1 /*
2  * Copyright (c) 2010-2014 Wind River Systems, Inc.
3  *
4  * SPDX-License-Identifier: Apache-2.0
5  */
6 
7 /**
8  * @file
9  * @brief Kernel initialization module
10  *
11  * This module contains routines that are used to initialize the kernel.
12  */
13 
14 #include <ctype.h>
15 #include <stdbool.h>
16 #include <string.h>
17 #include <offsets_short.h>
18 #include <zephyr/kernel.h>
19 #include <zephyr/sys/printk.h>
20 #include <zephyr/debug/stack.h>
21 #include <zephyr/random/random.h>
22 #include <zephyr/linker/sections.h>
23 #include <zephyr/toolchain.h>
24 #include <zephyr/kernel_structs.h>
25 #include <zephyr/device.h>
26 #include <zephyr/init.h>
27 #include <zephyr/linker/linker-defs.h>
28 #include <zephyr/platform/hooks.h>
29 #include <ksched.h>
30 #include <kthread.h>
31 #include <zephyr/sys/dlist.h>
32 #include <kernel_internal.h>
33 #include <zephyr/drivers/entropy.h>
34 #include <zephyr/logging/log_ctrl.h>
35 #include <zephyr/tracing/tracing.h>
36 #include <zephyr/debug/gcov.h>
37 #include <kswap.h>
38 #include <zephyr/timing/timing.h>
39 #include <zephyr/logging/log.h>
40 #include <zephyr/pm/device_runtime.h>
41 #include <zephyr/internal/syscall_handler.h>
42 LOG_MODULE_REGISTER(os, CONFIG_KERNEL_LOG_LEVEL);
43 
44 /* the only struct z_kernel instance */
45 __pinned_bss
46 struct z_kernel _kernel;
47 
48 #ifdef CONFIG_PM
49 __pinned_bss atomic_t _cpus_active;
50 #endif
51 
52 /* init/main and idle threads */
53 K_THREAD_PINNED_STACK_DEFINE(z_main_stack, CONFIG_MAIN_STACK_SIZE);
54 struct k_thread z_main_thread;
55 
56 #ifdef CONFIG_MULTITHREADING
57 __pinned_bss
58 struct k_thread z_idle_threads[CONFIG_MP_MAX_NUM_CPUS];
59 
60 static K_KERNEL_PINNED_STACK_ARRAY_DEFINE(z_idle_stacks,
61 					  CONFIG_MP_MAX_NUM_CPUS,
62 					  CONFIG_IDLE_STACK_SIZE);
63 
z_init_static_threads(void)64 static void z_init_static_threads(void)
65 {
66 	STRUCT_SECTION_FOREACH(_static_thread_data, thread_data) {
67 		z_setup_new_thread(
68 			thread_data->init_thread,
69 			thread_data->init_stack,
70 			thread_data->init_stack_size,
71 			thread_data->init_entry,
72 			thread_data->init_p1,
73 			thread_data->init_p2,
74 			thread_data->init_p3,
75 			thread_data->init_prio,
76 			thread_data->init_options,
77 			thread_data->init_name);
78 
79 		thread_data->init_thread->init_data = thread_data;
80 	}
81 
82 #ifdef CONFIG_USERSPACE
83 	STRUCT_SECTION_FOREACH(k_object_assignment, pos) {
84 		for (int i = 0; pos->objects[i] != NULL; i++) {
85 			k_object_access_grant(pos->objects[i],
86 					      pos->thread);
87 		}
88 	}
89 #endif /* CONFIG_USERSPACE */
90 
91 	/*
92 	 * Non-legacy static threads may be started immediately or
93 	 * after a previously specified delay. Even though the
94 	 * scheduler is locked, ticks can still be delivered and
95 	 * processed. Take a sched lock to prevent them from running
96 	 * until they are all started.
97 	 *
98 	 * Note that static threads defined using the legacy API have a
99 	 * delay of K_FOREVER.
