/* SPDX-License-Identifier: GPL-2.0-only */ /* * The header taken form Linux 6.4.0-rc1 and is based on * arch/riscv/include/asm/mmio.h with the following changes: * - drop forcing of endianess for read*(), write*() functions as * no matter what CPU endianness, what endianness a particular device * (and hence its MMIO region(s)) is using is entirely independent. * Hence conversion, where necessary, needs to occur at a layer up. * Another one reason to drop endianess conversion is: * https://patchwork.kernel.org/project/linux-riscv/patch/20190411115623.5749-3-hch@lst.de/ * One of the answers of the author of the commit: * And we don't know if Linux will be around if that ever changes. * The point is: * a) the current RISC-V spec is LE only * b) the current linux port is LE only except for this little bit * There is no point in leaving just this bitrotting code around. It * just confuses developers, (very very slightly) slows down compiles * and will bitrot. It also won't be any significant help to a future * developer down the road doing a hypothetical BE RISC-V Linux port. * - drop unused argument of __io_ar() macros. * - drop "#define _raw_{read,write}{b,w,l,q} _raw_{read,write}{b,w,l,q}" * as they are unnecessary. * - Adopt the Xen code style for this header, considering that significant * changes are not anticipated in the future. * In the event of any issues, adapting them to Xen style should be easily * manageable. * - drop unnecessary __r variables in macros read*_cpu() * - update inline assembler constraints for addr argument for * __raw_read{b,w,l,q} and __raw_write{b,w,l,q} to tell a compiler that * *addr will be accessed. * * Copyright (C) 1996-2000 Russell King * Copyright (C) 2012 ARM Ltd. * Copyright (C) 2014 Regents of the University of California * Copyright (C) 2024 Vates */ #ifndef ASM__RISCV__IO_H #define ASM__RISCV__IO_H #include #include void __iomem *ioremap_cache(paddr_t pa, size_t len); void __iomem *ioremap_wc(paddr_t pa, size_t len); /* Generic IO read/write. These perform native-endian accesses. */ static inline void __raw_writeb(uint8_t val, volatile void __iomem *addr) { asm volatile ( "sb %1, %0" : "=m" (*(volatile uint8_t __force *)addr) : "r" (val) ); } static inline void __raw_writew(uint16_t val, volatile void __iomem *addr) { asm volatile ( "sh %1, %0" : "=m" (*(volatile uint16_t __force *)addr) : "r" (val) ); } static inline void __raw_writel(uint32_t val, volatile void __iomem *addr) { asm volatile ( "sw %1, %0" : "=m" (*(volatile uint32_t __force *)addr) : "r" (val) ); } static inline void __raw_writeq(uint64_t val, volatile void __iomem *addr) { #ifdef CONFIG_RISCV_32 BUILD_BUG_ON("unimplemented"); #else asm volatile ( "sd %1, %0" : "=m" (*(volatile uint64_t __force *)addr) : "r" (val) ); #endif } static inline uint8_t __raw_readb(const volatile void __iomem *addr) { uint8_t val; asm volatile ( "lb %0, %1" : "=r" (val) : "m" (*(const volatile uint8_t __force *)addr) ); return val; } static inline uint16_t __raw_readw(const volatile void __iomem *addr) { uint16_t val; asm volatile ( "lh %0, %1" : "=r" (val) : "m" (*(const volatile uint16_t __force *)addr) ); return val; } static inline uint32_t __raw_readl(const volatile void __iomem *addr) { uint32_t val; asm volatile ( "lw %0, %1" : "=r" (val) : "m" (*(const volatile uint32_t __force *)addr) ); return val; } static inline uint64_t __raw_readq(const volatile void __iomem *addr) { uint64_t val; #ifdef CONFIG_RISCV_32 BUILD_BUG_ON("unimplemented"); #else asm volatile ( "ld %0, %1" : "=r" (val) : "m" (*(const volatile uint64_t __force *)addr) ); #endif return val; } /* * Unordered I/O memory access primitives. These are even more relaxed than * the relaxed versions, as they don't even order accesses between successive * operations to the I/O regions. */ #define readb_cpu(c) __raw_readb(c) #define readw_cpu(c) __raw_readw(c) #define readl_cpu(c) __raw_readl(c) #define readq_cpu(c) __raw_readq(c) #define writeb_cpu(v, c) __raw_writeb(v, c) #define writew_cpu(v, c) __raw_writew(v, c) #define writel_cpu(v, c) __raw_writel(v, c) #define writeq_cpu(v, c) __raw_writeq(v, c) /* * I/O memory access primitives. Reads are ordered relative to any * following Normal memory access. Writes are ordered relative to any prior * Normal memory access. The memory barriers here are necessary as RISC-V * doesn't define any ordering between the memory space and the I/O space. */ #define __io_br() do { } while (0) #define __io_ar() asm volatile ( "fence i,r" : : : "memory" ); #define __io_bw() asm volatile ( "fence w,o" : : : "memory" ); #define __io_aw() do { } while (0) #define readb(c) ({ uint8_t v_; __io_br(); v_ = readb_cpu(c); __io_ar(); v_; }) #define readw(c) ({ uint16_t v_; __io_br(); v_ = readw_cpu(c); __io_ar(); v_; }) #define readl(c) ({ uint32_t v_; __io_br(); v_ = readl_cpu(c); __io_ar(); v_; }) #define readq(c) ({ uint64_t v_; __io_br(); v_ = readq_cpu(c); __io_ar(); v_; }) #define writeb(v, c) ({ __io_bw(); writeb_cpu(v, c); __io_aw(); }) #define writew(v, c) ({ __io_bw(); writew_cpu(v, c); __io_aw(); }) #define writel(v, c) ({ __io_bw(); writel_cpu(v, c); __io_aw(); }) #define writeq(v, c) ({ __io_bw(); writeq_cpu(v, c); __io_aw(); }) #endif /* ASM__RISCV__IO_H */ /* * Local variables: * mode: C * c-file-style: "BSD" * c-basic-offset: 4 * indent-tabs-mode: nil * End: */