1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * (C) Copyright 2001
4  * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
5  */
6 
7 #include <command.h>
8 #include <errno.h>
9 #include <rtc.h>
10 #include <linux/time.h>
11 
12 #define FEBRUARY		2
13 #define	STARTOFTIME		1970
14 #define SECDAY			86400L
15 #define SECYR			(SECDAY * 365)
16 #define	leapyear(year)		((year) % 4 == 0)
17 #define	days_in_year(a)		(leapyear(a) ? 366 : 365)
18 #define	days_in_month(a)	(month_days[(a) - 1])
19 
20 static int month_offset[] = {
21 	0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334
22 };
23 
24 /*
25  * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
26  */
rtc_calc_weekday(struct rtc_time * tm)27 int rtc_calc_weekday(struct rtc_time *tm)
28 {
29 	int leaps_to_date;
30 	int last_year;
31 	int day;
32 
33 	if (tm->tm_year < 1753)
34 		return -1;
35 	last_year = tm->tm_year - 1;
36 
37 	/* Number of leap corrections to apply up to end of last year */
38 	leaps_to_date = last_year / 4 - last_year / 100 + last_year / 400;
39 
40 	/*
41 	 * This year is a leap year if it is divisible by 4 except when it is
42 	 * divisible by 100 unless it is divisible by 400
43 	 *
44 	 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 is.
45 	 */
46 	if (tm->tm_year % 4 == 0 &&
47 	    ((tm->tm_year % 100 != 0) || (tm->tm_year % 400 == 0)) &&
48 	    tm->tm_mon > 2) {
49 		/* We are past Feb. 29 in a leap year */
50 		day = 1;
51 	} else {
52 		day = 0;
53 	}
54 
55 	day += last_year * 365 + leaps_to_date + month_offset[tm->tm_mon - 1] +
56 			tm->tm_mday;
57 	tm->tm_wday = day % 7;
58 
59 	return 0;
60 }
61 
62 /*
63  * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
64  * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
65  * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
66  *
67  * [For the Julian calendar (which was used in Russia before 1917,
68  * Britain & colonies before 1752, anywhere else before 1582,
69  * and is still in use by some communities) leave out the
70  * -year / 100 + year / 400 terms, and add 10.]
71  *
72  * This algorithm was first published by Gauss (I think).
73  */
rtc_mktime(const struct rtc_time * tm)74 time64_t rtc_mktime(const struct rtc_time *tm)
75 {
76 	int mon = tm->tm_mon;
77 	int year = tm->tm_year;
78 	unsigned long days;
79 	time64_t hours;
80 
81 	mon -= 2;
82 	if (0 >= mon) {		/* 1..12 -> 11, 12, 1..10 */
83 		mon += 12;	/* Puts Feb last since it has leap day */
84 		year -= 1;
85 	}
86 
87 	days = (unsigned long)(year / 4 - year / 100 + year / 400 +
88 			367 * mon / 12 + tm->tm_mday) +
89 			year * 365 - 719499;
90 	hours = days * 24 + tm->tm_hour;
91 	return (hours * 60 + tm->tm_min) * 60 + tm->tm_sec;
92 }
93 
94 /* for compatibility with linux code */
mktime64(const unsigned int year,const unsigned int mon,const unsigned int day,const unsigned int hour,const unsigned int min,const unsigned int sec)95 time64_t mktime64(const unsigned int year, const unsigned int mon,
96 		  const unsigned int day, const unsigned int hour,
97 		  const unsigned int min, const unsigned int sec)
98 {
99 	struct rtc_time time;
100 
101 	time.tm_year = year;
102 	time.tm_mon = mon;
103 	time.tm_mday = day;
104 	time.tm_hour = hour;
105 	time.tm_min = min;
106 	time.tm_sec = sec;
107 
108 	return rtc_mktime((const struct rtc_time *)&time);
109 }
110