100 	 */
101 	k_sched_lock();
102 	STRUCT_SECTION_FOREACH(_static_thread_data, thread_data) {
103 		k_timeout_t init_delay = Z_THREAD_INIT_DELAY(thread_data);
104 
105 		if (!K_TIMEOUT_EQ(init_delay, K_FOREVER)) {
106 			thread_schedule_new(thread_data->init_thread,
107 					    init_delay);
108 		}
109 	}
110 	k_sched_unlock();
111 }
112 #else
113 #define z_init_static_threads() do { } while (false)
114 #endif /* CONFIG_MULTITHREADING */
115 
116 extern const struct init_entry __init_start[];
117 extern const struct init_entry __init_EARLY_start[];
118 extern const struct init_entry __init_PRE_KERNEL_1_start[];
119 extern const struct init_entry __init_PRE_KERNEL_2_start[];
120 extern const struct init_entry __init_POST_KERNEL_start[];
121 extern const struct init_entry __init_APPLICATION_start[];
122 extern const struct init_entry __init_end[];
123 
124 enum init_level {
125 	INIT_LEVEL_EARLY = 0,
126 	INIT_LEVEL_PRE_KERNEL_1,
127 	INIT_LEVEL_PRE_KERNEL_2,
128 	INIT_LEVEL_POST_KERNEL,
129 	INIT_LEVEL_APPLICATION,
130 #ifdef CONFIG_SMP
131 	INIT_LEVEL_SMP,
132 #endif /* CONFIG_SMP */
133 };
134 
135 #ifdef CONFIG_SMP
136 extern const struct init_entry __init_SMP_start[];
137 #endif /* CONFIG_SMP */
138 
139 /*
140  * storage space for the interrupt stack
141  *
142  * Note: This area is used as the system stack during kernel initialization,
143  * since the kernel hasn't yet set up its own stack areas. The dual purposing
144  * of this area is safe since interrupts are disabled until the kernel context
145  * switches to the init thread.
146  */
147 K_KERNEL_PINNED_STACK_ARRAY_DEFINE(z_interrupt_stacks,
148 				   CONFIG_MP_MAX_NUM_CPUS,
149 				   CONFIG_ISR_STACK_SIZE);
150 
151 extern void idle(void *unused1, void *unused2, void *unused3);
152 
153 #ifdef CONFIG_OBJ_CORE_SYSTEM
154 static struct k_obj_type obj_type_cpu;
155 static struct k_obj_type obj_type_kernel;
156 
157 #ifdef CONFIG_OBJ_CORE_STATS_SYSTEM
158 static struct k_obj_core_stats_desc  cpu_stats_desc = {
159 	.raw_size = sizeof(struct k_cycle_stats),
160 	.query_size = sizeof(struct k_thread_runtime_stats),
161 	.raw   = z_cpu_stats_raw,
162 	.query = z_cpu_stats_query,
163 	.reset = NULL,
164 	.disable = NULL,
165 	.enable  = NULL,
166 };
167 
168 static struct k_obj_core_stats_desc  kernel_stats_desc = {
169 	.raw_size = sizeof(struct k_cycle_stats) * CONFIG_MP_MAX_NUM_CPUS,
170 	.query_size = sizeof(struct k_thread_runtime_stats),
171 	.raw   = z_kernel_stats_raw,
172 	.query = z_kernel_stats_query,
173 	.reset = NULL,
174 	.disable = NULL,
175 	.enable  = NULL,
176 };
177 #endif /* CONFIG_OBJ_CORE_STATS_SYSTEM */
178 #endif /* CONFIG_OBJ_CORE_SYSTEM */
179 
180 /* LCOV_EXCL_START
181  *
182  * This code is called so early in the boot process that code coverage
183  * doesn't work properly. In addition, not all arches call this code,
184  * some like x86 do this with optimized assembly
185  */
186 
187 /**
188  * @brief equivalent of memset() for early boot usage
189  *
190  * Architectures that can't safely use the regular (optimized) memset very
191  * early during boot because e.g. hardware isn't yet sufficiently initialized
192  * may override this with their own safe implementation.
193  */
194 __boot_func
z_early_memset(void * dst,int c,size_t n)195 void __weak z_early_memset(void *dst, int c, size_t n)
196 {
197 	(void) memset(dst, c, n);
198 }
199 
200 /**
201  * @brief equivalent of memcpy() for early boot usage
202  *
203  * Architectures that can't safely use the regular (optimized) memcpy very
204  * early during boot because e.g. hardware isn't yet sufficiently initialized
205  * may override this with their own safe implementation.
206  */
207 __boot_func
z_early_memcpy(void * dst,const void * src,size_t n)208 void __weak z_early_memcpy(void *dst, const void *src, size_t n)
209 {
210 	(void) memcpy(dst, src, n);
211 }
212 
213 /**
214  * @brief Clear BSS
215  *
216  * This routine clears the BSS region, so all bytes are 0.
217  */
218 __boot_func
z_bss_zero(void)219 void z_bss_zero(void)
220 {
221 	if (IS_ENABLED(CONFIG_SKIP_BSS_CLEAR)) {
222 		return;
223 	}
224 
225 	z_early_memset(__bss_start, 0, __bss_end - __bss_start);
226 #if DT_NODE_HAS_STATUS_OKAY(DT_CHOSEN(zephyr_ccm))
227 	z_early_memset(&__ccm_bss_start, 0,
228 		       (uintptr_t) &__ccm_bss_end
229 		       - (uintptr_t) &__ccm_bss_start);
230 #endif
231 #if DT_NODE_HAS_STATUS_OKAY(DT_CHOSEN(zephyr_dtcm))
232 	z_early_memset(&__dtcm_bss_start, 0,
233 		       (uintptr_t) &__dtcm_bss_end
234 		       - (uintptr_t) &__dtcm_bss_start);
235 #endif
236 #if DT_NODE_HAS_STATUS_OKAY(DT_CHOSEN(zephyr_ocm))
237 	z_early_memset(&__ocm_bss_start, 0,
238 		       (uintptr_t) &__ocm_bss_end
239 		       - (uintptr_t) &__ocm_bss_start);
240 #endif
241 #ifdef CONFIG_CODE_DATA_RELOCATION
242 	extern void bss_zeroing_relocation(void);
243 
244 	bss_zeroing_relocation();
245 #endif	/* CONFIG_CODE_DATA_RELOCATION */
246 #ifdef CONFIG_COVERAGE_GCOV
247 	z_early_memset(&__gcov_bss_start, 0,
248 		       ((uintptr_t) &__gcov_bss_end - (uintptr_t) &__gcov_bss_start));
249 #endif /* CONFIG_COVERAGE_GCOV */
250 #ifdef CONFIG_NOCACHE_MEMORY
251 z_early_memset(&_nocache_ram_start, 0,
252 		   (uintptr_t) &_nocache_ram_end
253 		   - (uintptr_t) &_nocache_ram_start);
254 #endif
255 }
256 
257 #ifdef CONFIG_LINKER_USE_BOOT_SECTION
258 /**
259  * @brief Clear BSS within the boot region
260  *
261  * This routine clears the BSS within the boot region.
262  * This is separate from z_bss_zero() as boot region may
263  * contain symbols required for the boot process before
264  * paging is initialized.
265  */
266 __boot_func
z_bss_zero_boot(void)267 void z_bss_zero_boot(void)
268 {
269 	z_early_memset(&lnkr_boot_bss_start, 0,
270 		       (uintptr_t)&lnkr_boot_bss_end
271 		       - (uintptr_t)&lnkr_boot_bss_start);
272 }
273 #endif /* CONFIG_LINKER_USE_BOOT_SECTION */
274 
275 #ifdef CONFIG_LINKER_USE_PINNED_SECTION
276 /**
277  * @brief Clear BSS within the pinned region
278  *
279  * This routine clears the BSS within the pinned region.
280  * This is separate from z_bss_zero() as pinned region may
281  * contain symbols required for the boot process before
282  * paging is initialized.
283  */
284 #ifdef CONFIG_LINKER_USE_BOOT_SECTION
285 __boot_func
286 #else
287 __pinned_func
288 #endif /* CONFIG_LINKER_USE_BOOT_SECTION */
z_bss_zero_pinned(void)289 void z_bss_zero_pinned(void)
290 {
291 	z_early_memset(&lnkr_pinned_bss_start, 0,
292 		       (uintptr_t)&lnkr_pinned_bss_end
293 		       - (uintptr_t)&lnkr_pinned_bss_start);
294 }
295 #endif /* CONFIG_LINKER_USE_PINNED_SECTION */
296 
297 #ifdef CONFIG_REQUIRES_STACK_CANARIES
298 #ifdef CONFIG_STACK_CANARIES_TLS
299 extern Z_THREAD_LOCAL volatile uintptr_t __stack_chk_guard;
300 #else
301 extern volatile uintptr_t __stack_chk_guard;
302 #endif /* CONFIG_STACK_CANARIES_TLS */
303 #endif /* CONFIG_REQUIRES_STACK_CANARIES */
304 
305 /* LCOV_EXCL_STOP */
306 
307 __pinned_bss
308 bool z_sys_post_kernel;
309 
do_device_init(const struct device * dev)310 static int do_device_init(const struct device *dev)
311 {
312 	int rc = 0;
313 
314 	if (dev->ops.init != NULL) {
315 		rc = dev->ops.init(dev);
316 		/* Mark device initialized. If initialization
317 		 * failed, record the error condition.
