature register */
156 #define REG_BLOCK_LOCK		0xa0
157 #define BL_ALL_UNLOCKED		0x00
158 
159 /* configuration register */
160 #define REG_CFG			0xb0
161 #define CFG_OTP_ENABLE		BIT(6)
162 #define CFG_ECC_ENABLE		BIT(4)
163 #define CFG_QUAD_ENABLE		BIT(0)
164 
165 /* status register */
166 #define REG_STATUS		0xc0
167 #define STATUS_BUSY		BIT(0)
168 #define STATUS_ERASE_FAILED	BIT(2)
169 #define STATUS_PROG_FAILED	BIT(3)
170 #define STATUS_ECC_MASK		GENMASK(5, 4)
171 #define STATUS_ECC_NO_BITFLIPS	(0 << 4)
172 #define STATUS_ECC_HAS_BITFLIPS	(1 << 4)
173 #define STATUS_ECC_UNCOR_ERROR	(2 << 4)
174 
175 struct spinand_op;
176 struct spinand_device;
177 
178 #define SPINAND_MAX_ID_LEN	4
179 
180 /**
181  * struct spinand_id - SPI NAND id structure
182  * @data: buffer containing the id bytes. Currently 4 bytes large, but can
183  *	  be extended if required
184  * @len: ID length
185  */
186 struct spinand_id {
187 	u8 data[SPINAND_MAX_ID_LEN];
188 	int len;
189 };
190 
191 enum spinand_readid_method {
192 	SPINAND_READID_METHOD_OPCODE,
193 	SPINAND_READID_METHOD_OPCODE_ADDR,
194 	SPINAND_READID_METHOD_OPCODE_DUMMY,
195 };
196 
197 /**
198  * struct spinand_devid - SPI NAND device id structure
199  * @id: device id of current chip
200  * @len: number of bytes in device id
201  * @method: method to read chip id
202  *	    There are 3 possible variants:
203  *	    SPINAND_READID_METHOD_OPCODE: chip id is returned immediately
204  *	    after read_id opcode.
205  *	    SPINAND_READID_METHOD_OPCODE_ADDR: chip id is returned after
206  *	    read_id opcode + 1-byte address.
207  *	    SPINAND_READID_METHOD_OPCODE_DUMMY: chip id is returned after
208  *	    read_id opcode + 1 dummy byte.
209  */
210 struct spinand_devid {
211 	const u8 *id;
212 	const u8 len;
213 	const enum spinand_readid_method method;
214 };
215 
216 /**
217  * struct manufacurer_ops - SPI NAND manufacturer specific operations
218  * @init: initialize a SPI NAND device
219  * @cleanup: cleanup a SPI NAND device
220  *
221  * Each SPI NAND manufacturer driver should implement this interface so that
222  * NAND chips coming from this vendor can be initialized properly.
223  */
224 struct spinand_manufacturer_ops {
225 	int (*init)(struct spinand_device *spinand);
226 	void (*cleanup)(struct spinand_device *spinand);
227 };
228 
229 /**
230  * struct spinand_manufacturer - SPI NAND manufacturer instance
231  * @id: manufacturer ID
232  * @name: manufacturer name
233  * @devid_len: number of bytes in device ID
234  * @chips: supported SPI NANDs under current manufacturer
235  * @nchips: number of SPI NANDs available in chips array
236  * @ops: manufacturer operations
237  */
238 struct spinand_manufacturer {
239 	u8 id;
240 	char *name;
241 	const struct spinand_info *chips;
242 	const size_t nchips;
243 	const struct spinand_manufacturer_ops *ops;
244 };
245 
246 /* SPI NAND manufacturers */
247 extern const struct spinand_manufacturer gigadevice_spinand_manufacturer;
248 extern const struct spinand_manufacturer macronix_spinand_manufacturer;
249 extern const struct spinand_manufacturer micron_spinand_manufacturer;
250 extern const struct spinand_manufacturer paragon_spinand_manufacturer;
251 extern const struct spinand_manufacturer toshiba_spinand_manufacturer;
252 extern const struct spinand_manufacturer winbond_spinand_manufacturer;
253 extern const struct spinand_manufacturer esmt_c8_spinand_manufacturer;
254 extern const struct spinand_manufacturer xtx_spinand_manufacturer;
255 
256 /**
257  * struct spinand_op_variants - SPI NAND operation variants
258  * @ops: the list of variants for a given operation
259  * @nops: the number of variants
260  *
261  * Some operations like read-from-cache/write-to-cache have several variants
262  * depending on the number of IO lines you use to transfer data or address
263  * cycles. This structure is a way to describe the different variants supported
264  * by a chip and let the core pick the best one based on the SPI mem controller
265  * capabilities.
