1 /*
2  * ====================================================
3  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
4  *
5  * Developed at SunPro, a Sun Microsystems, Inc. business.
6  * Permission to use, copy, modify, and distribute this
7  * software is freely granted, provided that this notice
8  * is preserved.
9  * ====================================================
10  */
11 
12 /* __ieee754_sqrt(x)
13  * Return correctly rounded sqrt.
14  *           ------------------------------------------
15  *	     |  Use the hardware sqrt if you have one |
16  *           ------------------------------------------
17  * Method:
18  *   Bit by bit method using integer arithmetic. (Slow, but portable)
19  *   1. Normalization
20  *	Scale x to y in [1,4) with even powers of 2:
21  *	find an integer k such that  1 <= (y=x*2^(2k)) < 4, then
22  *		sqrt(x) = 2^k * sqrt(y)
23  *   2. Bit by bit computation
24  *	Let q  = sqrt(y) truncated to i bit after binary point (q = 1),
25  *	     i							 0
26  *                                     i+1         2
27  *	    s  = 2*q , and	y  =  2   * ( y - q  ).		(1)
28  *	     i      i            i                 i
29  *
30  *	To compute q    from q , one checks whether
31  *		    i+1       i
32  *
33  *			      -(i+1) 2
34  *			(q + 2      ) <= y.			(2)
35  *     			  i
36  *							      -(i+1)
37  *	If (2) is false, then q   = q ; otherwise q   = q  + 2      .
38  *		 	       i+1   i             i+1   i
39  *
40  *	With some algebric manipulation, it is not difficult to see
41  *	that (2) is equivalent to
42  *                             -(i+1)
43  *			s  +  2       <= y			(3)
44  *			 i                i
45  *
46  *	The advantage of (3) is that s  and y  can be computed by
47  *				      i      i
48  *	the following recurrence formula:
49  *	    if (3) is false
50  *
51  *	    s     =  s  ,	y    = y   ;			(4)
52  *	     i+1      i		 i+1    i
53  *
54  *	    otherwise,
55  *                         -i                     -(i+1)
56  *	    s	  =  s  + 2  ,  y    = y  -  s  - 2  		(5)
57  *           i+1      i          i+1    i     i
58  *
59  *	One may easily use induction to prove (4) and (5).
60  *	Note. Since the left hand side of (3) contain only i+2 bits,
61  *	      it does not necessary to do a full (53-bit) comparison
62  *	      in (3).
63  *   3. Final rounding
64  *	After generating the 53 bits result, we compute one more bit.
65  *	Together with the remainder, we can decide whether the
66  *	result is exact, bigger than 1/2ulp, or less than 1/2ulp
67  *	(it will never equal to 1/2ulp).
68  *	The rounding mode can be detected by checking whether
69  *	huge + tiny is equal to huge, and whether huge - tiny is
70  *	equal to huge for some floating point number "huge" and "tiny".
71  *
72  * Special cases:
73  *	sqrt(+-0) = +-0 	... exact
74  *	sqrt(inf) = inf
75  *	sqrt(-ve) = NaN		... with invalid signal
76  *	sqrt(NaN) = NaN		... with invalid signal for signaling NaN
77  *
78  * Other methods : see the appended file at the end of the program below.
