/* Copyright (C) 2004 Christopher Clark */ #include "hashtable.h" #include #include #include #include #include #include #include "talloc.h" struct entry { const void *k; void *v; unsigned int h; struct entry *next; }; struct hashtable { unsigned int tablelength; unsigned int flags; struct entry **table; unsigned int entrycount; unsigned int loadlimit; unsigned int primeindex; unsigned int (*hashfn) (const void *k); int (*eqfn) (const void *k1, const void *k2); }; /* * Credit for primes table: Aaron Krowne * https://planetmath.org/goodhashtableprimes */ static const unsigned int primes[] = { 11, 23, 53, 97, 193, 389, 769, 1543, 3079, 6151, 12289, 24593, 49157, 98317, 196613, 393241, 786433, 1572869, 3145739, 6291469, 12582917, 25165843, 50331653, 100663319, 201326611, 402653189, 805306457, 1610612741 }; #define PRIME_TABLE_LEN ARRAY_SIZE(primes) #define MAX_LOAD_PERCENT 65 static inline unsigned int indexFor(unsigned int tablelength, unsigned int hashvalue) { return (hashvalue % tablelength); } static unsigned int loadlimit(unsigned int pindex) { return ((uint64_t)primes[pindex] * MAX_LOAD_PERCENT) / 100; } struct hashtable *create_hashtable(const void *ctx, const char *name, unsigned int (*hashf) (const void *), int (*eqf) (const void *, const void *), unsigned int flags) { struct hashtable *h; h = talloc_zero(ctx, struct hashtable); if (NULL == h) goto err0; talloc_set_name_const(h, name); h->table = talloc_zero_array(h, struct entry *, primes[0]); if (NULL == h->table) goto err1; h->primeindex = 0; h->tablelength = primes[h->primeindex]; h->flags = flags; h->entrycount = 0; h->hashfn = hashf; h->eqfn = eqf; h->loadlimit = loadlimit(h->primeindex); return h; err1: talloc_free(h); err0: return NULL; } static unsigned int hash(const struct hashtable *h, const void *k) { /* Aim to protect against poor hash functions by adding logic here * - logic taken from java 1.4 hashtable source */ unsigned int i = h->hashfn(k); i += ~(i << 9); i ^= ((i >> 14) | (i << 18)); /* >>> */ i += (i << 4); i ^= ((i >> 10) | (i << 22)); /* >>> */ return i; } static int hashtable_expand(struct hashtable *h) { /* Double the size of the table to accomodate more entries */ struct entry **newtable; struct entry *e; struct entry **pE; unsigned int newsize, i, index; /* Check we're not hitting max capacity */ if (h->primeindex == (PRIME_TABLE_LEN - 1)) return ENOSPC; newsize = primes[++(h->primeindex)]; newtable = talloc_realloc(h, h->table, struct entry *, newsize); if (!newtable) { h->primeindex--; return ENOMEM; } h->table = newtable; memset(newtable + h->tablelength, 0, (newsize - h->tablelength) * sizeof(*newtable)); for (i = 0; i < h->tablelength; i++) { for (pE = &(newtable[i]), e = *pE; e != NULL; e = *pE) { index = indexFor(newsize, e->h); if (index == i) { pE = &(e->next); } else { *pE = e->next; e->next = newtable[index]; newtable[index] = e; } } } h->tablelength = newsize; h->loadlimit = loadlimit(h->primeindex); return 0; } static struct entry *hashtable_search_entry(const struct hashtable *h, const void *k) { struct entry *e; unsigned int hashvalue, index; hashvalue = hash(h, k); index = indexFor(h->tablelength, hashvalue); e = h->table[index]; for (e = h->table[index]; e; e = e->next) { /* Check hash value to short circuit heavier comparison */ if ((hashvalue == e->h) && (h->eqfn(k, e->k))) return e; } return NULL; } int hashtable_add(struct hashtable *h, const void *k, void *v) { unsigned int index; struct entry *e; if (hashtable_search_entry(h, k)) return EEXIST; if (++(h->entrycount) > h->loadlimit) { /* Ignore the return value. If expand fails, we should * still try cramming just this value into the existing table * -- we may not have memory for a larger table, but one more * element may be ok. Next time we insert, we'll try expanding again.*/ hashtable_expand(h); } e = talloc_zero(h, struct entry); if (NULL == e) { --h->entrycount; return ENOMEM; } e->h = hash(h,k); index = indexFor(h->tablelength,e->h); e->k = k; if (h->flags & HASHTABLE_FREE_KEY) talloc_steal(e, k); e->v = v; if (h->flags & HASHTABLE_FREE_VALUE) talloc_steal(e, v); e->next = h->table[index]; h->table[index] = e; return 0; } void *hashtable_search(const struct hashtable *h, const void *k) { struct entry *e; e = hashtable_search_entry(h, k); return e ? e->v : NULL; } int hashtable_replace(struct hashtable *h, const void *k, void *v) { struct entry *e; e = hashtable_search_entry(h, k); if (!e) return ENOENT; if (h->flags & HASHTABLE_FREE_VALUE) { talloc_free(e->v); talloc_steal(e, v); } e->v = v; return 0; } void hashtable_remove(struct hashtable *h, const void *k) { /* TODO: consider compacting the table when the load factor drops enough, * or provide a 'compact' method. */ struct entry *e; struct entry **pE; unsigned int hashvalue, index; hashvalue = hash(h,k); index = indexFor(h->tablelength,hash(h,k)); pE = &(h->table[index]); e = *pE; while (NULL != e) { /* Check hash value to short circuit heavier comparison */ if ((hashvalue == e->h) && (h->eqfn(k, e->k))) { *pE = e->next; h->entrycount--; talloc_free(e); return; } pE = &(e->next); e = e->next; } } int hashtable_iterate(struct hashtable *h, int (*func)(const void *k, void *v, void *arg), void *arg) { int ret; unsigned int i; struct entry *e, *f; struct entry **table = h->table; for (i = 0; i < h->tablelength; i++) { e = table[i]; while (e) { f = e; e = e->next; ret = func(f->k, f->v, arg); if (ret) return ret; } } return 0; } void hashtable_destroy(struct hashtable *h) { talloc_free(h); } /* * Copyright (c) 2002, Christopher Clark * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * * Neither the name of the original author; nor the names of any contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER * OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */