1 /*
2  * Copyright (c) 2017 Oticon A/S
3  * Copyright (c) 2023 Nordic Semiconductor ASA
4  *
5  * SPDX-License-Identifier: Apache-2.0
6  */
7 
8 /*
9  * Native simulator, CPU Thread emulation (nct)
10  */
11 
12 /**
13  * Native simulator single CPU threading emulation,
14  * an *optional* module provided by the Native simulator
15  * the hosted embedded OS / SW can use to emulate the threading
16  * context switching which would be handled by a OS CPU AL
17  *
18  * Principle of operation:
19  *
20  * The embedded OS threads are run as a set of native Linux pthreads.
21  * The embedded OS only sees one of this threads executing at a time.
22  *
23  * The hosted OS (or its integration into the native simulator) shall call
24  * nct_init() to initialize the state of an instance of this module, and
25  * nct_clean_up() once it desires to destroy it.
26  *
27  * For SOCs with several micro-controllers (AMP) one instance of this module
28  * would be instantiated per simulated uC and embedded OS.
29  *
30  * To create a new embedded thread, the hosted OS shall call nct_new_thread().
31  * To swap to a thread nct_swap_threads(), and to terminate a thread
32  * nct_abort_thread().
33  * The hosted OS can optionally use nct_first_thread_start() to swap
34  * to the "first thread".
35  *
36  * Whenever a thread calls nct_swap_threads(next_thread_idx) it will be blocked,
37  * and the thread identified by next_thread_idx will continue executing.
38  *
39  *
40  * Internal design:
41  *
42  * Which thread is running is controlled using its own semaphore.
43  *
44  * The main part of the execution of each thread will occur in a fully
45  * synchronous and deterministic manner, and only when commanded by
46  * the embedded operating system kernel.
47  *
48  * The creation of a thread will spawn a new pthread whose start
49  * is asynchronous to the rest, until synchronized in nct_wait_until_allowed()
50  * below.
51  * Similarly aborting and canceling threads execute a tail in a quite an
52  * asynchronous manner.
53  *
54  * This implementation is meant to be portable in between fully compatible
55  * POSIX systems.
56  * A table (threads_table) is used to abstract the native pthreads.
57  * An index in this table is used to identify threads in the IF to the
58  * embedded OS.
59  */
60 
61 #define NCT_DEBUG_PRINTS 0
62 
63 /* For pthread_setname_np() */
64 #define _GNU_SOURCE
65 #include <stdbool.h>
66 #include <stdlib.h>
67 #include <string.h>
68 #include <stdint.h>
69 #include <pthread.h>
70 #include <semaphore.h>
71 #include <errno.h>
72 #include "nsi_utils.h"
73 #include "nct_if.h"
74 #include "nsi_internal.h"
75 #include "nsi_safe_call.h"
76 
77 #if NCT_DEBUG_PRINTS
78 #define NCT_DEBUG(fmt, ...) nsi_print_trace(PREFIX fmt, __VA_ARGS__)
79 #else
80 #define NCT_DEBUG(...)
81 #endif
82 
83 #define PREFIX     "Tread Simulator: "
84 #define ERPREFIX   PREFIX"error on "
85 #define NO_MEM_ERR PREFIX"Can't allocate memory\n"
86 
87 #define NCT_ENABLE_CANCEL 1
88 #define NCT_ALLOC_CHUNK_SIZE 64 /* In how big chunks we grow the thread table */
89 #define NCT_REUSE_ABORTED_ENTRIES 0
90 /* For the Zephyr OS, tests/kernel/threads/scheduling/schedule_api fails when setting
91  * NCT_REUSE_ABORTED_ENTRIES => don't set it by now
92  */
93 
94 struct nct_status_t;
95 
96 struct threads_table_el {
97 	/* Pointer to the overall status of the threading emulator instance */
98 	struct nct_status_t *nct_status;
99 	struct threads_table_el *next;	/* Pointer to the next element of the table */
100 	sem_t sema;			/* Semaphore to hold this thread until allowed */
101 	pthread_t thread;		/* Actual pthread_t as returned by the native kernel */
102 
103 	int thread_idx;			/* Index of this element in the threads_table*/
104 	int thead_cnt;			/* For debugging: Unique, consecutive, thread number */
105 
106 	enum {NOTUSED = 0, USED, ABORTING, ABORTED, FAILED} state;
107 	bool running;	/* (For debugging purposes) Is this the currently running thread */
108 
109 	/*
110 	 * Pointer to data from the hosted OS architecture.
