1 /* This file is generated from divrem.m4; DO NOT EDIT! */ 2/* 3 * Division and remainder, from Appendix E of the Sparc Version 8 4 * Architecture Manual, with fixes from Gordon Irlam. 5 */ 6 7/* 8 * Input: dividend and divisor in %o0 and %o1 respectively. 9 * 10 * m4 parameters: 11 * .div name of function to generate 12 * div div=div => %o0 / %o1; div=rem => %o0 % %o1 13 * true true=true => signed; true=false => unsigned 14 * 15 * Algorithm parameters: 16 * N how many bits per iteration we try to get (4) 17 * WORDSIZE total number of bits (32) 18 * 19 * Derived constants: 20 * TOPBITS number of bits in the top decade of a number 21 * 22 * Important variables: 23 * Q the partial quotient under development (initially 0) 24 * R the remainder so far, initially the dividend 25 * ITER number of main division loop iterations required; 26 * equal to ceil(log2(quotient) / N). Note that this 27 * is the log base (2^N) of the quotient. 28 * V the current comparand, initially divisor*2^(ITER*N-1) 29 * 30 * Cost: 31 * Current estimate for non-large dividend is 32 * ceil(log2(quotient) / N) * (10 + 7N/2) + C 33 * A large dividend is one greater than 2^(31-TOPBITS) and takes a 34 * different path, as the upper bits of the quotient must be developed 35 * one bit at a time. 36 */ 37 38 39 40ENTRY(.div) 41 ! compute sign of result; if neither is negative, no problem 42 orcc %o1, %o0, %g0 ! either negative? 43 bge 2f ! no, go do the divide 44 xor %o1, %o0, %g3 ! compute sign in any case 45 tst %o1 46 bge 1f 47 tst %o0 48 ! %o1 is definitely negative; %o0 might also be negative 49 bge 2f ! if %o0 not negative... 50 sub %g0, %o1, %o1 ! in any case, make %o1 nonneg 511: ! %o0 is negative, %o1 is nonnegative 52 sub %g0, %o0, %o0 ! make %o0 nonnegative 532: 54 55 ! Ready to divide. Compute size of quotient; scale comparand. 56 orcc %o1, %g0, %o5 57 bne 1f 58 mov %o0, %o3 59 60 ! Divide by zero trap. If it returns, return 0 (about as 61 ! wrong as possible, but that is what SunOS does...). 62 ta ST_DIV0 63 retl 64 clr %o0 65 661: 67 cmp %o3, %o5 ! if %o1 exceeds %o0, done 68 blu LOC(got_result) ! (and algorithm fails otherwise) 69 clr %o2 70 sethi %hi(1 << (32 - 4 - 1)), %g1 71 cmp %o3, %g1 72 blu LOC(not_really_big) 73 clr %o4 74 75 ! Here the dividend is >= 2**(31-N) or so. We must be careful here, 76 ! as our usual N-at-a-shot divide step will cause overflow and havoc. 77 ! The number of bits in the result here is N*ITER+SC, where SC <= N. 78 ! Compute ITER in an unorthodox manner: know we need to shift V into 79 ! the top decade: so do not even bother to compare to R. 80 1: 81 cmp %o5, %g1 82 bgeu 3f 83 mov 1, %g2 84 sll %o5, 4, %o5 85 b 1b 86 add %o4, 1, %o4 87 88 ! Now compute %g2. 