1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * (C) Copyright 2002
4  * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
5  */
6 
7 #include <config.h>
8 #include <log.h>
9 #include <asm/global_data.h>
10 
11 /* Memory test
12  *
13  * General observations:
14  * o The recommended test sequence is to test the data lines: if they are
15  *   broken, nothing else will work properly.  Then test the address
16  *   lines.  Finally, test the cells in the memory now that the test
17  *   program knows that the address and data lines work properly.
18  *   This sequence also helps isolate and identify what is faulty.
19  *
20  * o For the address line test, it is a good idea to use the base
21  *   address of the lowest memory location, which causes a '1' bit to
22  *   walk through a field of zeros on the address lines and the highest
23  *   memory location, which causes a '0' bit to walk through a field of
24  *   '1's on the address line.
25  *
26  * o Floating buses can fool memory tests if the test routine writes
27  *   a value and then reads it back immediately.  The problem is, the
28  *   write will charge the residual capacitance on the data bus so the
29  *   bus retains its state briefely.  When the test program reads the
30  *   value back immediately, the capacitance of the bus can allow it
31  *   to read back what was written, even though the memory circuitry
32  *   is broken.  To avoid this, the test program should write a test
33  *   pattern to the target location, write a different pattern elsewhere
34  *   to charge the residual capacitance in a differnt manner, then read
35  *   the target location back.
36  *
37  * o Always read the target location EXACTLY ONCE and save it in a local
38  *   variable.  The problem with reading the target location more than
39  *   once is that the second and subsequent reads may work properly,
40  *   resulting in a failed test that tells the poor technician that
41  *   "Memory error at 00000000, wrote aaaaaaaa, read aaaaaaaa" which
42  *   doesn't help him one bit and causes puzzled phone calls.  Been there,
43  *   done that.
44  *
45  * Data line test:
46  * ---------------
47  * This tests data lines for shorts and opens by forcing adjacent data
48  * to opposite states. Because the data lines could be routed in an
49  * arbitrary manner the must ensure test patterns ensure that every case
50  * is tested. By using the following series of binary patterns every
51  * combination of adjacent bits is test regardless of routing.
52  *
53  *     ...101010101010101010101010
54  *     ...110011001100110011001100
55  *     ...111100001111000011110000
56  *     ...111111110000000011111111
57  *
58  * Carrying this out, gives us six hex patterns as follows:
59  *
60  *     0xaaaaaaaaaaaaaaaa
61  *     0xcccccccccccccccc
62  *     0xf0f0f0f0f0f0f0f0
63  *     0xff00ff00ff00ff00
64  *     0xffff0000ffff0000
65  *     0xffffffff00000000
66  *
67  * To test for short and opens to other signals on our boards, we
68  * simply test with the 1's complemnt of the paterns as well, resulting
69  * in twelve patterns total.
70  *
71  * After writing a test pattern. a special pattern 0x0123456789ABCDEF is
72  * written to a different address in case the data lines are floating.
73  * Thus, if a byte lane fails, you will see part of the special
74  * pattern in that byte lane when the test runs.  For example, if the
75  * xx__xxxxxxxxxxxx byte line fails, you will see aa23aaaaaaaaaaaa
76  * (for the 'a' test pattern).
77  *
78  * Address line test:
79  * ------------------
80  *  This function performs a test to verify that all the address lines
81  *  hooked up to the RAM work properly.  If there is an address line
82  *  fault, it usually shows up as two different locations in the address
83  *  map (related by the faulty address line) mapping to one physical
84  *  memory storage location.  The artifact that shows up is writing to
85  *  the first location "changes" the second location.
86  *
87  * To test all address lines, we start with the given base address and
88  * xor the address with a '1' bit to flip one address line.  For each
89  * test, we shift the '1' bit left to test the next address line.
90  *
91  * In the actual code, we start with address sizeof(ulong) since our
92  * test pattern we use is a ulong and thus, if we tried to test lower
93  * order address bits, it wouldn't work because our pattern would
94  * overwrite itself.