111 	 * What that is, if anything, is up to that the hosted OS
112 	 */
113 	void *payload;
114 };
115 
116 struct nct_status_t {
117 	struct threads_table_el *threads_table;	/* Pointer to the threads table */
118 	int thread_create_count;		/* (For debugging) Thread creation counter */
119 	int threads_table_size;			/* Size of threads_table */
120 	/* Pointer to the hosted OS function to be called when a thread is started */
121 	void (*fptr)(void *payload);
122 
123 	/* Index of the thread which is currently allowed to run now */
124 	int currently_allowed_thread;
125 
126 	bool terminate; /* Are we terminating the program == cleaning up */
127 	bool all_threads_released; /* During termination, have we released all hosted threads */
128 };
129 
130 static struct threads_table_el *ttable_get_element(struct nct_status_t *this, int index);
131 
132 /**
133  * Helper function, run by a thread which is being ended
134  */
nct_exit_this_thread(void)135 static void nct_exit_this_thread(void)
136 {
137 	/* We detach ourselves so nobody needs to join to us */
138 	pthread_detach(pthread_self());
139 	pthread_exit(NULL);
140 }
141 
142 /*
143  * Wait for the semaphore, retrying if we are interrupted by a signal
144  */
nct_sem_rewait(sem_t * semaphore)145 NSI_INLINE int nct_sem_rewait(sem_t *semaphore)
146 {
147 	int ret;
148 
149 	while ((ret = sem_wait(semaphore)) == EINTR) {
150 		/* Restart wait if we were interrupted */
151 	}
152 	return ret;
153 }
154 
155 /**
156  * Helper function, run by a thread which is being aborted
157  */
abort_tail(struct threads_table_el * tt_el)158 static void abort_tail(struct threads_table_el *tt_el)
159 {
160 	NCT_DEBUG("Thread [%i] %i: %s: Aborting (exiting) (rel mut)\n",
161 		  tt_el->thead_cnt, tt_el->thread_idx, __func__);
162 
163 	tt_el->running = false;
164 	tt_el->state = ABORTED;
165 	nct_exit_this_thread();
166 }
167 
168 /**
169  * Helper function to block this thread until it is allowed to run again
170  * (either when the hosted OS swaps to it, or aborts it)
171  */
nct_wait_until_allowed(struct threads_table_el * tt_el,int this_th_nbr)172 static void nct_wait_until_allowed(struct threads_table_el *tt_el, int this_th_nbr)
173 {
174 	tt_el->running = false;
175 
176 	NCT_DEBUG("Thread [%i] %i: %s: Waiting to be allowed to run\n",
177 		  tt_el->thead_cnt, this_th_nbr, __func__);
178 
179 	NSI_SAFE_CALL(nct_sem_rewait(&tt_el->sema));
180 
181 	if (tt_el->nct_status->terminate) {
182 		nct_exit_this_thread();
183 	}
184 
185 	if (tt_el->state == ABORTING) {
186 		abort_tail(tt_el);
187 	}
188 
189 	tt_el->running = true;
190 
191 	NCT_DEBUG("Thread [%i] %i: %s(): I'm allowed to run!\n",
192 		  tt_el->thead_cnt, this_th_nbr, __func__);
193 }
194 
195 /**
196  * Helper function to let the thread <next_allowed_th> run
197  */
nct_let_run(struct nct_status_t * this,int next_allowed_th)198 static void nct_let_run(struct nct_status_t *this, int next_allowed_th)
199 {
200 	struct threads_table_el *tt_el = ttable_get_element(this, next_allowed_th);
201 
202 	NCT_DEBUG("%s: We let thread [%i] %i run\n", __func__, tt_el->thead_cnt, next_allowed_th);
203 
204 	this->currently_allowed_thread = next_allowed_th;
205 	NSI_SAFE_CALL(sem_post(&tt_el->sema));
206 }
207 
208 /**
209  * Let the <next_allowed_thread_nbr> run and block this managed thread until it is allowed again
210  *
211  * The hosted OS shall call this when it has decided to swap in/out two of its threads,
212  * from the thread that is being swapped out.