266  */
267 struct spinand_op_variants {
268 	const struct spi_mem_op *ops;
269 	unsigned int nops;
270 };
271 
272 #define SPINAND_OP_VARIANTS(name, ...)					\
273 	const struct spinand_op_variants name = {			\
274 		.ops = (struct spi_mem_op[]) { __VA_ARGS__ },		\
275 		.nops = sizeof((struct spi_mem_op[]){ __VA_ARGS__ }) /	\
276 			sizeof(struct spi_mem_op),			\
277 	}
278 
279 /**
280  * spinand_ecc_info - description of the on-die ECC implemented by a SPI NAND
281  *		      chip
282  * @get_status: get the ECC status. Should return a positive number encoding
283  *		the number of corrected bitflips if correction was possible or
284  *		-EBADMSG if there are uncorrectable errors. I can also return
285  *		other negative error codes if the error is not caused by
286  *		uncorrectable bitflips
287  * @ooblayout: the OOB layout used by the on-die ECC implementation
288  */
289 struct spinand_ecc_info {
290 	int (*get_status)(struct spinand_device *spinand, u8 status);
291 	const struct mtd_ooblayout_ops *ooblayout;
292 };
293 
294 #define SPINAND_HAS_QE_BIT		BIT(0)
295 #define SPINAND_HAS_CR_FEAT_BIT		BIT(1)
296 
297 /**
298  * struct spinand_info - Structure used to describe SPI NAND chips
299  * @model: model name
300  * @devid: device ID
301  * @flags: OR-ing of the SPINAND_XXX flags
302  * @memorg: memory organization
303  * @eccreq: ECC requirements
304  * @eccinfo: on-die ECC info
305  * @op_variants: operations variants
306  * @op_variants.read_cache: variants of the read-cache operation
307  * @op_variants.write_cache: variants of the write-cache operation
308  * @op_variants.update_cache: variants of the update-cache operation
309  * @select_target: function used to select a target/die. Required only for
310  *		   multi-die chips
311  *
312  * Each SPI NAND manufacturer driver should have a spinand_info table
313  * describing all the chips supported by the driver.
314  */
315 struct spinand_info {
316 	const char *model;
317 	struct spinand_devid devid;
318 	u32 flags;
319 	struct nand_memory_organization memorg;
320 	struct nand_ecc_req eccreq;
321 	struct spinand_ecc_info eccinfo;
322 	struct {
323 		const struct spinand_op_variants *read_cache;
324 		const struct spinand_op_variants *write_cache;
325 		const struct spinand_op_variants *update_cache;
326 	} op_variants;
327 	int (*select_target)(struct spinand_device *spinand,
328 			     unsigned int target);
329 };
330 
331 #define SPINAND_ID(__method, ...)					\
332 	{								\
333 		.id = (const u8[]){ __VA_ARGS__ },			\
334 		.len = sizeof((u8[]){ __VA_ARGS__ }),			\
335 		.method = __method,					\
336 	}
337 
338 #define SPINAND_INFO_OP_VARIANTS(__read, __write, __update)		\
339 	{								\
340 		.read_cache = __read,					\
341 		.write_cache = __write,					\
342 		.update_cache = __update,				\
343 	}
344 
345 #define SPINAND_ECCINFO(__ooblayout, __get_status)			\
346 	.eccinfo = {							\
347 		.ooblayout = __ooblayout,				\
348 		.get_status = __get_status,				\
349 	}
350 
351 #define SPINAND_SELECT_TARGET(__func)					\
352 	.select_target = __func,
353 
354 #define SPINAND_INFO(__model, __id, __memorg, __eccreq, __op_variants,	\
355 		     __flags, ...)					\
356 	{								\
357 		.model = __model,					\
358 		.devid = __id,						\
359 		.memorg = __memorg,					\
360 		.eccreq = __eccreq,					\
361 		.op_variants = __op_variants,				\
362 		.flags = __flags,					\
363 		__VA_ARGS__						\
364 	}
365 
366 /**
367  * struct spinand_device - SPI NAND device instance
368  * @base: NAND device instance
369  * @slave: pointer to the SPI slave object
370  * @lock: lock used to serialize accesses to the NAND
371  * @id: NAND ID as returned by READ_ID
372  * @flags: NAND flags
373  * @op_templates: various SPI mem op templates
374  * @op_templates.read_cache: read cache op template
375  * @op_templates.write_cache: write cache op template
376  * @op_templates.update_cache: update cache op template
377  * @select_target: select a specific target/die. Usually called before sending
378  *		   a command addressing a page or an eraseblock embedded in
379  *		   this die. Only required if your chip exposes several dies