79  *---------------
80  */
81 
82 #include "math.h"
83 #include "math_private.h"
84 
85 static const double one = 1.0, tiny = 1.0e-300;
86 
__ieee754_sqrt(double x)87 double __ieee754_sqrt(double x)
88 {
89 	double z;
90 	int32_t sign = (int)0x80000000;
91 	int32_t ix0,s0,q,m,t,i;
92 	u_int32_t r,t1,s1,ix1,q1;
93 
94 	EXTRACT_WORDS(ix0,ix1,x);
95 
96     /* take care of Inf and NaN */
97 	if((ix0&0x7ff00000)==0x7ff00000) {
98 	    return x*x+x;		/* sqrt(NaN)=NaN, sqrt(+inf)=+inf
99 					   sqrt(-inf)=sNaN */
100 	}
101     /* take care of zero */
102 	if(ix0<=0) {
103 	    if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */
104 	    else if(ix0<0)
105 		return (x-x)/(x-x);		/* sqrt(-ve) = sNaN */
106 	}
107     /* normalize x */
108 	m = (ix0>>20);
109 	if(m==0) {				/* subnormal x */
110 	    while(ix0==0) {
111 		m -= 21;
112 		ix0 |= (ix1>>11); ix1 <<= 21;
113 	    }
114 	    for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1;
115 	    m -= i-1;
116 	    ix0 |= (ix1>>(32-i));
117 	    ix1 <<= i;
118 	}
119 	m -= 1023;	/* unbias exponent */
120 	ix0 = (ix0&0x000fffff)|0x00100000;
121 	if(m&1){	/* odd m, double x to make it even */
122 	    ix0 += ix0 + ((ix1&sign)>>31);
123 	    ix1 += ix1;
124 	}
125 	m >>= 1;	/* m = [m/2] */
126 
127     /* generate sqrt(x) bit by bit */
128 	ix0 += ix0 + ((ix1&sign)>>31);
129 	ix1 += ix1;
130 	q = q1 = s0 = s1 = 0;	/* [q,q1] = sqrt(x) */
131 	r = 0x00200000;		/* r = moving bit from right to left */
132 
133 	while(r!=0) {
134 	    t = s0+r;
135 	    if(t<=ix0) {
136 		s0   = t+r;
137 		ix0 -= t;
138 		q   += r;
139 	    }
140 	    ix0 += ix0 + ((ix1&sign)>>31);
141 	    ix1 += ix1;
142 	    r>>=1;
143 	}
144 
145 	r = sign;
146 	while(r!=0) {
147 	    t1 = s1+r;
148 	    t  = s0;
149 	    if((t<ix0)||((t==ix0)&&(t1<=ix1))) {
150 		s1  = t1+r;
151 		if(((t1&sign)==sign)&&(s1&sign)==0) s0 += 1;
152 		ix0 -= t;
153 		if (ix1 < t1) ix0 -= 1;
154 		ix1 -= t1;
155 		q1  += r;
156 	    }
157 	    ix0 += ix0 + ((ix1&sign)>>31);
158 	    ix1 += ix1;
159 	    r>>=1;
160 	}
161 
162     /* use floating add to find out rounding direction */
163 	if((ix0|ix1)!=0) {
164 	    z = one-tiny; /* trigger inexact flag */
165 	    if (z>=one) {
166 	        z = one+tiny;
167 	        if (q1==(u_int32_t)0xffffffff) { q1=0; q += 1;}
168 		else if (z>one) {
169 		    if (q1==(u_int32_t)0xfffffffe) q+=1;
170 		    q1+=2;
171 		} else
172 	            q1 += (q1&1);
173 	    }
174 	}
175 	ix0 = (q>>1)+0x3fe00000;
176 	ix1 =  q1>>1;
177 	if ((q&1)==1) ix1 |= sign;
178 	ix0 += (m <<20);
179 	INSERT_WORDS(z,ix0,ix1);
180 	return z;
181 }
182 
183 
184 /*
185 Other methods  (use floating-point arithmetic)
186 -------------
187 (This is a copy of a drafted paper by Prof W. Kahan
188 and K.C. Ng, written in May, 1986)
189 
190 	Two algorithms are given here to implement sqrt(x)
191 	(IEEE double precision arithmetic) in software.
192 	Both supply sqrt(x) correctly rounded. The first algorithm (in
193 	Section A) uses newton iterations and involves four divisions.
194 	The second one uses reciproot iterations to avoid division, but
195 	requires more multiplications. Both algorithms need the ability
196 	to chop results of arithmetic operations instead of round them,
197 	and the INEXACT flag to indicate when an arithmetic operation
198 	is executed exactly with no roundoff error, all part of the
199 	standard (IEEE 754-1985). The ability to perform shift, add,
200 	subtract and logical AND operations upon 32-bit words is needed
201 	too, though not part of the standard.
202 
203 A.  sqrt(x) by Newton Iteration
204 
205    (1)	Initial approximation
206 
207 	Let x0 and x1 be the leading and the trailing 32-bit words of
208 	a floating point number x (in IEEE double format) respectively
209 
210 	    1    11		     52				  ...widths
211 	   ------------------------------------------------------
212 	x: |s|	  e     |	      f				|
213 	   ------------------------------------------------------
214 	      msb    lsb  msb				      lsb ...order
215 
216 
217 	     ------------------------  	     ------------------------
218 	x0:  |s|   e    |    f1     |	 x1: |          f2           |
219 	     ------------------------  	     ------------------------
220 
221 	By performing shifts and subtracts on x0 and x1 (both regarded
222 	as integers), we obtain an 8-bit approximation of sqrt(x) as
223 	follows.
