1 /*
2  * ====================================================
3  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
4  *
5  * Developed at SunPro, a Sun Microsystems, Inc. business.
6  * Permission to use, copy, modify, and distribute this
7  * software is freely granted, provided that this notice
8  * is preserved.
9  * ====================================================
10  */
11 
12 /* double log1p(double x)
13  *
14  * Method :
15  *   1. Argument Reduction: find k and f such that
16  *			1+x = 2^k * (1+f),
17  *	   where  sqrt(2)/2 < 1+f < sqrt(2) .
18  *
19  *      Note. If k=0, then f=x is exact. However, if k!=0, then f
20  *	may not be representable exactly. In that case, a correction
21  *	term is need. Let u=1+x rounded. Let c = (1+x)-u, then
22  *	log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
23  *	and add back the correction term c/u.
24  *	(Note: when x > 2**53, one can simply return log(x))
25  *
26  *   2. Approximation of log1p(f).
27  *	Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
28  *		 = 2s + 2/3 s**3 + 2/5 s**5 + .....,
29  *	     	 = 2s + s*R
30  *      We use a special Reme algorithm on [0,0.1716] to generate
31  * 	a polynomial of degree 14 to approximate R The maximum error
32  *	of this polynomial approximation is bounded by 2**-58.45. In
33  *	other words,
34  *		        2      4      6      8      10      12      14
35  *	    R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s  +Lp6*s  +Lp7*s
36  *  	(the values of Lp1 to Lp7 are listed in the program)
37  *	and
38  *	    |      2          14          |     -58.45
39  *	    | Lp1*s +...+Lp7*s    -  R(z) | <= 2
40  *	    |                             |
41  *	Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
42  *	In order to guarantee error in log below 1ulp, we compute log
43  *	by
44  *		log1p(f) = f - (hfsq - s*(hfsq+R)).
45  *
46  *	3. Finally, log1p(x) = k*ln2 + log1p(f).
47  *		 	     = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
48  *	   Here ln2 is split into two floating point number:
49  *			ln2_hi + ln2_lo,
50  *	   where n*ln2_hi is always exact for |n| < 2000.
51  *
52  * Special cases:
53  *	log1p(x) is NaN with signal if x < -1 (including -INF) ;
54  *	log1p(+INF) is +INF; log1p(-1) is -INF with signal;
55  *	log1p(NaN) is that NaN with no signal.
56  *
57  * Accuracy:
58  *	according to an error analysis, the error is always less than
59  *	1 ulp (unit in the last place).
60  *
61  * Constants:
62  * The hexadecimal values are the intended ones for the following
63  * constants. The decimal values may be used, provided that the
64  * compiler will convert from decimal to binary accurately enough
65  * to produce the hexadecimal values shown.
66  *
67  * Note: Assuming log() return accurate answer, the following
68  * 	 algorithm can be used to compute log1p(x) to within a few ULP:
69  *
70  *		u = 1+x;
71  *		if(u==1.0) return x ; else
72  *			   return log(u)*(x/(u-1.0));
73  *
74  *	 See HP-15C Advanced Functions Handbook, p.193.
75  */
76 
77 #include "math.h"
78 #include "math_private.h"
79 
80 static const double
81 ln2_hi  =  6.93147180369123816490e-01,	/* 3fe62e42 fee00000 */
82 ln2_lo  =  1.90821492927058770002e-10,	/* 3dea39ef 35793c76 */
83 two54   =  1.80143985094819840000e+16,  /* 43500000 00000000 */
84 Lp1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
85 Lp2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
86 Lp3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
87 Lp4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
88 Lp5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
89 Lp6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
90 Lp7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
91 
92 static const double zero = 0.0;
93 
log1p(double x)94 double log1p(double x)
95 {
96 	double hfsq,f=0,c=0,s,z,R,u;
97 	int32_t k,hx,hu=0,ax;
98 
99 	GET_HIGH_WORD(hx,x);
100 	ax = hx&0x7fffffff;
101 
102 	k = 1;
103 	if (hx < 0x3FDA827A) {			/* x < 0.41422  */
104 	    if(ax>=0x3ff00000) {		/* x <= -1.0 */
105 		if(x==-1.0) return -two54/zero; /* log1p(-1)=+inf */
106 		else return (x-x)/(x-x);	/* log1p(x<-1)=NaN */
107 	    }
108 	    if(ax<0x3e200000) {			/* |x| < 2**-29 */
109 		if(two54+x>zero			/* raise inexact */
110 	            &&ax<0x3c900000) 		/* |x| < 2**-54 */
111 		    return x;
112 		else
113 		    return x - x*x*0.5;
114 	    }
115 	    if(hx>0||hx<=((int32_t)0xbfd2bec3)) {
116 		k=0;f=x;hu=1;}	/* -0.2929<x<0.41422 */
117 	}
118 	if (hx >= 0x7ff00000) return x+x;
119 	if(k!=0) {
120 	    if(hx<0x43400000) {
121 		u  = 1.0+x;
122 		GET_HIGH_WORD(hu,u);
123 	        k  = (hu>>20)-1023;
124 	        c  = (k>0)? 1.0-(u-x):x-(u-1.0);/* correction term */
125 		c /= u;
126 	    } else {
127 		u  = x;
128 		GET_HIGH_WORD(hu,u);
129 	        k  = (hu>>20)-1023;
130 		c  = 0;
131 	    }
132 	    hu &= 0x000fffff;
133 	    if(hu<0x6a09e) {
134 	        SET_HIGH_WORD(u,hu|0x3ff00000);	/* normalize u */
135 	    } else {
136 	        k += 1;
137 		SET_HIGH_WORD(u,hu|0x3fe00000);	/* normalize u/2 */
138 	        hu = (0x00100000-hu)>>2;
139 	    }
140 	    f = u-1.0;
141 	}
142 	hfsq=0.5*f*f;
143 	if(hu==0) {	/* |f| < 2**-20 */
144 	    if(f==zero) {if(k==0) return zero;
145 			else {c += k*ln2_lo; return k*ln2_hi+c;}
146 	    }
147 	    R = hfsq*(1.0-0.66666666666666666*f);
148 	    if(k==0) return f-R; else
149 	    	     return k*ln2_hi-((R-(k*ln2_lo+c))-f);
150 	}
151  	s = f/(2.0+f);
152 	z = s*s;
153 	R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))));
154 	if(k==0) return f-(hfsq-s*(hfsq+R)); else
155 		 return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f);
156 }
157 libm_hidden_def(log1p)
158