89 2: addcc %o5, %o5, %o5 90 bcc LOC(not_too_big) 91 add %g2, 1, %g2 92 93 ! We get here if the %o1 overflowed while shifting. 94 ! This means that %o3 has the high-order bit set. 95 ! Restore %o5 and subtract from %o3. 96 sll %g1, 4, %g1 ! high order bit 97 srl %o5, 1, %o5 ! rest of %o5 98 add %o5, %g1, %o5 99 b LOC(do_single_div) 100 sub %g2, 1, %g2 101 102 LOC(not_too_big): 103 3: cmp %o5, %o3 104 blu 2b 105 nop 106 be LOC(do_single_div) 107 nop 108 /* NB: these are commented out in the V8-Sparc manual as well */ 109 /* (I do not understand this) */ 110 ! %o5 > %o3: went too far: back up 1 step 111 ! srl %o5, 1, %o5 112 ! dec %g2 113 ! do single-bit divide steps 114 ! 115 ! We have to be careful here. We know that %o3 >= %o5, so we can do the 116 ! first divide step without thinking. BUT, the others are conditional, 117 ! and are only done if %o3 >= 0. Because both %o3 and %o5 may have the high- 118 ! order bit set in the first step, just falling into the regular 119 ! division loop will mess up the first time around. 120 ! So we unroll slightly... 121 LOC(do_single_div): 122 subcc %g2, 1, %g2 123 bl LOC(end_regular_divide) 124 nop 125 sub %o3, %o5, %o3 126 mov 1, %o2 127 b LOC(end_single_divloop) 128 nop 129 LOC(single_divloop): 130 sll %o2, 1, %o2 131 bl 1f 132 srl %o5, 1, %o5 133 ! %o3 >= 0 134 sub %o3, %o5, %o3 135 b 2f 136 add %o2, 1, %o2 137 1: ! %o3 < 0 138 add %o3, %o5, %o3 139 sub %o2, 1, %o2 140 2: 141 LOC(end_single_divloop): 142 subcc %g2, 1, %g2 143 bge LOC(single_divloop) 144 tst %o3 145 b,a LOC(end_regular_divide) 146 147LOC(not_really_big): 1481: 149 sll %o5, 4, %o5 150 cmp %o5, %o3 151 bleu 1b 152 addcc %o4, 1, %o4 153 be LOC(got_result) 154 sub %o4, 1, %o4 155 156 tst %o3 ! set up for initial iteration 157LOC(divloop): 158 sll %o2, 4, %o2 159 ! depth 1, accumulated bits 0 160 bl LOC(1.16) 161 srl %o5,1,%o5 162 ! remainder is positive 163 subcc %o3,%o5,%o3 164 ! depth 2, accumulated bits 1 165 bl LOC(2.17) 166 srl %o5,1,%o5 167 ! remainder is positive 168 subcc %o3,%o5,%o3 169 ! depth 3, accumulated bits 3 170 bl LOC(3.19) 171 srl %o5,1,%o5 172 ! remainder is positive 173 subcc %o3,%o5,%o3 174 ! depth 4, accumulated bits 7 175 bl LOC(4.23) 176 srl %o5,1,%o5 177 ! remainder is positive 178 subcc %o3,%o5,%o3 179 b 9f 180 add %o2, (7*2+1), %o2 181 182LOC(4.23): 183 ! remainder is negative 184 addcc %o3,%o5,%o3 185 b 9f 186 add %o2, (7*2-1), %o2 187 188 189LOC(3.19): 190 ! remainder is negative 191 addcc %o3,%o5,%o3 192 ! depth 4, accumulated bits 5 193 bl LOC(4.21) 194 srl %o5,1,%o5 195 ! remainder is positive 196 subcc %o3,%o5,%o3 197 b 9f 198 add %o2, (5*2+1), %o2 199 200LOC(4.21): 201 ! remainder is negative 202 addcc %o3,%o5,%o3 203 b 9f 204 add %o2, (5*2-1), %o2 205 206 207 208LOC(2.17): 209 ! remainder is negative 210 addcc %o3,%o5,%o3 211 ! depth 