318 		 */
319 		if (rc != 0) {
320 			if (rc < 0) {
321 				rc = -rc;
322 			}
323 			if (rc > UINT8_MAX) {
324 				rc = UINT8_MAX;
325 			}
326 			dev->state->init_res = rc;
327 		}
328 	}
329 
330 	dev->state->initialized = true;
331 
332 	if (rc == 0) {
333 		/* Run automatic device runtime enablement */
334 		(void)pm_device_runtime_auto_enable(dev);
335 	}
336 
337 	return rc;
338 }
339 
340 /**
341  * @brief Execute all the init entry initialization functions at a given level
342  *
343  * @details Invokes the initialization routine for each init entry object
344  * created by the INIT_ENTRY_DEFINE() macro using the specified level.
345  * The linker script places the init entry objects in memory in the order
346  * they need to be invoked, with symbols indicating where one level leaves
347  * off and the next one begins.
348  *
349  * @param level init level to run.
350  */
z_sys_init_run_level(enum init_level level)351 static void z_sys_init_run_level(enum init_level level)
352 {
353 	static const struct init_entry *levels[] = {
354 		__init_EARLY_start,
355 		__init_PRE_KERNEL_1_start,
356 		__init_PRE_KERNEL_2_start,
357 		__init_POST_KERNEL_start,
358 		__init_APPLICATION_start,
359 #ifdef CONFIG_SMP
360 		__init_SMP_start,
361 #endif /* CONFIG_SMP */
362 		/* End marker */
363 		__init_end,
364 	};
365 	const struct init_entry *entry;
366 
367 	for (entry = levels[level]; entry < levels[level+1]; entry++) {
368 		const struct device *dev = entry->dev;
369 		int result = 0;
370 
371 		sys_trace_sys_init_enter(entry, level);
372 		if (dev != NULL) {
373 			if ((dev->flags & DEVICE_FLAG_INIT_DEFERRED) == 0U) {
374 				result = do_device_init(dev);
375 			}
376 		} else {
377 			result = entry->init_fn();
378 		}
379 		sys_trace_sys_init_exit(entry, level, result);
380 	}
381 }
382 
383 
z_impl_device_init(const struct device * dev)384 int z_impl_device_init(const struct device *dev)
385 {
386 	if (dev->state->initialized) {
387 		return -EALREADY;
388 	}
389 
390 	return do_device_init(dev);
391 }
392 
393 #ifdef CONFIG_USERSPACE
z_vrfy_device_init(const struct device * dev)394 static inline int z_vrfy_device_init(const struct device *dev)
395 {
396 	K_OOPS(K_SYSCALL_OBJ_INIT(dev, K_OBJ_ANY));
397 
398 	return z_impl_device_init(dev);
399 }
400 #include <zephyr/syscalls/device_init_mrsh.c>
401 #endif
402 
403 extern void boot_banner(void);
404 
405 #ifdef CONFIG_BOOTARGS
406 extern const char *get_bootargs(void);
prepare_main_args(int * argc)407 static char **prepare_main_args(int *argc)
408 {
409 #ifdef CONFIG_DYNAMIC_BOOTARGS
410 	const char *bootargs = get_bootargs();
411 #else
412 	const char bootargs[] = CONFIG_BOOTARGS_STRING;
413 #endif
414 
415 	/* beginning of the buffer contains argument's strings, end of it contains argvs */
416 	static char args_buf[CONFIG_BOOTARGS_ARGS_BUFFER_SIZE];
417 	char *strings_end = (char *)args_buf;
418 	char **argv_begin = (char **)WB_DN(
419 		args_buf + CONFIG_BOOTARGS_ARGS_BUFFER_SIZE - sizeof(char *));
420 	int i = 0;
421 
422 	*argc = 0;
423 	*argv_begin = NULL;
424 
425 #ifdef CONFIG_DYNAMIC_BOOTARGS
426 	if (!bootargs) {
427 		return argv_begin;
428 	}
429 #endif
430 
431 	while (1) {
432 		while (isspace(bootargs[i])) {
433 			i++;
434 		}
435 
436 		if (bootargs[i] == '\0') {
437 			return argv_begin;
438 		}
439 