95  *
96  * Example for a 4 bit address space with the base at 0000:
97  *   0000 <- base
98  *   0001 <- test 1
99  *   0010 <- test 2
100  *   0100 <- test 3
101  *   1000 <- test 4
102  * Example for a 4 bit address space with the base at 0010:
103  *   0010 <- base
104  *   0011 <- test 1
105  *   0000 <- (below the base address, skipped)
106  *   0110 <- test 2
107  *   1010 <- test 3
108  *
109  * The test locations are successively tested to make sure that they are
110  * not "mirrored" onto the base address due to a faulty address line.
111  * Note that the base and each test location are related by one address
112  * line flipped.  Note that the base address need not be all zeros.
113  *
114  * Memory tests 1-4:
115  * -----------------
116  * These tests verify RAM using sequential writes and reads
117  * to/from RAM. There are several test cases that use different patterns to
118  * verify RAM. Each test case fills a region of RAM with one pattern and
119  * then reads the region back and compares its contents with the pattern.
120  * The following patterns are used:
121  *
122  *  1a) zero pattern (0x00000000)
123  *  1b) negative pattern (0xffffffff)
124  *  1c) checkerboard pattern (0x55555555)
125  *  1d) checkerboard pattern (0xaaaaaaaa)
126  *  2)  bit-flip pattern ((1 << (offset % 32))
127  *  3)  address pattern (offset)
128  *  4)  address pattern (~offset)
129  *
130  * Being run in normal mode, the test verifies only small 4Kb
131  * regions of RAM around each 1Mb boundary. For example, for 64Mb
132  * RAM the following areas are verified: 0x00000000-0x00000800,
133  * 0x000ff800-0x00100800, 0x001ff800-0x00200800, ..., 0x03fff800-
134  * 0x04000000. If the test is run in slow-test mode, it verifies
135  * the whole RAM.
136  */
137 
138 #include <post.h>
139 #include <watchdog.h>
140 
141 #if CFG_POST & (CFG_SYS_POST_MEMORY | CFG_SYS_POST_MEM_REGIONS)
142 
143 DECLARE_GLOBAL_DATA_PTR;
144 
145 /*
146  * Define INJECT_*_ERRORS for testing error detection in the presence of
147  * _good_ hardware.
148  */
149 #undef  INJECT_DATA_ERRORS
150 #undef  INJECT_ADDRESS_ERRORS
151 
152 #ifdef INJECT_DATA_ERRORS
153 #warning "Injecting data line errors for testing purposes"
154 #endif
155 
156 #ifdef INJECT_ADDRESS_ERRORS
157 #warning "Injecting address line errors for testing purposes"
158 #endif
159 
160 /*
161  * This function performs a double word move from the data at
162  * the source pointer to the location at the destination pointer.
163  * This is helpful for testing memory on processors which have a 64 bit
164  * wide data bus.
165  *
166  * On those PowerPC with FPU, use assembly and a floating point move:
167  * this does a 64 bit move.
168  *
169  * For other processors, let the compiler generate the best code it can.
170  */
move64(const unsigned long long * src,unsigned long long * dest)171 static void move64(const unsigned long long *src, unsigned long long *dest)
172 {
173 	*dest = *src;
174 }
175 
176 /*
177  * This is 64 bit wide test patterns.  Note that they reside in ROM
178  * (which presumably works) and the tests write them to RAM which may
179  * not work.
180  *
181  * The "otherpattern" is written to drive the data bus to values other
182  * than the test pattern.  This is for detecting floating bus lines.
183  *
184  */
185 const static unsigned long long pattern[] = {
186 	0xaaaaaaaaaaaaaaaaULL,
187 	0xccccccccccccccccULL,
188 	0xf0f0f0f0f0f0f0f0ULL,
189 	0xff00ff00ff00ff00ULL,
190 	0xffff0000ffff0000ULL,
191 	0xffffffff00000000ULL,
192 	0x00000000ffffffffULL,
193 	0x0000ffff0000ffffULL,
194 	0x00ff00ff00ff00ffULL,
195 	0x0f0f0f0f0f0f0f0fULL,
196 	0x3333333333333333ULL,
197 	0x5555555555555555ULL
198 };
199 const unsigned long long otherpattern = 0x0123456789abcdefULL;
200 
memory_post_dataline(unsigned long long * pmem)201 static int memory_post_dataline(unsigned long long * pmem)
202 {
203 	unsigned long long temp64 = 0;
204 	int num_patterns = ARRAY_SIZE(pattern);
205 	int i;
206 	unsigned int hi, lo, pathi, patlo;
207 	int ret = 0;
208 
209 	for ( i = 0; i < num_patterns; i++) {
210 		move64(&(pattern[i]), pmem++);
211 		/*
212 		 * Put a different pattern on the data lines: otherwise they
213 		 * may float long enough to read back what we wrote.
214 		 */
215 		move64(&otherpattern, pmem--);
216 		move64(pmem, &temp64);
217 
218 #ifdef INJECT_DATA_ERRORS
219 		temp64 ^= 0x00008000;
220 #endif
221 
222 		if (temp64 != pattern[i]){
223 			pathi = (pattern[i]>>32) & 0xffffffff;
224 			patlo = pattern[i] & 0xffffffff;
225 
226 			hi = (temp64>>32) & 0xffffffff;
227 			lo = temp64 & 0xffffffff;
228 
229 			post_log("Memory (data line) error at %p, wrote %08x%08x, read %08x%08x !\n",
230 				 pmem, pathi, patlo, hi, lo);
231 			ret = -1;
232 		}
233 	}
234 	return ret;
235 }
236 
memory_post_addrline(ulong * testaddr,ulong * base,ulong size)237 static int memory_post_addrline(ulong *testaddr, ulong *base, ulong size)
238 {
239 	ulong *target;
240 	ulong *end;
241 	ulong readback;
242 	ulong xor;
243 	int   ret = 0;
244 
245 	end = (ulong *)((ulong)base + size);	/* pointer arith! */
246 	xor = 0;
247 	for(xor = sizeof(ulong); xor > 0; xor <<= 1) {
248 		target = (ulong *)((ulong)testaddr ^ xor);
249 		if((target >= base) && (target < end)) {
250 			*testaddr = ~*target;
251 			readback  = *target;
252 
253 #ifdef INJECT_ADDRESS_ERRORS
254 			if(xor == 0x00008000) {
255 				readback = *testaddr;
256 			}
257 #endif
258 			if(readback == *testaddr) {
259 				post_log("Memory (address line) error at %p<->%p, XOR value %08lx !\n",
260 					 testaddr, target, xor);
261 				ret = -1;
262 			}
263 		}
264 	}
265 	return ret;
266 }
267 
memory_post_test1(unsigned long start,unsigned long size,unsigned long val)268 static int memory_post_test1(unsigned long start,
269 			      unsigned long size,
270 			      unsigned long val)
271 {
272 	unsigned long i;
273 	ulong *mem = (ulong *) start;
274 	ulong readback;
275 	int ret = 0;
276 
277 	for (i = 0; i < size / sizeof (ulong); i++) {
278 		mem[i] = val;
279 		if (i % 1024 == 0)
280 			schedule();
281 	}
282 
283 	for (i = 0; i < size / sizeof (ulong) && !ret; i++) {
284 		readback = mem[i];
285 		if (readback != val) {
286 			post_log("Memory error at %p, wrote %08lx, read %08lx !\n",
287 				 mem + i, val, readback);
288 
289 			ret = -1;
290 			break;
291 		}
292 		if (i % 1024 == 0)
293 			schedule();
294 	}
295 
296 	return ret;
297 }
298 
memory_post_test2(unsigned long start,unsigned long size)299 static int memory_post_test2(unsigned long start, unsigned long size)
300 {
301 	unsigned long i;
302 	ulong *mem = (ulong *) start;
303 	ulong readback;
304 	int ret = 0;
305 
306 	for (i = 0; i < size / sizeof (ulong); i++) {
307 		mem[i] = 1 << (i % 32);
308 		if (i % 1024 == 0)
309 			schedule();
310 	}
311 
312 	for (i = 0; i < size / sizeof (ulong) && !ret; i++) {
313 		readback = mem[i];
314 		if (readback != (1 << (i % 32))) {
315 			post_log("Memory error at %p, wrote %08lx, read %08lx !\n",
