1 /*
2 * Copyright (c) 2016-2017 Wind River Systems, Inc.
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
7 #ifndef ZEPHYR_KERNEL_INCLUDE_KSCHED_H_
8 #define ZEPHYR_KERNEL_INCLUDE_KSCHED_H_
9
10 #include <zephyr/kernel_structs.h>
11 #include <kernel_internal.h>
12 #include <timeout_q.h>
13 #include <kthread.h>
14 #include <zephyr/tracing/tracing.h>
15 #include <stdbool.h>
16 #include <priority_q.h>
17
18 BUILD_ASSERT(K_LOWEST_APPLICATION_THREAD_PRIO
19 >= K_HIGHEST_APPLICATION_THREAD_PRIO);
20
21 #ifdef CONFIG_MULTITHREADING
22 #define Z_VALID_PRIO(prio, entry_point) \
23 (((prio) == K_IDLE_PRIO && z_is_idle_thread_entry(entry_point)) || \
24 ((K_LOWEST_APPLICATION_THREAD_PRIO \
25 >= K_HIGHEST_APPLICATION_THREAD_PRIO) \
26 && (prio) >= K_HIGHEST_APPLICATION_THREAD_PRIO \
27 && (prio) <= K_LOWEST_APPLICATION_THREAD_PRIO))
28
29 #define Z_ASSERT_VALID_PRIO(prio, entry_point) do { \
30 __ASSERT(Z_VALID_PRIO((prio), (entry_point)), \
31 "invalid priority (%d); allowed range: %d to %d", \
32 (prio), \
33 K_LOWEST_APPLICATION_THREAD_PRIO, \
34 K_HIGHEST_APPLICATION_THREAD_PRIO); \
35 } while (false)
36 #else
37 #define Z_VALID_PRIO(prio, entry_point) ((prio) == -1)
38 #define Z_ASSERT_VALID_PRIO(prio, entry_point) __ASSERT((prio) == -1, "")
39 #endif /* CONFIG_MULTITHREADING */
40
41 #if (CONFIG_MP_MAX_NUM_CPUS == 1)
42 #define LOCK_SCHED_SPINLOCK
43 #else
44 #define LOCK_SCHED_SPINLOCK K_SPINLOCK(&_sched_spinlock)
45 #endif
46
47 extern struct k_spinlock _sched_spinlock;
48
49 extern struct k_thread _thread_dummy;
50
51 void z_sched_init(void);
52 void z_move_thread_to_end_of_prio_q(struct k_thread *thread);
53 void z_unpend_thread_no_timeout(struct k_thread *thread);
54 struct k_thread *z_unpend1_no_timeout(_wait_q_t *wait_q);
55 int z_pend_curr(struct k_spinlock *lock, k_spinlock_key_t key,
56 _wait_q_t *wait_q, k_timeout_t timeout);
57 void z_pend_thread(struct k_thread *thread, _wait_q_t *wait_q,
58 k_timeout_t timeout);
59 void z_reschedule(struct k_spinlock *lock, k_spinlock_key_t key);
60 void z_reschedule_irqlock(uint32_t key);
61 void z_unpend_thread(struct k_thread *thread);
62 int z_unpend_all(_wait_q_t *wait_q);
63 bool z_thread_prio_set(struct k_thread *thread, int prio);
64 void *z_get_next_switch_handle(void *interrupted);
65
66 void z_time_slice(void);
67 void z_reset_time_slice(struct k_thread *curr);
68 void z_sched_ipi(void);
69 void z_sched_start(struct k_thread *thread);
70 void z_ready_thread(struct k_thread *thread);
71 void z_requeue_current(struct k_thread *curr);
72 struct k_thread *z_swap_next_thread(void);
73 void z_thread_abort(struct k_thread *thread);
74 void move_thread_to_end_of_prio_q(struct k_thread *thread);
75 bool thread_is_sliceable(struct k_thread *thread);
76
z_reschedule_unlocked(void)77 static inline void z_reschedule_unlocked(void)
78 {
79 (void) z_reschedule_irqlock(arch_irq_lock());
80 }
81
z_is_under_prio_ceiling(int prio)82 static inline bool z_is_under_prio_ceiling(int prio)
83 {
84 return prio >= CONFIG_PRIORITY_CEILING;
85 }
86
z_get_new_prio_with_ceiling(int prio)87 static inline int z_get_new_prio_with_ceiling(int prio)
88 {
89 return z_is_under_prio_ceiling(prio) ? prio : CONFIG_PRIORITY_CEILING;
90 }
91
z_is_prio1_higher_than_or_equal_to_prio2(int prio1,int prio2)92 static inline bool z_is_prio1_higher_than_or_equal_to_prio2(int prio1, int prio2)
93 {
94 return prio1 <= prio2;
95 }
96
z_is_prio_higher_or_equal(int prio1,int prio2)97 static inline bool z_is_prio_higher_or_equal(int prio1, int prio2)
98 {
99 return z_is_prio1_higher_than_or_equal_to_prio2(prio1, prio2);
100 }
101
z_is_prio1_lower_than_or_equal_to_prio2(int prio1,int prio2)102 static inline bool z_is_prio1_lower_than_or_equal_to_prio2(int prio1, int prio2)
103 {
104 return prio1 >= prio2;
105 }
106
z_is_prio1_higher_than_prio2(int prio1,int prio2)107 static inline bool z_is_prio1_higher_than_prio2(int prio1, int prio2)
108 {
109 return prio1 < prio2;
110 }
111