224 
225 		k  := (x0>>1) + 0x1ff80000;
226 		y0 := k - T1[31&(k>>15)].	... y ~ sqrt(x) to 8 bits
227 	Here k is a 32-bit integer and T1[] is an integer array containing
228 	correction terms. Now magically the floating value of y (y's
229 	leading 32-bit word is y0, the value of its trailing word is 0)
230 	approximates sqrt(x) to almost 8-bit.
231 
232 	Value of T1:
233 	static int T1[32]= {
234 	0,	1024,	3062,	5746,	9193,	13348,	18162,	23592,
235 	29598,	36145,	43202,	50740,	58733,	67158,	75992,	85215,
236 	83599,	71378,	60428,	50647,	41945,	34246,	27478,	21581,
237 	16499,	12183,	8588,	5674,	3403,	1742,	661,	130,};
238 
239     (2)	Iterative refinement
240 
241 	Apply Heron's rule three times to y, we have y approximates
242 	sqrt(x) to within 1 ulp (Unit in the Last Place):
243 
244 		y := (y+x/y)/2		... almost 17 sig. bits
245 		y := (y+x/y)/2		... almost 35 sig. bits
246 		y := y-(y-x/y)/2	... within 1 ulp
247 
248 
249 	Remark 1.
250 	    Another way to improve y to within 1 ulp is:
251 
252 		y := (y+x/y)		... almost 17 sig. bits to 2*sqrt(x)
253 		y := y - 0x00100006	... almost 18 sig. bits to sqrt(x)
254 
255 				2
256 			    (x-y )*y
257 		y := y + 2* ----------	...within 1 ulp
258 			       2
259 			     3y  + x
260 
261 
262 	This formula has one division fewer than the one above; however,
263 	it requires more multiplications and additions. Also x must be
264 	scaled in advance to avoid spurious overflow in evaluating the
265 	expression 3y*y+x. Hence it is not recommended uless division
266 	is slow. If division is very slow, then one should use the
267 	reciproot algorithm given in section B.
268 
269     (3) Final adjustment
270 
271 	By twiddling y's last bit it is possible to force y to be
272 	correctly rounded according to the prevailing rounding mode
273 	as follows. Let r and i be copies of the rounding mode and
274 	inexact flag before entering the square root program. Also we
275 	use the expression y+-ulp for the next representable floating
276 	numbers (up and down) of y. Note that y+-ulp = either fixed
277 	point y+-1, or multiply y by nextafter(1,+-inf) in chopped
278 	mode.
279 
280 		I := FALSE;	... reset INEXACT flag I
281 		R := RZ;	... set rounding mode to round-toward-zero
282 		z := x/y;	... chopped quotient, possibly inexact
283 		If(not I) then {	... if the quotient is exact
284 		    if(z=y) {
285 		        I := i;	 ... restore inexact flag
286 		        R := r;  ... restore rounded mode
287 		        return sqrt(x):=y.
288 		    } else {
289 			z := z - ulp;	... special rounding
290 		    }
291 		}
292 		i := TRUE;		... sqrt(x) is inexact
293 		If (r=RN) then z=z+ulp	... rounded-to-nearest
294 		If (r=RP) then {	... round-toward-+inf
295 		    y = y+ulp; z=z+ulp;
296 		}
297 		y := y+z;		... chopped sum
298 		y0:=y0-0x00100000;	... y := y/2 is correctly rounded.
299 	        I := i;	 		... restore inexact flag
300 	        R := r;  		... restore rounded mode
301 	        return sqrt(x):=y.
302 
303     (4)	Special cases
304 
305 	Square root of +inf, +-0, or NaN is itself;
306 	Square root of a negative number is NaN with invalid signal.
307 
308 
309 B.  sqrt(x) by Reciproot Iteration
310 
311    (1)	Initial approximation
312 
313 	Let x0 and x1 be the leading and the trailing 32-bit words of
314 	a floating point number x (in IEEE double format) respectively
315 	(see section A). By performing shifs and subtracts on x0 and y0,
316 	we obtain a 7.8-bit approximation of 1/sqrt(x) as follows.
317 
318 	    k := 0x5fe80000 - (x0>>1);
319 	    y0:= k - T2[63&(k>>14)].	... y ~ 1/sqrt(x) to 7.8 bits
320 
321 	Here k is a 32-bit integer and T2[] is an integer array
322 	containing correction terms. Now magically the floating
323 	value of y (y's leading 32-bit word is y0, the value of
324 	its trailing word y1 is set to zero) approximates 1/sqrt(x)
325 	to almost 7.8-bit.