316 				 mem + i, 1UL << (i % 32), readback);
317 
318 			ret = -1;
319 			break;
320 		}
321 		if (i % 1024 == 0)
322 			schedule();
323 	}
324 
325 	return ret;
326 }
327 
memory_post_test3(unsigned long start,unsigned long size)328 static int memory_post_test3(unsigned long start, unsigned long size)
329 {
330 	unsigned long i;
331 	ulong *mem = (ulong *) start;
332 	ulong readback;
333 	int ret = 0;
334 
335 	for (i = 0; i < size / sizeof (ulong); i++) {
336 		mem[i] = i;
337 		if (i % 1024 == 0)
338 			schedule();
339 	}
340 
341 	for (i = 0; i < size / sizeof (ulong) && !ret; i++) {
342 		readback = mem[i];
343 		if (readback != i) {
344 			post_log("Memory error at %p, wrote %08lx, read %08lx !\n",
345 				 mem + i, i, readback);
346 
347 			ret = -1;
348 			break;
349 		}
350 		if (i % 1024 == 0)
351 			schedule();
352 	}
353 
354 	return ret;
355 }
356 
memory_post_test4(unsigned long start,unsigned long size)357 static int memory_post_test4(unsigned long start, unsigned long size)
358 {
359 	unsigned long i;
360 	ulong *mem = (ulong *) start;
361 	ulong readback;
362 	int ret = 0;
363 
364 	for (i = 0; i < size / sizeof (ulong); i++) {
365 		mem[i] = ~i;
366 		if (i % 1024 == 0)
367 			schedule();
368 	}
369 
370 	for (i = 0; i < size / sizeof (ulong) && !ret; i++) {
371 		readback = mem[i];
372 		if (readback != ~i) {
373 			post_log("Memory error at %p, wrote %08lx, read %08lx !\n",
374 				 mem + i, ~i, readback);
375 
376 			ret = -1;
377 			break;
378 		}
379 		if (i % 1024 == 0)
380 			schedule();
381 	}
382 
383 	return ret;
384 }
385 
memory_post_test_lines(unsigned long start,unsigned long size)386 static int memory_post_test_lines(unsigned long start, unsigned long size)
387 {
388 	int ret = 0;
389 
390 	ret = memory_post_dataline((unsigned long long *)start);
391 	schedule();
392 	if (!ret)
393 		ret = memory_post_addrline((ulong *)start, (ulong *)start,
394 				size);
395 	schedule();
396 	if (!ret)
397 		ret = memory_post_addrline((ulong *)(start+size-8),
398 				(ulong *)start, size);
399 	schedule();
400 
401 	return ret;
402 }
403 
memory_post_test_patterns(unsigned long start,unsigned long size)404 static int memory_post_test_patterns(unsigned long start, unsigned long size)
405 {
406 	int ret = 0;
407 
408 	ret = memory_post_test1(start, size, 0x00000000);
409 	schedule();
410 	if (!ret)
411 		ret = memory_post_test1(start, size, 0xffffffff);
412 	schedule();
413 	if (!ret)
414 		ret = memory_post_test1(start, size, 0x55555555);
415 	schedule();
416 	if (!ret)
417 		ret = memory_post_test1(start, size, 0xaaaaaaaa);
418 	schedule();
419 	if (!ret)
420 		ret = memory_post_test2(start, size);
421 	schedule();
422 	if (!ret)
423 		ret = memory_post_test3(start, size);
424 	schedule();
425 	if (!ret)
426 		ret = memory_post_test4(start, size);
427 	schedule();
428 
429 	return ret;
430 }
431 
memory_post_test_regions(unsigned long start,unsigned long size)432 static int memory_post_test_regions(unsigned long start, unsigned long size)
433 {
434 	unsigned long i;
435 	int ret = 0;
436 
437 	for (i = 0; i < (size >> 20) && (!ret); i++) {
438 		if (!ret)
439 			ret = memory_post_test_patterns(start + (i << 20),
440 				0x800);
441 		if (!ret)
442 			ret = memory_post_test_patterns(start + (i << 20) +
443 				0xff800, 0x800);
444 	}
445 
446 	return ret;
447 }
448 
memory_post_tests(unsigned long start,unsigned long size)449 static int memory_post_tests(unsigned long start, unsigned long size)
450 {
451 	int ret = 0;
452 
453 	ret = memory_post_test_lines(start, size);
454 	if (!ret)
455 		ret = memory_post_test_patterns(start, size);
456 
457 	return ret;
458 }
459 
460 /*
461  * !! this is only valid, if you have contiguous memory banks !!