213  *
214  * Note: If called without having ever let another managed thread run / from a thread not
215  * managed by this nct instance, it will behave like nct_first_thread_start(),
216  * and terminate the calling thread while letting the managed thread
217  * <next_allowed_thread_nbr> continue.
218  *
219  * inputs:
220  *   this_arg: Pointer to this thread emulator instance as returned by nct_init()
221  *   next_allowed_thread_nbr: Identifier of the thread the hosted OS wants to swap in
222  */
nct_swap_threads(void * this_arg,int next_allowed_thread_nbr)223 void nct_swap_threads(void *this_arg, int next_allowed_thread_nbr)
224 {
225 	struct nct_status_t *this = (struct nct_status_t *)this_arg;
226 	int this_th_nbr = this->currently_allowed_thread;
227 	struct threads_table_el *tt_el = ttable_get_element(this, this_th_nbr);
228 
229 	nct_let_run(this, next_allowed_thread_nbr);
230 
231 	if (this_th_nbr == -1) { /* This is the first time a thread was swapped in */
232 		NCT_DEBUG("%s: called from an unmanaged thread, terminating it\n", __func__);
233 		nct_exit_this_thread();
234 	}
235 
236 	if (tt_el->state == ABORTING) { /* We had set ourself as aborted => let's exit now */
237 		NCT_DEBUG("Thread [%i] %i: %s: Aborting curr.\n",
238 			  tt_el->thead_cnt, this_th_nbr, __func__);
239 		abort_tail(tt_el);
240 	} else {
241 		nct_wait_until_allowed(tt_el, this_th_nbr);
242 	}
243 }
244 
245 /**
246  * Let the very first hosted thread run, and exit the calling thread.
247  *
248  * The hosted OS shall call this when it has decided to swap into another
249  * thread, and wants to terminate the currently executing thread, which is not
250  * a thread managed by the thread emulator.
251  *
252  * This function allows to emulate a hosted OS doing its first swapping into one
253  * of its hosted threads from the init thread, abandoning/terminating that init
254  * thread.
255  */
nct_first_thread_start(void * this_arg,int next_allowed_thread_nbr)256 void nct_first_thread_start(void *this_arg, int next_allowed_thread_nbr)
257 {
258 	struct nct_status_t *this = (struct nct_status_t *)this_arg;
259 
260 	nct_let_run(this, next_allowed_thread_nbr);
261 	NCT_DEBUG("%s: Init thread dying now (rel mut)\n", __func__);
262 	nct_exit_this_thread();
263 }
264 
265 /**
266  * Helper function to start a hosted thread as a POSIX thread:
267  *  It will block this new pthread until the embedded OS decides to "swap it in".
268  */
nct_thread_starter(void * arg_el)269 static void *nct_thread_starter(void *arg_el)
270 {
271 	struct threads_table_el *tt_el = (struct threads_table_el *)arg_el;
272 	const struct nct_status_t *this = tt_el->nct_status;
273 
274 	int thread_idx = tt_el->thread_idx;
275 
276 	NCT_DEBUG("Thread [%i] %i: %s: Starting\n", tt_el->thead_cnt, thread_idx, __func__);
277 
278 	/*
279 	 * The program may have been finished before this thread ever got to run
280 	 */
281 	/* LCOV_EXCL_START */ /* See Note1 */
282 	if (!this->threads_table || this->terminate) {
283 		nct_exit_this_thread();
284 	}
285 	/* LCOV_EXCL_STOP */
286 
287 	/* Let's wait until the thread is swapped in */
288 	nct_wait_until_allowed(tt_el, thread_idx);
289 
290 	this->fptr(tt_el->payload);
291 
292 	/*
293 	 * We only reach this point if the thread actually returns which should
294 	 * not happen. But we handle it gracefully just in case
295 	 */
296 	/* LCOV_EXCL_START */
297 	nsi_print_trace(PREFIX"Thread [%i] %i [%lu] ended!?!\n",
298 			tt_el->thead_cnt,
299 			thread_idx,
300 			pthread_self());
301 
302 	tt_el->running = false;
303 	tt_el->state = FAILED;
304 
305 	nct_exit_this_thread();
306 
307 	return NULL;
308 	/* LCOV_EXCL_STOP */
309 }
310 
311 /*
312  * Helper function to link the elements in a chunk to each other and initialize (to 0)
313  * their thread semaphores
314  */