326 
327 	Value of T2:
328 	static int T2[64]= {
329 	0x1500,	0x2ef8,	0x4d67,	0x6b02,	0x87be,	0xa395,	0xbe7a,	0xd866,
330 	0xf14a,	0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f,
331 	0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d,
332 	0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0,
333 	0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989,
334 	0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd,
335 	0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e,
336 	0x1527f,0x1334a,0x11051,0xe951,	0xbe01,	0x8e0d,	0x5924,	0x1edd,};
337 
338     (2)	Iterative refinement
339 
340 	Apply Reciproot iteration three times to y and multiply the
341 	result by x to get an approximation z that matches sqrt(x)
342 	to about 1 ulp. To be exact, we will have
343 		-1ulp < sqrt(x)-z<1.0625ulp.
344 
345 	... set rounding mode to Round-to-nearest
346 	   y := y*(1.5-0.5*x*y*y)	... almost 15 sig. bits to 1/sqrt(x)
347 	   y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x)
348 	... special arrangement for better accuracy
349 	   z := x*y			... 29 bits to sqrt(x), with z*y<1
350 	   z := z + 0.5*z*(1-z*y)	... about 1 ulp to sqrt(x)
351 
352 	Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that
353 	(a) the term z*y in the final iteration is always less than 1;
354 	(b) the error in the final result is biased upward so that
355 		-1 ulp < sqrt(x) - z < 1.0625 ulp
356 	    instead of |sqrt(x)-z|<1.03125ulp.
357 
358     (3)	Final adjustment
359 
360 	By twiddling y's last bit it is possible to force y to be
361 	correctly rounded according to the prevailing rounding mode
362 	as follows. Let r and i be copies of the rounding mode and
363 	inexact flag before entering the square root program. Also we
364 	use the expression y+-ulp for the next representable floating
365 	numbers (up and down) of y. Note that y+-ulp = either fixed
366 	point y+-1, or multiply y by nextafter(1,+-inf) in chopped
367 	mode.
368 
369 	R := RZ;		... set rounding mode to round-toward-zero
370 	switch(r) {
371 	    case RN:		... round-to-nearest
372 	       if(x<= z*(z-ulp)...chopped) z = z - ulp; else
373 	       if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp;
374 	       break;
375 	    case RZ:case RM:	... round-to-zero or round-to--inf
376 	       R:=RP;		... reset rounding mod to round-to-+inf
377 	       if(x<z*z ... rounded up) z = z - ulp; else
378 	       if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp;
379 	       break;
380 	    case RP:		... round-to-+inf
381 	       if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else
382 	       if(x>z*z ...chopped) z = z+ulp;
383 	       break;
384 	}
385 
386 	Remark 3. The above comparisons can be done in fixed point. For
387 	example, to compare x and w=z*z chopped, it suffices to compare
388 	x1 and w1 (the trailing parts of x and w), regarding them as
389 	two's complement integers.
390 
391 	...Is z an exact square root?
392 	To determine whether z is an exact square root of x, let z1 be the
393 	trailing part of z, and also let x0 and x1 be the leading and
394 	trailing parts of x.
395 
396 	If ((z1&0x03ffffff)!=0)	... not exact if trailing 26 bits of z!=0
397 	    I := 1;		... Raise Inexact flag: z is not exact
398 	else {
399 	    j := 1 - [(x0>>20)&1]	... j = logb(x) mod 2
400 	    k := z1 >> 26;		... get z's 25-th and 26-th
401 					    fraction bits
402 	    I := i or (k&j) or ((k&(j+j+1))!=(x1&3));
403 	}
404 	R:= r		... restore rounded mode
405 	return sqrt(x):=z.
406 
407 	If multiplication is cheaper then the foregoing red tape, the
408 	Inexact flag can be evaluated by
409 
410 	    I := i;
411 	    I := (z*z!=x) or I.
412 
413 	Note that z*z can overwrite I; this value must be sensed if it is
414 	True.
415 
416 	Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be
417 	zero.
418 
419 		    --------------------
420 		z1: |        f2        |
421 		    --------------------
422 		bit 31		   bit 0
423 
424 	Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd
425 	or even of logb(x) have the following relations:
426 
427 	-------------------------------------------------
428 	bit 27,26 of z1		bit 1,0 of x1	logb(x)
429 	-------------------------------------------------
430 	00			00		odd and even
431 	01			01		even
432 	10			10		odd
433 	10			00		even
434 	11			01		even
435 	-------------------------------------------------
436 
437     (4)	Special cases (see (4) of Section A).
438 
439  */
440