462  */
463 __attribute__((weak))
arch_memory_test_prepare(u32 * vstart,u32 * size,phys_addr_t * phys_offset)464 int arch_memory_test_prepare(u32 *vstart, u32 *size, phys_addr_t *phys_offset)
465 {
466 	struct bd_info *bd = gd->bd;
467 
468 	*vstart = CFG_SYS_SDRAM_BASE;
469 	*size = (gd->ram_size >= 256 << 20 ?
470 			256 << 20 : gd->ram_size) - (1 << 20);
471 
472 	/* Limit area to be tested with the board info struct */
473 	if ((*vstart) + (*size) > (ulong)bd)
474 		*size = (ulong)bd - *vstart;
475 
476 	return 0;
477 }
478 
479 __attribute__((weak))
arch_memory_test_advance(u32 * vstart,u32 * size,phys_addr_t * phys_offset)480 int arch_memory_test_advance(u32 *vstart, u32 *size, phys_addr_t *phys_offset)
481 {
482 	return 1;
483 }
484 
485 __attribute__((weak))
arch_memory_test_cleanup(u32 * vstart,u32 * size,phys_addr_t * phys_offset)486 int arch_memory_test_cleanup(u32 *vstart, u32 *size, phys_addr_t *phys_offset)
487 {
488 	return 0;
489 }
490 
491 __attribute__((weak))
arch_memory_failure_handle(void)492 void arch_memory_failure_handle(void)
493 {
494 	return;
495 }
496 
memory_regions_post_test(int flags)497 int memory_regions_post_test(int flags)
498 {
499 	int ret = 0;
500 	phys_addr_t phys_offset = 0;
501 	u32 memsize, vstart;
502 
503 	arch_memory_test_prepare(&vstart, &memsize, &phys_offset);
504 
505 	ret = memory_post_test_lines(vstart, memsize);
506 	if (!ret)
507 		ret = memory_post_test_regions(vstart, memsize);
508 
509 	return ret;
510 }
511 
memory_post_test(int flags)512 int memory_post_test(int flags)
513 {
514 	int ret = 0;
515 	phys_addr_t phys_offset = 0;
516 	u32 memsize, vstart;
517 
518 	arch_memory_test_prepare(&vstart, &memsize, &phys_offset);
519 
520 	do {
521 		if (flags & POST_SLOWTEST) {
522 			ret = memory_post_tests(vstart, memsize);
523 		} else {			/* POST_NORMAL */
524 			ret = memory_post_test_regions(vstart, memsize);
525 		}
526 	} while (!ret &&
527 		!arch_memory_test_advance(&vstart, &memsize, &phys_offset));
528 
529 	arch_memory_test_cleanup(&vstart, &memsize, &phys_offset);
530 	if (ret)
531 		arch_memory_failure_handle();
532 
533 	return ret;
534 }
535 
536 #endif /* CFG_POST&(CFG_SYS_POST_MEMORY|CFG_SYS_POST_MEM_REGIONS) */
537