/* * Copyright (c) 2025 Renesas Electronics Corporation * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include #include #define DT_DRV_COMPAT renesas_rza2m_ostm DEVICE_MMIO_TOPLEVEL_STATIC(ostm_base, DT_DRV_INST(0)); /* The interrupt numbers in the device tree are interrupt IDs and need to be converted to SPI * interrupt numbers */ #define OSTM_IRQ_NUM (DT_INST_IRQN(0) - GIC_SPI_INT_BASE) #if defined(CONFIG_TEST) const int32_t z_sys_timer_irq_for_test = OSTM_IRQ_NUM; #endif #define cycle_diff_t uint32_t #define CYCLE_DIFF_MAX (~(cycle_diff_t)0) #define OSTM_REG_ADDR(off) ((mm_reg_t)(DEVICE_MMIO_TOPLEVEL_GET(ostm_base) + (off))) #define OSTM_CMP_OFFSET 0x0 /* Compare register */ #define OSTM_CNT_OFFSET 0x4 /* Counter register */ #define OSTM_TE_OFFSET 0x10 /* Count enable status register */ #define OSTM_TE_ENABLE BIT(0) /* Timer enabled */ #define OSTM_TS_OFFSET 0x14 /* Count start trigger register */ #define OSTM_TS_START BIT(0) /* Trigger start of the timer */ #define OSTM_TT_OFFSET 0x18 /* Count stop trigger register */ #define OSTM_TT_STOP BIT(0) /* Trigger stop of the timer */ #define OSTM_CTL_OFFSET 0x20 /* Control register */ /* * Bit 0 of CTL controls enabling/disabling of OSTMnTINT interrupt requests when counting starts * 0: Disables the interrupts when counting starts * 1: Enables the interrupts when counting starts */ #define OSTM_CTL_TRIG_IRQ_ON_START 1 /* * Bit 1 of CTL specifies the operating mode for the counter * 0: Interval timer mode * 1: Free-running comparison mode */ #define OSTM_CTL_INTERVAL 0 #define OSTM_CTL_FREERUN 2 /* * We have two constraints on the maximum number of cycles we can wait for. * * 1) sys_clock_announce() accepts at most INT32_MAX ticks. * * 2) The number of cycles between two reports must fit in a cycle_diff_t * variable before converting it to ticks. * * Then: * * 3) Pick the smallest between (1) and (2). * * 4) Take into account some room for the unavoidable IRQ servicing latency. * Let's use 3/4 of the max range. * * Finally let's add the LSB value to the result so to clear out a bunch of * consecutive set bits coming from the original max values to produce a * nicer literal for assembly generation. */ #define CYCLES_MAX_1 ((uint64_t)INT32_MAX * (uint64_t)CYC_PER_TICK) #define CYCLES_MAX_2 ((uint64_t)CYCLE_DIFF_MAX) #define CYCLES_MAX_3 MIN(CYCLES_MAX_1, CYCLES_MAX_2) #define CYCLES_MAX_4 (CYCLES_MAX_3 / 2 + CYCLES_MAX_3 / 4) #define CYCLES_MAX_5 (CYCLES_MAX_4 + LSB_GET(CYCLES_MAX_4)) /* Precompute CYCLES_MAX and CYC_PER_TICK at driver init to avoid runtime double divisions */ static uint64_t cycles_max; static uint32_t cyc_per_tick; #define CYCLES_MAX cycles_max #define CYC_PER_TICK cyc_per_tick static struct k_spinlock lock; static uint64_t last_cycle; static uint64_t last_tick; static uint32_t last_elapsed; extern unsigned int z_clock_hw_cycles_per_sec; static void ostm_irq_handler(const struct device *dev) { ARG_UNUSED(dev); uint32_t delta_cycles = sys_clock_cycle_get_32() - last_cycle; uint32_t delta_ticks = delta_cycles / CYC_PER_TICK; last_cycle += (cycle_diff_t)delta_ticks * CYC_PER_TICK; last_tick += delta_ticks; last_elapsed = 0; if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) { uint32_t next_cycle = last_cycle + CYC_PER_TICK; sys_write32(next_cycle, OSTM_REG_ADDR(OSTM_CMP_OFFSET)); } else { irq_disable(OSTM_IRQ_NUM); } /* Announce to the kernel */ sys_clock_announce(delta_ticks); } void sys_clock_set_timeout(int32_t ticks, bool idle) { if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) { return; } if (idle && ticks == K_TICKS_FOREVER) { return; } uint32_t next_cycle; k_spinlock_key_t key = k_spin_lock(&lock); if (ticks == K_TICKS_FOREVER) { next_cycle = last_cycle + CYCLES_MAX; } else { next_cycle = (last_tick + last_elapsed + ticks) * CYC_PER_TICK; if ((next_cycle - last_cycle) > CYCLES_MAX) { next_cycle = last_cycle + CYCLES_MAX; } } sys_write32(next_cycle, OSTM_REG_ADDR(OSTM_CMP_OFFSET)); irq_enable(OSTM_IRQ_NUM); k_spin_unlock(&lock, key); } uint32_t sys_clock_elapsed(void) { if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) { return 0; } uint32_t delta_cycles = sys_clock_cycle_get_32() - last_cycle; uint32_t delta_ticks = delta_cycles / CYC_PER_TICK; last_elapsed = delta_ticks; return delta_ticks; } void sys_clock_disable(void) { if ((sys_read8(OSTM_REG_ADDR(OSTM_TE_OFFSET)) & OSTM_TE_ENABLE) != OSTM_TE_ENABLE) { return; } sys_write8(OSTM_TT_STOP, OSTM_REG_ADDR(OSTM_TT_OFFSET)); while ((sys_read8(OSTM_REG_ADDR(OSTM_TE_OFFSET)) & OSTM_TE_ENABLE) == OSTM_TE_ENABLE) { ; } } uint32_t sys_clock_cycle_get_32(void) { k_spinlock_key_t key = k_spin_lock(&lock); uint32_t ostm_cnt = sys_read32(OSTM_REG_ADDR(OSTM_CNT_OFFSET)); k_spin_unlock(&lock, key); return ostm_cnt; } static int sys_clock_driver_init(void) { int ret; const struct device *clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(0)); uint32_t clock_subsys = DT_INST_CLOCKS_CELL(0, clk_id); if (!device_is_ready(clock_dev)) { return -ENODEV; } ret = clock_control_on(clock_dev, (clock_control_subsys_t)&clock_subsys); if (ret < 0) { return ret; } ret = clock_control_get_rate(clock_dev, (clock_control_subsys_t)&clock_subsys, &z_clock_hw_cycles_per_sec); if (ret < 0) { return ret; } last_tick = 0; last_cycle = 0; cyc_per_tick = sys_clock_hw_cycles_per_sec() / CONFIG_SYS_CLOCK_TICKS_PER_SEC; cycles_max = CYCLES_MAX_5; DEVICE_MMIO_TOPLEVEL_MAP(ostm_base, K_MEM_CACHE_NONE); IRQ_CONNECT(OSTM_IRQ_NUM, DT_INST_IRQ(0, priority), ostm_irq_handler, NULL, DT_INST_IRQ(0, flags)); /* Restarting the timer will cause reset of CNT register in free-running mode */ sys_clock_disable(); sys_write32(cyc_per_tick, OSTM_REG_ADDR(OSTM_CMP_OFFSET)); sys_write8(OSTM_CTL_FREERUN, OSTM_REG_ADDR(OSTM_CTL_OFFSET)); sys_write8(OSTM_TS_START, OSTM_REG_ADDR(OSTM_TS_OFFSET)); irq_enable(OSTM_IRQ_NUM); return 0; } SYS_INIT(sys_clock_driver_init, PRE_KERNEL_2, CONFIG_SYSTEM_CLOCK_INIT_PRIORITY);