440 		if (strings_end + sizeof(char *) >= (char *)argv_begin) {
441 			LOG_WRN("not enough space in args buffer to accommodate all bootargs"
442 				" - bootargs truncated");
443 			return argv_begin;
444 		}
445 
446 		argv_begin--;
447 		memmove(argv_begin, argv_begin + 1, *argc * sizeof(char *));
448 		argv_begin[*argc] = strings_end;
449 
450 		bool quoted = false;
451 
452 		if (bootargs[i] == '\"' || bootargs[i] == '\'') {
453 			char delimiter = bootargs[i];
454 
455 			for (int j = i + 1; bootargs[j] != '\0'; j++) {
456 				if (bootargs[j] == delimiter) {
457 					quoted = true;
458 					break;
459 				}
460 			}
461 		}
462 
463 		if (quoted) {
464 			char delimiter  = bootargs[i];
465 
466 			i++; /* strip quotes */
467 			while (bootargs[i] != delimiter
468 				&& strings_end < (char *)argv_begin) {
469 				*strings_end++ = bootargs[i++];
470 			}
471 			i++; /* strip quotes */
472 		} else {
473 			while (!isspace(bootargs[i])
474 				&& bootargs[i] != '\0'
475 				&& strings_end < (char *)argv_begin) {
476 				*strings_end++ = bootargs[i++];
477 			}
478 		}
479 
480 		if (strings_end < (char *)argv_begin) {
481 			*strings_end++ = '\0';
482 		} else {
483 			LOG_WRN("not enough space in args buffer to accommodate all bootargs"
484 				" - bootargs truncated");
485 			argv_begin[*argc] = NULL;
486 			return argv_begin;
487 		}
488 		(*argc)++;
489 	}
490 }
491 
492 #endif
493 
494 #ifdef CONFIG_STATIC_INIT_GNU
495 
496 extern void (*__zephyr_init_array_start[])();
497 extern void (*__zephyr_init_array_end[])();
498 
z_static_init_gnu(void)499 static void z_static_init_gnu(void)
500 {
501 	void	(**fn)();
502 
503 	for (fn = __zephyr_init_array_start; fn != __zephyr_init_array_end; fn++) {
504 		/* MWDT toolchain sticks a NULL at the end of the array */
505 		if (*fn == NULL) {
506 			break;
507 		}
508 		(**fn)();
509 	}
510 }
511 
512 #endif
513 
514 /**
515  * @brief Mainline for kernel's background thread
516  *
517  * This routine completes kernel initialization by invoking the remaining
518  * init functions, then invokes application's main() routine.
519  */
520 __boot_func
bg_thread_main(void * unused1,void * unused2,void * unused3)521 static void bg_thread_main(void *unused1, void *unused2, void *unused3)
522 {
523 	ARG_UNUSED(unused1);
524 	ARG_UNUSED(unused2);
525 	ARG_UNUSED(unused3);
526 
527 #ifdef CONFIG_MMU
528 	/* Invoked here such that backing store or eviction algorithms may
529 	 * initialize kernel objects, and that all POST_KERNEL and later tasks
530 	 * may perform memory management tasks (except for
531 	 * k_mem_map_phys_bare() which is allowed at any time)
532 	 */
533 	z_mem_manage_init();
534 #endif /* CONFIG_MMU */
535 	z_sys_post_kernel = true;
536 
537 #if CONFIG_IRQ_OFFLOAD
538 	arch_irq_offload_init();
539 #endif
540 	z_sys_init_run_level(INIT_LEVEL_POST_KERNEL);
541 #if CONFIG_SOC_LATE_INIT_HOOK
542 	soc_late_init_hook();
543 #endif
544 #if CONFIG_BOARD_LATE_INIT_HOOK
545 	board_late_init_hook();
546 #endif
547 
548 #if defined(CONFIG_STACK_POINTER_RANDOM) && (CONFIG_STACK_POINTER_RANDOM != 0)
549 	z_stack_adjust_initialized = 1;
550 #endif /* CONFIG_STACK_POINTER_RANDOM */
551 	boot_banner();
552 
553 #ifdef CONFIG_STATIC_INIT_GNU
554 	z_static_init_gnu();
555 #endif /* CONFIG_STATIC_INIT_GNU */
556 
557 	/* Final init level before app starts */