ttable_init_elements(struct threads_table_el * chunk,int size)315 static void ttable_init_elements(struct threads_table_el *chunk, int size)
316 {
317 	for (int i = 0; i < size - 1; i++) {
318 		chunk[i].next = &chunk[i+1];
319 		NSI_SAFE_CALL(sem_init(&chunk[i].sema, 0, 0));
320 	}
321 	chunk[size - 1].next = NULL;
322 	NSI_SAFE_CALL(sem_init(&chunk[size - 1].sema, 0, 0));
323 }
324 
325 /*
326  * Get a given element in the threads table
327  */
ttable_get_element(struct nct_status_t * this,int index)328 static struct threads_table_el *ttable_get_element(struct nct_status_t *this, int index)
329 {
330 	struct threads_table_el *threads_table = this->threads_table;
331 
332 	if (index >= this->threads_table_size) { /* LCOV_EXCL_BR_LINE */
333 		nsi_print_error_and_exit("%s: Programming error, attempted out of bound access to "
334 					"thread table (%i>=%i)\n",
335 					index, this->threads_table_size); /* LCOV_EXCL_LINE */
336 	}
337 	while (index >= NCT_ALLOC_CHUNK_SIZE) {
338 		index -= NCT_ALLOC_CHUNK_SIZE;
339 		threads_table = threads_table[NCT_ALLOC_CHUNK_SIZE - 1].next;
340 	}
341 	return &threads_table[index];
342 }
343 
344 /**
345  * Return the first free entry index in the threads table
346  */
ttable_get_empty_slot(struct nct_status_t * this)347 static int ttable_get_empty_slot(struct nct_status_t *this)
348 {
349 	struct threads_table_el *tt_el = this->threads_table;
350 
351 	for (int i = 0; i < this->threads_table_size; i++, tt_el = tt_el->next) {
352 		if ((tt_el->state == NOTUSED)
353 			|| (NCT_REUSE_ABORTED_ENTRIES
354 			&& (tt_el->state == ABORTED))) {
355 			return i;
356 		}
357 	}
358 
359 	/*
360 	 * else, we run out of table without finding an index
361 	 * => we expand the table:
362 	 */
363 
364 	struct threads_table_el *new_chunk;
365 
366 	new_chunk = calloc(NCT_ALLOC_CHUNK_SIZE, sizeof(struct threads_table_el));
367 	if (new_chunk == NULL) { /* LCOV_EXCL_BR_LINE */
368 		nsi_print_error_and_exit(NO_MEM_ERR); /* LCOV_EXCL_LINE */
369 	}
370 
371 	/* Link new chunk to last element */
372 	tt_el = ttable_get_element(this, this->threads_table_size-1);
373 	tt_el->next = new_chunk;
374 
375 	this->threads_table_size += NCT_ALLOC_CHUNK_SIZE;
376 
377 	ttable_init_elements(new_chunk, NCT_ALLOC_CHUNK_SIZE);
378 
379 	/* The first newly created entry is good, we return it */
380 	return this->threads_table_size - NCT_ALLOC_CHUNK_SIZE;
381 }
382 
383 /**
384  * Create a new pthread for a new hosted OS thread and initialize its NCT status
385  *
386  * Returns a unique integer thread identifier/index, which should be used
387  * to refer to this thread in future calls to the thread emulator.
388  *
389  * It takes as parameter a pointer which will be passed to the
390  * function registered in nct_init when the thread is swapped in.
391  *
392  * Note that the thread is created but not swapped in.
393  * The new thread execution will be held until nct_swap_threads()
394  * (or nct_first_thread_start()) is called enabling this newly created
395  * thread number.
396  */
nct_new_thread(void * this_arg,void * payload)397 int nct_new_thread(void *this_arg, void *payload)
398 {
399 	struct nct_status_t *this = (struct nct_status_t *)this_arg;
400 	struct threads_table_el *tt_el;
401 	int t_slot;
402 
403 	t_slot = ttable_get_empty_slot(this);
404 	tt_el = ttable_get_element(this, t_slot);
405 
406 	tt_el->state = USED;
407 	tt_el->running = false;
408 	tt_el->thead_cnt = this->thread_create_count++;
409 	tt_el->payload = payload;
410 	tt_el->nct_status = this;
411 	tt_el->thread_idx = t_slot;
412 
413 	NSI_SAFE_CALL(pthread_create(&tt_el->thread,
414 				  NULL,
415 				  nct_thread_starter,
416 				  (void *)tt_el));
417 
418 	NCT_DEBUG("%s created thread [%i] %i [%lu]\n",
419 		  __func__, tt_el->thead_cnt, t_slot, tt_el->thread);
420 
421 	return t_slot;
422 }
423 
424 /**
425  * Initialize an instance of the threading emulator.