z_is_prio_higher(int prio,int test_prio)112 static inline bool z_is_prio_higher(int prio, int test_prio)
113 {
114 return z_is_prio1_higher_than_prio2(prio, test_prio);
115 }
116
z_is_prio_lower_or_equal(int prio1,int prio2)117 static inline bool z_is_prio_lower_or_equal(int prio1, int prio2)
118 {
119 return z_is_prio1_lower_than_or_equal_to_prio2(prio1, prio2);
120 }
121
_is_valid_prio(int prio,k_thread_entry_t entry_point)122 static inline bool _is_valid_prio(int prio, k_thread_entry_t entry_point)
123 {
124 if ((prio == K_IDLE_PRIO) && z_is_idle_thread_entry(entry_point)) {
125 return true;
126 }
127
128 if (!z_is_prio_higher_or_equal(prio,
129 K_LOWEST_APPLICATION_THREAD_PRIO)) {
130 return false;
131 }
132
133 if (!z_is_prio_lower_or_equal(prio,
134 K_HIGHEST_APPLICATION_THREAD_PRIO)) {
135 return false;
136 }
137
138 return true;
139 }
140
pended_on_thread(struct k_thread * thread)141 static ALWAYS_INLINE _wait_q_t *pended_on_thread(struct k_thread *thread)
142 {
143 __ASSERT_NO_MSG(thread->base.pended_on);
144
145 return thread->base.pended_on;
146 }
147
148
unpend_thread_no_timeout(struct k_thread * thread)149 static inline void unpend_thread_no_timeout(struct k_thread *thread)
150 {
151 _priq_wait_remove(&pended_on_thread(thread)->waitq, thread);
152 z_mark_thread_as_not_pending(thread);
153 thread->base.pended_on = NULL;
154 }
155
156 /*
157 * In a multiprocessor system, z_unpend_first_thread() must lock the scheduler
158 * spinlock _sched_spinlock. However, in a uniprocessor system, that is not
159 * necessary as the caller has already taken precautions (in the form of
160 * locking interrupts).
161 */
z_unpend_first_thread(_wait_q_t * wait_q)162 static ALWAYS_INLINE struct k_thread *z_unpend_first_thread(_wait_q_t *wait_q)
163 {
164 struct k_thread *thread = NULL;
165
166 __ASSERT_EVAL(, int key = arch_irq_lock(); arch_irq_unlock(key),
167 !arch_irq_unlocked(key), "");
168
169 LOCK_SCHED_SPINLOCK {
170 thread = _priq_wait_best(&wait_q->waitq);
171 if (unlikely(thread != NULL)) {
172 unpend_thread_no_timeout(thread);
173 z_abort_thread_timeout(thread);
174 }
175 }
176
177 return thread;
178 }
179
180 /*
181 * APIs for working with the Zephyr kernel scheduler. Intended for use in
182 * management of IPC objects, either in the core kernel or other IPC
183 * implemented by OS compatibility layers, providing basic wait/wake operations
184 * with spinlocks used for synchronization.
185 *
186 * These APIs are public and will be treated as contract, even if the
187 * underlying scheduler implementation changes.
188 */
189
190 /**
191 * Wake up a thread pending on the provided wait queue
192 *
193 * Given a wait_q, wake up the highest priority thread on the queue. If the
194 * queue was empty just return false.
195 *
196 * Otherwise, do the following, in order, holding _sched_spinlock the entire
197 * time so that the thread state is guaranteed not to change:
198 * - Set the thread's swap return values to swap_retval and swap_data
199 * - un-pend and ready the thread, but do not invoke the scheduler.
200 *
201 * Repeated calls to this function until it returns false is a suitable
202 * way to wake all threads on the queue.
203 *
204 * It is up to the caller to implement locking such that the return value of
205 * this function (whether a thread was woken up or not) does not immediately
206 * become stale. Calls to wait and wake on the same wait_q object must have
207 * synchronization. Calling this without holding any spinlock is a sign that
208 * this API is not being used properly.
209 *
210 * @param wait_q Wait queue to wake up the highest prio thread
211 * @param swap_retval Swap return value for woken thread
212 * @param swap_data Data return value to supplement swap_retval. May be NULL.
213 * @retval true If a thread was woken up
214 * @retval false If the wait_q was empty
215 */
216 bool z_sched_wake(_wait_q_t *wait_q, int swap_retval, void *swap_data);
217
218 /**
219 * Wakes the specified thread.