558 	z_sys_init_run_level(INIT_LEVEL_APPLICATION);
559 
560 	z_init_static_threads();
561 
562 #ifdef CONFIG_KERNEL_COHERENCE
563 	__ASSERT_NO_MSG(arch_mem_coherent(&_kernel));
564 #endif /* CONFIG_KERNEL_COHERENCE */
565 
566 #ifdef CONFIG_SMP
567 	if (!IS_ENABLED(CONFIG_SMP_BOOT_DELAY)) {
568 		z_smp_init();
569 	}
570 	z_sys_init_run_level(INIT_LEVEL_SMP);
571 #endif /* CONFIG_SMP */
572 
573 #ifdef CONFIG_MMU
574 	z_mem_manage_boot_finish();
575 #endif /* CONFIG_MMU */
576 
577 #ifdef CONFIG_BOOTARGS
578 	extern int main(int, char **);
579 
580 	int argc = 0;
581 	char **argv = prepare_main_args(&argc);
582 	(void)main(argc, argv);
583 #else
584 	extern int main(void);
585 
586 	(void)main();
587 #endif /* CONFIG_BOOTARGS */
588 
589 	/* Mark non-essential since main() has no more work to do */
590 	z_thread_essential_clear(&z_main_thread);
591 
592 #ifdef CONFIG_COVERAGE_DUMP
593 	/* Dump coverage data once the main() has exited. */
594 	gcov_coverage_dump();
595 #endif /* CONFIG_COVERAGE_DUMP */
596 } /* LCOV_EXCL_LINE ... because we just dumped final coverage data */
597 
598 #if defined(CONFIG_MULTITHREADING)
599 __boot_func
init_idle_thread(int i)600 static void init_idle_thread(int i)
601 {
602 	struct k_thread *thread = &z_idle_threads[i];
603 	k_thread_stack_t *stack = z_idle_stacks[i];
604 	size_t stack_size = K_KERNEL_STACK_SIZEOF(z_idle_stacks[i]);
605 
606 #ifdef CONFIG_THREAD_NAME
607 
608 #if CONFIG_MP_MAX_NUM_CPUS > 1
609 	char tname[8];
610 	snprintk(tname, 8, "idle %02d", i);
611 #else
612 	char *tname = "idle";
613 #endif /* CONFIG_MP_MAX_NUM_CPUS */
614 
615 #else
616 	char *tname = NULL;
617 #endif /* CONFIG_THREAD_NAME */
618 
619 	z_setup_new_thread(thread, stack,
620 			  stack_size, idle, &_kernel.cpus[i],
621 			  NULL, NULL, K_IDLE_PRIO, K_ESSENTIAL,
622 			  tname);
623 	z_mark_thread_as_not_sleeping(thread);
624 
625 #ifdef CONFIG_SMP
626 	thread->base.is_idle = 1U;
627 #endif /* CONFIG_SMP */
628 }
629 
z_init_cpu(int id)630 void z_init_cpu(int id)
631 {
632 	init_idle_thread(id);
633 	_kernel.cpus[id].idle_thread = &z_idle_threads[id];
634 	_kernel.cpus[id].id = id;
635 	_kernel.cpus[id].irq_stack =
636 		(K_KERNEL_STACK_BUFFER(z_interrupt_stacks[id]) +
637 		 K_KERNEL_STACK_SIZEOF(z_interrupt_stacks[id]));
638 #ifdef CONFIG_SCHED_THREAD_USAGE_ALL
639 	_kernel.cpus[id].usage = &_kernel.usage[id];
640 	_kernel.cpus[id].usage->track_usage =
641 		CONFIG_SCHED_THREAD_USAGE_AUTO_ENABLE;
642 #endif
643 
644 #ifdef CONFIG_PM
645 	/*
646 	 * Increment number of CPUs active. The pm subsystem
647 	 * will keep track of this from here.
648 	 */
649 	atomic_inc(&_cpus_active);
650 #endif
651 
652 #ifdef CONFIG_OBJ_CORE_SYSTEM
653 	k_obj_core_init_and_link(K_OBJ_CORE(&_kernel.cpus[id]), &obj_type_cpu);
654 #ifdef CONFIG_OBJ_CORE_STATS_SYSTEM
655 	k_obj_core_stats_register(K_OBJ_CORE(&_kernel.cpus[id]),
656 				  _kernel.cpus[id].usage,
657 				  sizeof(struct k_cycle_stats));
658 #endif
659 #endif
660 }
661 
662 /**
663  *
664  * @brief Initializes kernel data structures
665  *
666  * This routine initializes various kernel data structures, including
667  * the init and idle threads and any architecture-specific initialization.
668  *
669  * Note that all fields of "_kernel" are set to zero on entry, which may
670  * be all the initialization many of them require.