426  *
427  * Returns a pointer to the initialize threading emulator instance.
428  * This pointer shall be passed to all subsequent calls of the
429  * threading emulator when interacting with this particular instance.
430  *
431  * The input fptr is a pointer to the hosted OS function
432  * to be called the first time a thread which is created on its request
433  * with nct_new_thread() is swapped in (from that thread context)
434  */
nct_init(void (* fptr)(void *))435 void *nct_init(void (*fptr)(void *))
436 {
437 	struct nct_status_t *this;
438 
439 	/*
440 	 * Note: This (and the calloc below) won't be free'd by this code
441 	 * but left for the OS to clear at process end.
442 	 * This is a conscious choice, see nct_clean_up() for more info.
443 	 * If you got here due to valgrind's leak report, please use the
444 	 * provided valgrind suppression file valgrind.supp
445 	 */
446 	this = calloc(1, sizeof(struct nct_status_t));
447 	if (this == NULL) { /* LCOV_EXCL_BR_LINE */
448 		nsi_print_error_and_exit(NO_MEM_ERR); /* LCOV_EXCL_LINE */
449 	}
450 
451 	this->fptr = fptr;
452 	this->thread_create_count = 0;
453 	this->currently_allowed_thread = -1;
454 
455 	this->threads_table = calloc(NCT_ALLOC_CHUNK_SIZE, sizeof(struct threads_table_el));
456 	if (this->threads_table == NULL) { /* LCOV_EXCL_BR_LINE */
457 		nsi_print_error_and_exit(NO_MEM_ERR); /* LCOV_EXCL_LINE */
458 	}
459 
460 	this->threads_table_size = NCT_ALLOC_CHUNK_SIZE;
461 
462 	ttable_init_elements(this->threads_table, NCT_ALLOC_CHUNK_SIZE);
463 
464 	return (void *)this;
465 }
466 
467 /**
468  * Free allocated memory by the threading emulator and clean up ordering all managed
469  * threads to abort.
470  * Note that this function cannot be called from a SW thread
471  * (the CPU is assumed halted. Otherwise we would cancel ourselves)
472  *
473  * Note: This function cannot guarantee the threads will be cancelled before the HW
474  * thread exists. The only way to do that, would be to wait for each of them in
475  * a join without detaching them, but that could lead to locks in some
476  * convoluted cases; as a call to this function can come due to a hosted OS
477  * assert or other error termination, we better do not assume things are working fine.
478  * This also means we do not clean all memory used by this NCT instance, as those
479  * threads need to access it still.
480  * => we prefer the supposed memory leak report from valgrind, and ensure we
481  * will not hang.