220 *
221 * Given a specific thread, wake it up. This routine assumes that the given
222 * thread is not on the timeout queue.
223 *
224 * @param thread Given thread to wake up.
225 * @param is_timeout True if called from the timer ISR; false otherwise.
226 *
227 */
228 void z_sched_wake_thread(struct k_thread *thread, bool is_timeout);
229
230 /**
231 * Wake up all threads pending on the provided wait queue
232 *
233 * Convenience function to invoke z_sched_wake() on all threads in the queue
234 * until there are no more to wake up.
235 *
236 * @param wait_q Wait queue to wake up the highest prio thread
237 * @param swap_retval Swap return value for woken thread
238 * @param swap_data Data return value to supplement swap_retval. May be NULL.
239 * @retval true If any threads were woken up
240 * @retval false If the wait_q was empty
241 */
z_sched_wake_all(_wait_q_t * wait_q,int swap_retval,void * swap_data)242 static inline bool z_sched_wake_all(_wait_q_t *wait_q, int swap_retval,
243 void *swap_data)
244 {
245 bool woken = false;
246
247 while (z_sched_wake(wait_q, swap_retval, swap_data)) {
248 woken = true;
249 }
250
251 /* True if we woke at least one thread up */
252 return woken;
253 }
254
255 /**
256 * Atomically put the current thread to sleep on a wait queue, with timeout
257 *
258 * The thread will be added to the provided waitqueue. The lock, which should
259 * be held by the caller with the provided key, will be released once this is
260 * completely done and we have swapped out.
261 *
262 * The return value and data pointer is set by whoever woke us up via
263 * z_sched_wake.
264 *
265 * @param lock Address of spinlock to release when we swap out
266 * @param key Key to the provided spinlock when it was locked
267 * @param wait_q Wait queue to go to sleep on
268 * @param timeout Waiting period to be woken up, or K_FOREVER to wait
269 * indefinitely.
270 * @param data Storage location for data pointer set when thread was woken up.
271 * May be NULL if not used.
272 * @retval Return value set by whatever woke us up, or -EAGAIN if the timeout
273 * expired without being woken up.
274 */
275 int z_sched_wait(struct k_spinlock *lock, k_spinlock_key_t key,
276 _wait_q_t *wait_q, k_timeout_t timeout, void **data);
277
278 /**
279 * @brief Walks the wait queue invoking the callback on each waiting thread
280 *
281 * This function walks the wait queue invoking the callback function on each
282 * waiting thread while holding _sched_spinlock. This can be useful for routines
283 * that need to operate on multiple waiting threads.
284 *
285 * CAUTION! As a wait queue is of indeterminate length, the scheduler will be
286 * locked for an indeterminate amount of time. This may impact system
287 * performance. As such, care must be taken when using both this function and
288 * the specified callback.
289 *
290 * @param wait_q Identifies the wait queue to walk
291 * @param func Callback to invoke on each waiting thread
292 * @param data Custom data passed to the callback
293 *
294 * @retval non-zero if walk is terminated by the callback; otherwise 0
295 */
296 int z_sched_waitq_walk(_wait_q_t *wait_q,
297 int (*func)(struct k_thread *, void *), void *data);
298
299 /** @brief Halt thread cycle usage accounting.
300 *
301 * Halts the accumulation of thread cycle usage and adds the current
302 * total to the thread's counter. Called on context switch.
303 *
304 * Note that this function is idempotent. The core kernel code calls
305 * it at the end of interrupt handlers (because that is where we have
306 * a portable hook) where we are context switching, which will include
307 * any cycles spent in the ISR in the per-thread accounting. But
308 * architecture code can also call it earlier out of interrupt entry
309 * to improve measurement fidelity.
310 *
311 * This function assumes local interrupts are masked (so that the
312 * current CPU pointer and current thread are safe to modify), but
313 * requires no other synchronization. Architecture layers don't need
314 * to do anything more.
315 */
316 void z_sched_usage_stop(void);
317
318 void z_sched_usage_start(struct k_thread *thread);
319
320 /**
321 * @brief Retrieves CPU cycle usage data for specified core
322 */
323 void z_sched_cpu_usage(uint8_t core_id, struct k_thread_runtime_stats *stats);
324
325 /**
326 * @brief Retrieves thread cycle usage data for specified thread
327 */
328 void z_sched_thread_usage(struct k_thread *thread,
329 struct k_thread_runtime_stats *stats);
330
z_sched_usage_switch(struct k_thread * thread)331 static inline void z_sched_usage_switch(struct k_thread *thread)
332 {
333 ARG_UNUSED(thread);
334 #ifdef CONFIG_SCHED_THREAD_USAGE
335 z_sched_usage_stop();
336 z_sched_usage_start(thread);
337 #endif /* CONFIG_SCHED_THREAD_USAGE */
338 }
339
340 #endif /* ZEPHYR_KERNEL_INCLUDE_KSCHED_H_ */
341