671  *
672  * @return initial stack pointer for the main thread
673  */
674 __boot_func
prepare_multithreading(void)675 static char *prepare_multithreading(void)
676 {
677 	char *stack_ptr;
678 
679 	/* _kernel.ready_q is all zeroes */
680 	z_sched_init();
681 
682 #ifndef CONFIG_SMP
683 	/*
684 	 * prime the cache with the main thread since:
685 	 *
686 	 * - the cache can never be NULL
687 	 * - the main thread will be the one to run first
688 	 * - no other thread is initialized yet and thus their priority fields
689 	 *   contain garbage, which would prevent the cache loading algorithm
690 	 *   to work as intended
691 	 */
692 	_kernel.ready_q.cache = &z_main_thread;
693 #endif /* CONFIG_SMP */
694 	stack_ptr = z_setup_new_thread(&z_main_thread, z_main_stack,
695 				       K_THREAD_STACK_SIZEOF(z_main_stack),
696 				       bg_thread_main,
697 				       NULL, NULL, NULL,
698 				       CONFIG_MAIN_THREAD_PRIORITY,
699 				       K_ESSENTIAL, "main");
700 	z_mark_thread_as_not_sleeping(&z_main_thread);
701 	z_ready_thread(&z_main_thread);
702 
703 	z_init_cpu(0);
704 
705 	return stack_ptr;
706 }
707 
708 __boot_func
switch_to_main_thread(char * stack_ptr)709 static FUNC_NORETURN void switch_to_main_thread(char *stack_ptr)
710 {
711 #ifdef CONFIG_ARCH_HAS_CUSTOM_SWAP_TO_MAIN
712 	arch_switch_to_main_thread(&z_main_thread, stack_ptr, bg_thread_main);
713 #else
714 	ARG_UNUSED(stack_ptr);
715 	/*
716 	 * Context switch to main task (entry function is _main()): the
717 	 * current fake thread is not on a wait queue or ready queue, so it
718 	 * will never be rescheduled in.
719 	 */
720 	z_swap_unlocked();
721 #endif /* CONFIG_ARCH_HAS_CUSTOM_SWAP_TO_MAIN */
722 	CODE_UNREACHABLE; /* LCOV_EXCL_LINE */
723 }
724 #endif /* CONFIG_MULTITHREADING */
725 
726 __boot_func
z_early_rand_get(uint8_t * buf,size_t length)727 void __weak z_early_rand_get(uint8_t *buf, size_t length)
728 {
729 	static uint64_t state = (uint64_t)CONFIG_TIMER_RANDOM_INITIAL_STATE;
730 	int rc;
731 
732 #ifdef CONFIG_ENTROPY_HAS_DRIVER
733 	const struct device *const entropy = DEVICE_DT_GET_OR_NULL(DT_CHOSEN(zephyr_entropy));
734 
735 	if ((entropy != NULL) && device_is_ready(entropy)) {
736 		/* Try to see if driver provides an ISR-specific API */
737 		rc = entropy_get_entropy_isr(entropy, buf, length, ENTROPY_BUSYWAIT);
738 		if (rc > 0) {
739 			length -= rc;
740 			buf += rc;
741 		}
742 	}
743 #endif /* CONFIG_ENTROPY_HAS_DRIVER */
744 
745 	while (length > 0) {
746 		uint32_t val;
747 
748 		state = state + k_cycle_get_32();
749 		state = state * 2862933555777941757ULL + 3037000493ULL;
750 		val = (uint32_t)(state >> 32);
751 		rc = MIN(length, sizeof(val));
752 		z_early_memcpy((void *)buf, &val, rc);
753 
754 		length -= rc;
755 		buf += rc;
756 	}
757 }
758 
759 /**
760  *
761  * @brief Initialize kernel
762  *
763  * This routine is invoked when the system is ready to run C code. The
764  * processor must be running in 32-bit mode, and the BSS must have been
765  * cleared/zeroed.