3, accumulated bits 1 212 bl LOC(3.17) 213 srl %o5,1,%o5 214 ! remainder is positive 215 subcc %o3,%o5,%o3 216 ! depth 4, accumulated bits 3 217 bl LOC(4.19) 218 srl %o5,1,%o5 219 ! remainder is positive 220 subcc %o3,%o5,%o3 221 b 9f 222 add %o2, (3*2+1), %o2 223 224LOC(4.19): 225 ! remainder is negative 226 addcc %o3,%o5,%o3 227 b 9f 228 add %o2, (3*2-1), %o2 229 230 231LOC(3.17): 232 ! remainder is negative 233 addcc %o3,%o5,%o3 234 ! depth 4, accumulated bits 1 235 bl LOC(4.17) 236 srl %o5,1,%o5 237 ! remainder is positive 238 subcc %o3,%o5,%o3 239 b 9f 240 add %o2, (1*2+1), %o2 241 242LOC(4.17): 243 ! remainder is negative 244 addcc %o3,%o5,%o3 245 b 9f 246 add %o2, (1*2-1), %o2 247 248 249 250 251LOC(1.16): 252 ! remainder is negative 253 addcc %o3,%o5,%o3 254 ! depth 2, accumulated bits -1 255 bl LOC(2.15) 256 srl %o5,1,%o5 257 ! remainder is positive 258 subcc %o3,%o5,%o3 259 ! depth 3, accumulated bits -1 260 bl LOC(3.15) 261 srl %o5,1,%o5 262 ! remainder is positive 263 subcc %o3,%o5,%o3 264 ! depth 4, accumulated bits -1 265 bl LOC(4.15) 266 srl %o5,1,%o5 267 ! remainder is positive 268 subcc %o3,%o5,%o3 269 b 9f 270 add %o2, (-1*2+1), %o2 271 272LOC(4.15): 273 ! remainder is negative 274 addcc %o3,%o5,%o3 275 b 9f 276 add %o2, (-1*2-1), %o2 277 278 279LOC(3.15): 280 ! remainder is negative 281 addcc %o3,%o5,%o3 282 ! depth 4, accumulated bits -3 283 bl LOC(4.13) 284 srl %o5,1,%o5 285 ! remainder is positive 286 subcc %o3,%o5,%o3 287 b 9f 288 add %o2, (-3*2+1), %o2 289 290LOC(4.13): 291 ! remainder is negative 292 addcc %o3,%o5,%o3 293 b 9f 294 add %o2, (-3*2-1), %o2 295 296 297 298LOC(2.15): 299 ! remainder is negative 300 addcc %o3,%o5,%o3 301 ! depth 3, accumulated bits -3 302 bl LOC(3.13) 303 srl %o5,1,%o5 304 ! remainder is positive 305 subcc %o3,%o5,%o3 306 ! depth 4, accumulated bits -5 307 bl LOC(4.11) 308 srl %o5,1,%o5 309 ! remainder is positive 310 subcc %o3,%o5,%o3 311 b 9f 312 add %o2, (-5*2+1), %o2 313 314LOC(4.11): 315 ! remainder is negative 316 addcc %o3,%o5,%o3 317 b 9f 318 add %o2, (-5*2-1), %o2 319 320 321LOC(3.13): 322 ! remainder is negative 323 addcc %o3,%o5,%o3 324 ! depth 4, accumulated bits -7 325 bl LOC(4.9) 326 srl %o5,1,%o5 327 ! remainder is positive 328 subcc %o3,%o5,%o3 329 b 9f 330 add %o2, (-7*2+1), %o2 331 332LOC(4.9): 333 ! remainder is negative 334 addcc %o3,%o5,%o3 335 b 9f 336 add %o2, (-7*2-1), %o2 337 338 339 340 341 9: 342LOC(end_regular_divide): 343 subcc %o4, 1, %o4 344 bge LOC(divloop) 345 tst %o3 346 bl,a LOC(got_result) 347 ! non-restoring fixup here (one instruction only!) 348 sub %o2, 1, %o2 349 350 351LOC(got_result): 352 ! check to see if answer should be < 0 353 tst %g3 354 bl,a 1f 355 sub %g0, %o2, %o2 3561: 357 retl 358 mov %o2, %o0 359 360END(.div) 361