482  */
nct_clean_up(void * this_arg)483 void nct_clean_up(void *this_arg)
484 {
485 	struct nct_status_t *this = (struct nct_status_t *)this_arg;
486 
487 	if (!this || !this->threads_table) { /* LCOV_EXCL_BR_LINE */
488 		return; /* LCOV_EXCL_LINE */
489 	}
490 
491 	this->terminate = true;
492 
493 #if NCT_ENABLE_CANCEL
494 	if (this->all_threads_released) {
495 		return;
496 	}
497 	this->all_threads_released = true;
498 
499 	struct threads_table_el *tt_el = this->threads_table;
500 
501 	for (int i = 0; i < this->threads_table_size; i++, tt_el = tt_el->next) {
502 		if (tt_el->state != USED) {
503 			continue;
504 		}
505 		NSI_SAFE_CALL(sem_post(&tt_el->sema));
506 	}
507 #endif
508 
509 	/*
510 	 * This is the cleanup we do not do:
511 	 * for all threads
512 	 *   sem_destroy(&tt_el->sema);
513 	 *
514 	 * free(this->threads_table);
515 	 *   Including all chunks
516 	 * this->threads_table = NULL;
517 	 *
518 	 *
519 	 * free(this);
520 	 */
521 }
522 
523 
524 /*
525  * Mark a thread as being aborted. This will result in the underlying pthread
526  * being terminated some time later:
527  *   If the thread is marking itself as aborting, as soon as it is swapped out
528  *   by the hosted (embedded) OS
529  *   If it is marking another thread, at some non-specific time soon in the future
530  *   (But note that no embedded part of the aborted thread will execute anymore)
531  *
532  * *  thread_idx : The thread identifier as provided during creation (return from nct_new_thread())
533  */
nct_abort_thread(void * this_arg,int thread_idx)534 void nct_abort_thread(void *this_arg, int thread_idx)
535 {
536 	struct nct_status_t *this = (struct nct_status_t *)this_arg;
537 	struct threads_table_el *tt_el = ttable_get_element(this, thread_idx);
538 
539 	if (thread_idx == this->currently_allowed_thread) {
540 		NCT_DEBUG("Thread [%i] %i: %s Marked myself as aborting\n",
541 			  tt_el->thead_cnt, thread_idx, __func__);
542 		tt_el->state = ABORTING;
543 	} else {
544 		if (tt_el->state != USED) { /* LCOV_EXCL_BR_LINE */
545 			/* The thread may have been already aborted before */
546 			return; /* LCOV_EXCL_LINE */
547 		}
548 
549 		NCT_DEBUG("Aborting not scheduled thread [%i] %i\n", tt_el->thead_cnt, thread_idx);
550 		tt_el->state = ABORTING;
551 		NSI_SAFE_CALL(sem_post(&tt_el->sema));
552 	}
553 }
554 
555 /*
556  * Return a unique thread identifier for this thread for this
557  * run. This identifier is only meant for debug purposes
558  *
559  * thread_idx is the value returned by nct_new_thread()
560  */
nct_get_unique_thread_id(void * this_arg,int thread_idx)561 int nct_get_unique_thread_id(void *this_arg, int thread_idx)
562 {
563 	struct nct_status_t *this = (struct nct_status_t *)this_arg;
564 	struct threads_table_el *tt_el = ttable_get_element(this, thread_idx);
565 
566 	return tt_el->thead_cnt;
567 }
568 
nct_thread_name_set(void * this_arg,int thread_idx,const char * str)569 int nct_thread_name_set(void *this_arg, int thread_idx, const char *str)
570 {
571 	struct nct_status_t *this = (struct nct_status_t *)this_arg;
572 	struct threads_table_el *tt_el = ttable_get_element(this, thread_idx);
573 
574 	return pthread_setname_np(tt_el->thread, str);
575 }
576 
577 /*
578  * Notes about coverage:
579  *
580  * Note1:
581  *
582  * This condition will only be triggered in very unlikely cases
583  * (once every few full regression runs).
584  * It is therefore excluded from the coverage report to avoid confusing
585  * developers.
586  *
587  * Background: A pthread is created as soon as the hosted kernel creates
588  * a hosted thread. A pthread creation is an asynchronous process handled by the
589  * host kernel.
590  *
591  * This emulator normally keeps only 1 thread executing at a time.
592  * But part of the pre-initialization during creation of a new thread
593  * and some cleanup at the tail of the thread termination are executed
594  * in parallel to other threads.
595  * That is, the execution of those code paths is a bit indeterministic.
596  *
597  * Only when the hosted kernel attempts to swap to a new thread does this
598  * emulator need to wait until its pthread is ready and initialized
599  * (has reached nct_wait_until_allowed())
600  *
601  * In some cases (tests) hosted threads are created which are never actually needed
602  * (typically the idle thread). That means the test may finish before that
603  * thread's underlying pthread has reached nct_wait_until_allowed().
604  *
605  * In this unlikely cases the initialization or cleanup of the thread follows
606  * non-typical code paths.
607  * This code paths are there to ensure things work always, no matter
608  * the load of the host. Without them, very rare & mysterious segfault crashes
609  * would occur.
610  * But as they are very atypical and only triggered with some host loads,
611  * they will be covered in the coverage reports only rarely.
612  *
613  * Note2:
614  *
615  * Some other code will never or only very rarely trigger and is therefore
616  * excluded with LCOV_EXCL_LINE
617  *
618  */
619