766  *
767  * @return Does not return
768  */
769 __boot_func
770 FUNC_NO_STACK_PROTECTOR
z_cstart(void)771 FUNC_NORETURN void z_cstart(void)
772 {
773 	/* gcov hook needed to get the coverage report.*/
774 	gcov_static_init();
775 
776 	/* initialize early init calls */
777 	z_sys_init_run_level(INIT_LEVEL_EARLY);
778 
779 	/* perform any architecture-specific initialization */
780 	arch_kernel_init();
781 
782 	LOG_CORE_INIT();
783 
784 #if defined(CONFIG_MULTITHREADING)
785 	z_dummy_thread_init(&_thread_dummy);
786 #endif /* CONFIG_MULTITHREADING */
787 	/* do any necessary initialization of static devices */
788 	z_device_state_init();
789 
790 #if CONFIG_SOC_EARLY_INIT_HOOK
791 	soc_early_init_hook();
792 #endif
793 #if CONFIG_BOARD_EARLY_INIT_HOOK
794 	board_early_init_hook();
795 #endif
796 	/* perform basic hardware initialization */
797 	z_sys_init_run_level(INIT_LEVEL_PRE_KERNEL_1);
798 #if defined(CONFIG_SMP)
799 	arch_smp_init();
800 #endif
801 	z_sys_init_run_level(INIT_LEVEL_PRE_KERNEL_2);
802 
803 #ifdef CONFIG_REQUIRES_STACK_CANARIES
804 	uintptr_t stack_guard;
805 
806 	z_early_rand_get((uint8_t *)&stack_guard, sizeof(stack_guard));
807 	__stack_chk_guard = stack_guard;
808 	__stack_chk_guard <<= 8;
809 #endif	/* CONFIG_REQUIRES_STACK_CANARIES */
810 
811 #ifdef CONFIG_TIMING_FUNCTIONS_NEED_AT_BOOT
812 	timing_init();
813 	timing_start();
814 #endif /* CONFIG_TIMING_FUNCTIONS_NEED_AT_BOOT */
815 
816 #ifdef CONFIG_MULTITHREADING
817 	switch_to_main_thread(prepare_multithreading());
818 #else
819 #ifdef ARCH_SWITCH_TO_MAIN_NO_MULTITHREADING
820 	/* Custom ARCH-specific routine to switch to main()
821 	 * in the case of no multi-threading.
822 	 */
823 	ARCH_SWITCH_TO_MAIN_NO_MULTITHREADING(bg_thread_main,
824 		NULL, NULL, NULL);
825 #else
826 	bg_thread_main(NULL, NULL, NULL);
827 
828 	/* LCOV_EXCL_START
829 	 * We've already dumped coverage data at this point.
830 	 */
831 	irq_lock();
832 	while (true) {
833 	}
834 	/* LCOV_EXCL_STOP */
835 #endif /* ARCH_SWITCH_TO_MAIN_NO_MULTITHREADING */
836 #endif /* CONFIG_MULTITHREADING */
837 
838 	/*
839 	 * Compiler can't tell that the above routines won't return and issues
840 	 * a warning unless we explicitly tell it that control never gets this
841 	 * far.
842 	 */
843 
844 	CODE_UNREACHABLE; /* LCOV_EXCL_LINE */
845 }
846 
847 #ifdef CONFIG_OBJ_CORE_SYSTEM
init_cpu_obj_core_list(void)848 static int init_cpu_obj_core_list(void)
849 {
850 	/* Initialize CPU object type */
851 
852 	z_obj_type_init(&obj_type_cpu, K_OBJ_TYPE_CPU_ID,
853 			offsetof(struct _cpu, obj_core));
854 
855 #ifdef CONFIG_OBJ_CORE_STATS_SYSTEM
856 	k_obj_type_stats_init(&obj_type_cpu, &cpu_stats_desc);
857 #endif /* CONFIG_OBJ_CORE_STATS_SYSTEM */
858 
859 	return 0;
860 }
861 
init_kernel_obj_core_list(void)862 static int init_kernel_obj_core_list(void)
863 {
864 	/* Initialize kernel object type */
865 
866 	z_obj_type_init(&obj_type_kernel, K_OBJ_TYPE_KERNEL_ID,
867 			offsetof(struct z_kernel, obj_core));
868 
869 #ifdef CONFIG_OBJ_CORE_STATS_SYSTEM
870 	k_obj_type_stats_init(&obj_type_kernel, &kernel_stats_desc);
871 #endif /* CONFIG_OBJ_CORE_STATS_SYSTEM */
872 
873 	k_obj_core_init_and_link(K_OBJ_CORE(&_kernel), &obj_type_kernel);
874 #ifdef CONFIG_OBJ_CORE_STATS_SYSTEM
875 	k_obj_core_stats_register(K_OBJ_CORE(&_kernel), _kernel.usage,
876 				  sizeof(_kernel.usage));
877 #endif /* CONFIG_OBJ_CORE_STATS_SYSTEM */
878 
879 	return 0;
880 }
881 
882 SYS_INIT(init_cpu_obj_core_list, PRE_KERNEL_1,
883 	 CONFIG_KERNEL_INIT_PRIORITY_OBJECTS);
884 
885 SYS_INIT(init_kernel_obj_core_list, PRE_KERNEL_1,
886 	 CONFIG_KERNEL_INIT_PRIORITY_OBJECTS);
887 #endif /* CONFIG_OBJ_CORE_SYSTEM */
888