380  * @cur_target: currently selected target/die
381  * @eccinfo: on-die ECC information
382  * @cfg_cache: config register cache. One entry per die
383  * @databuf: bounce buffer for data
384  * @oobbuf: bounce buffer for OOB data
385  * @scratchbuf: buffer used for everything but page accesses. This is needed
386  *		because the spi-mem interface explicitly requests that buffers
387  *		passed in spi_mem_op be DMA-able, so we can't based the bufs on
388  *		the stack
389  * @manufacturer: SPI NAND manufacturer information
390  * @priv: manufacturer private data
391  */
392 struct spinand_device {
393 	struct nand_device base;
394 #ifndef __UBOOT__
395 	struct spi_mem *spimem;
396 	struct mutex lock;
397 #else
398 	struct spi_slave *slave;
399 #endif
400 	struct spinand_id id;
401 	u32 flags;
402 
403 	struct {
404 		const struct spi_mem_op *read_cache;
405 		const struct spi_mem_op *write_cache;
406 		const struct spi_mem_op *update_cache;
407 	} op_templates;
408 
409 	int (*select_target)(struct spinand_device *spinand,
410 			     unsigned int target);
411 	unsigned int cur_target;
412 
413 	struct spinand_ecc_info eccinfo;
414 
415 	u8 *cfg_cache;
416 	u8 *databuf;
417 	u8 *oobbuf;
418 	u8 *scratchbuf;
419 	const struct spinand_manufacturer *manufacturer;
420 	void *priv;
421 };
422 
423 /**
424  * mtd_to_spinand() - Get the SPI NAND device attached to an MTD instance
425  * @mtd: MTD instance
426  *
427  * Return: the SPI NAND device attached to @mtd.
428  */
mtd_to_spinand(struct mtd_info * mtd)429 static inline struct spinand_device *mtd_to_spinand(struct mtd_info *mtd)
430 {
431 	return container_of(mtd_to_nanddev(mtd), struct spinand_device, base);
432 }
433 
434 /**
435  * spinand_to_mtd() - Get the MTD device embedded in a SPI NAND device
436  * @spinand: SPI NAND device
437  *
438  * Return: the MTD device embedded in @spinand.
439  */
spinand_to_mtd(struct spinand_device * spinand)440 static inline struct mtd_info *spinand_to_mtd(struct spinand_device *spinand)
441 {
442 	return nanddev_to_mtd(&spinand->base);
443 }
444 
445 /**
446  * nand_to_spinand() - Get the SPI NAND device embedding an NAND object
447  * @nand: NAND object
448  *
449  * Return: the SPI NAND device embedding @nand.
450  */
nand_to_spinand(struct nand_device * nand)451 static inline struct spinand_device *nand_to_spinand(struct nand_device *nand)
452 {
453 	return container_of(nand, struct spinand_device, base);
454 }
455 
456 /**
457  * spinand_to_nand() - Get the NAND device embedded in a SPI NAND object
458  * @spinand: SPI NAND device
459  *
460  * Return: the NAND device embedded in @spinand.
461  */
462 static inline struct nand_device *
spinand_to_nand(struct spinand_device * spinand)463 spinand_to_nand(struct spinand_device *spinand)
464 {
465 	return &spinand->base;
466 }
467 
468 #ifndef __UBOOT__
469 /**
470  * spinand_set_of_node - Attach a DT node to a SPI NAND device
471  * @spinand: SPI NAND device
472  * @np: DT node
473  *
474  * Attach a DT node to a SPI NAND device.
475  */
spinand_set_of_node(struct spinand_device * spinand,const struct device_node * np)476 static inline void spinand_set_of_node(struct spinand_device *spinand,
477 				       const struct device_node *np)
478 {
479 	nanddev_set_of_node(&spinand->base, np);
480 }
481 #else
482 /**
483  * spinand_set_of_node - Attach a DT node to a SPI NAND device
484  * @spinand: SPI NAND device
485  * @node: ofnode
486  *
487  * Attach a DT node to a SPI NAND device.
488  */
spinand_set_ofnode(struct spinand_device * spinand,ofnode node)489 static inline void spinand_set_ofnode(struct spinand_device *spinand,
490 				      ofnode node)
491 {
492 	nanddev_set_ofnode(&spinand->base, node);
493 }
494 #endif /* __UBOOT__ */
495 
496 int spinand_match_and_init(struct spinand_device *spinand,
497 			   const struct spinand_info *table,
498 			   unsigned int table_size,
499 			   enum spinand_readid_method rdid_method);
500 
501 int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val);
502 int spinand_select_target(struct spinand_device *spinand, unsigned int target);
503 
504 #endif /* __LINUX_MTD_SPINAND_H */
505